直流稳压电源电路设计

合集下载

直流稳压电源电路设计方案

直流稳压电源电路设计方案

直流稳压电源电路设计方案直流稳压电源是一种能够将交流电转换为直流电并保持输出电压稳定的电路装置。

在电子设备中,直流稳压电源具有重要的作用,能够为各种电子元器件提供稳定的工作电压,保证设备正常运行。

本文将提出一种基于线性稳压调节器的直流稳压电源设计方案。

首先,选择合适的输入变压器。

输入变压器应该具有较高的变压比,以将输入的交流电压转换为适合线性稳压调节器工作的直流电压。

同时,变压器的绕组应该经过合理设计,以提供足够的功率输出,同时降低能量损耗。

在选取变压器时,还需要注意其绝缘性能和耐压等级,以保证电路的安全性。

其次,使用整流电路将输入的交流电转换为直流电。

整流电路可以选择使用单相或者全波整流电路,具体选择取决于应用需求。

单相整流电路比较简单,但是输出纹波较大,全波整流电路能够提供更稳定的直流输出。

整流电路还需要配备合适的滤波电容,以降低输出电压的纹波。

接下来,采用线性稳压调节器来实现电压稳定。

线性稳压调节器通过电压反馈机制来实现输出电压的稳定。

其中,常用的稳压调节器有三端稳压器和二端稳压器。

三端稳压器具有较好的稳压性能和较低的纹波,但是输入输出差异较大时效果较差。

二端稳压器采用采用差分放大器的工作原理,能够实现更好的线性稳压效果。

最后,为了提高稳压电源的性能,可以加入过载保护电路和短路保护电路。

过载保护电路可以在输出电流过大时切断电源供应,以避免设备损坏。

短路保护电路可以在输出端短路时切断电源供应,保护设备安全。

总结起来,一种基于线性稳压调节器的直流稳压电源设计方案包括选择合适的输入变压器、设计适当的整流电路,选择合适的线性稳压调节器,以及加入过载保护和短路保护电路。

通过合理设计和选择电路元器件,可以实现一个稳定、可靠的直流稳压电源,满足各种电子设备的需求。

5V直流稳压电源设计说明

5V直流稳压电源设计说明

5V直流稳压电源设计说明一、引言直流稳压电源是电子设备的基本组成部分之一,其主要功能是将交流电转换为直流电,并提供稳定的电压输出。

5V直流稳压电源常被应用于各种电子产品中,如手机、数码设备、嵌入式系统等。

本文将对5V直流稳压电源的设计进行详细说明。

二、设计需求1.输出电压为5V,电流大于等于1A。

2.稳压范围在±2%以内。

3.起始电源电压为220V交流电。

4.设计尺寸紧凑,适合应用于各种电子设备中。

5.安全可靠,具备过压、过流、过温保护功能。

三、设计原理1.整流滤波:电源输入端接入变压器,将220V交流电转换为较低电压的交流电,然后通过整流电路将交流电转换为直流电。

整流电路一般采用桥式整流电路,通过四个二极管将交流电改为单向的直流电。

接下来需要对直流信号进行滤波,以去除残留的交流成分。

滤波电路通常采用电容滤波,将变化较大的直流电压变为更为稳定的直流电压。

2.稳压电路:在滤波后的直流电压上接入稳压电路,以确保输出电压的稳定性。

常用的稳压电路有线性稳压和开关稳压两种。

-线性稳压:线性稳压电路采用功率晶体管或集成电路,通过调节电路中的稳压元件的工作状态,来实现对输出电压的稳定。

线性稳压的优点是设计简单,成本低,但效率较低,热量较多。

-开关稳压:开关稳压电路采用开关元件,通过周期性开关来控制直流电压的波形,从而实现对输出电压的调节。

开关稳压的优点是效率高,体积小,热量少,但设计复杂一些。

3.保护电路:为了确保电源的安全可靠性,需要设计适当的保护电路,包括过压保护、过流保护和过温保护。

-过压保护:添加过压保护电路,当输出电压超过预设范围时,电路可以自动切断输出。

-过流保护:添加过流保护电路,当输出电流超过额定值时,电路可以自动切断输出,避免损坏电子设备。

-过温保护:添加过温保护电路,当电源温度超过安全工作范围时,电路可以自动切断输出,防止发生短路、火灾等危险情况。

四、设计步骤1.根据需求确定稳压电路的类型,线性稳压或开关稳压。

直流稳压电源设计方案

直流稳压电源设计方案

直流稳压电源设计方案问题背景直流稳压电源是电子设备运行中常用的一类电源,能够提供稳定且可调的直流电压给电子设备供电。

其在现代电子技术中应用广泛,包括通信设备、计算机、工业自动化、医疗设备等领域。

本文将探讨直流稳压电源的设计方案,并介绍其工作原理以及影响设计的关键因素。

直流稳压电源的工作原理直流稳压电源的工作原理基于电子元件如稳压二极管、稳压管、电感、电容等的组合使用。

其基本原理可以通过下面的步骤进行说明:1.根据输入电源提供的交流电压,通过整流电路将其转换为直流电压。

2.通过滤波电路去除直流电压中的脉动成分,使得输出直流电压更加稳定。

3.利用稳压元件(如稳压管、稳压二极管)对输出直流电压进行进一步的稳压控制。

4.通过负载电路提供被供电设备所需的电流。

设计方案设计需求在设计直流稳压电源时,需要考虑以下几个方面的需求:1.输出电压范围:根据具体需求,确定直流稳压电源的输出电压范围,以满足被供电设备的需求。

2.输出电流能力:根据被供电设备的功率需求,确定直流稳压电源的输出电流能力。

3.稳压性能:确保直流稳压电源具有良好的稳压性能,输出电压在负载变化时能够保持稳定。

4.效率和能耗:提高直流稳压电源的效率,减少能源消耗。

设计步骤步骤一:选择稳压电源拓扑结构稳压电源的拓扑结构包括线性稳压电源和开关稳压电源两种常见结构,根据要求选择适合的拓扑结构。

步骤二:电源变换根据输入电源的类型选择相应的变换电路,如交流转直流电路或直流转直流电路。

其中,交流转直流电路可以使用整流电路和滤波电路来实现。

步骤三:稳压控制根据设计需求和稳压电源拓扑结构,选择合适的稳压元件进行稳压控制。

常用的稳压元件有稳压管、稳压二极管等。

步骤四:保护电路设计在直流稳压电源中,通常需要设计相应的保护电路,包括过载保护、过温保护等,以确保电源和被供电设备的安全运行。

步骤五:滤波和降噪为了提高直流稳压电源的稳定性和可靠性,需要设计相应的滤波和降噪电路,以减小输出电压的脉动和噪声。

(完整版)直流稳压电源电路的设计实验报告

(完整版)直流稳压电源电路的设计实验报告

直流稳压电源电路的设计实验报告一、实验目的1、了解直流稳压电源的工作原理。

2、设计直流稳压电路,要求输入电压:220V市电,50Hz,用单变压器设计并制作能够输出一组固定+15V输出直流电压和一组+1.2V~+12V连续可调的直流稳压电源电路,两组输出电流分别I O≥500mA。

3、了解掌握Proteus软件的基本操作与应用。

二、实验线路及原理1、实验原理(1)直流稳压电源直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。

一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下:图2-1 直流稳压电源的原理框图和波形变换其中:1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。

2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。

3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。

滤波电路滤除较大的波纹成分,输出波纹较小的直流电压U1。

4)稳压电路:其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。

稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。

(2)整流电路常采用二极管单相全波整流电路,电路如图2-2所示。

在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。

正负半周内部都有电流流过的负载电阻RL,且方向是一致的。

电路的输出波形如图2-3所示。

t整流二极管采用1N4007,具有正向导通电压降低,导通电流高,泄露电流低,过载电流高,成本低等优点,其基本参数如下图所示,有黑色线圈一端表示负极。

直流稳压电源设计方案.d

直流稳压电源设计方案.d

直流稳压电源设计方案2篇【直流稳压电源设计方案(一)】随着电子设备的广泛应用,直流稳压电源的需求在不断增加。

直流稳压电源能够将交流电转换为稳定的直流电,并根据需要提供不同电压和电流的输出。

本篇将介绍直流稳压电源的设计方案以及其应用。

直流稳压电源的设计方案首先需要确定电源输出的电压和电流。

根据实际需求,我们选择了输出电压为12V,电流为3A的直流稳压电源。

为了确保输出电压的稳定性,我们选择采用稳压模块进行电压调节。

稳压模块是一种能够实现电压稳定输出的电子元件。

常见的稳压模块有线性稳压模块和开关稳压模块。

线性稳压模块成本低、实现简单,但效率较低;开关稳压模块效率高,但成本相对较高。

根据需求和经济性,我们选择了线性稳压模块。

接下来,我们需要选取适当的稳压模块以及其他所需的电子元件。

首先,选择一款符合要求的线性稳压模块。

通过对市面上的产品进行比较和测试,我们选择了一款额定输入电压为24V的线性稳压模块,该模块具有良好的稳定性和可靠性。

其次,我们还需要选择输入电压为24V的电源适配器,用于提供输入电源。

适配器的选取需要考虑电源输出电压的稳定性和适配器的质量可靠性。

我们选择了一款质量可靠、输入电压稳定的适配器。

除了稳压模块和电源适配器外,我们还需要选择其他电子元件,如滤波电容、电位器等。

这些元件的选择需要根据实际需求和设计要求来确定。

设计好电路原理图后,我们还需要进行模拟仿真和实际测试,以验证电路的稳定性和性能。

在模拟仿真中,我们可以通过电路仿真软件进行电路分析,并对电路进行优化。

在实际测试中,我们可以通过连接实际元件并进行电路调试来验证电路的性能。

最后,我们需要对电路进行封装和外壳设计,以保护电路和电子元件。

电路封装的设计需要考虑元件布局的合理性和电路的散热性能。

外壳设计则需要考虑美观性和产品的使用便捷性。

【直流稳压电源设计方案(二)】直流稳压电源广泛应用于各类电子设备和实验设备中,其设计方案多样化。

本篇将继续介绍直流稳压电源的设计方案以及其应用。

直流稳压电源的设计与制作

直流稳压电源的设计与制作

直流稳压电源的设计与制作直流稳压电源是一种用于给电子设备提供稳定直流电压的电源设备。

在电子制作、实验以及工业控制系统中广泛应用。

下面将介绍如何设计和制作一个简单的直流稳压电源。

首先,设计一个电源电路。

直流稳压电源的核心是一个稳压器件,常用的稳压器有线性稳压器和开关稳压器。

线性稳压器的原理是通过调节电源电压上端的电阻来控制输出电压,其优点是稳压性好,但效率较低。

开关稳压器的原理是通过开关控制元件来调节输出电压,其优点是效率较高,但稳压性较差。

根据自己的需求选择适合的稳压器件。

接下来,根据选定的稳压器件制作电路板。

首先,在电路板上布置稳压器件和其他必要的元器件,如滤波电容、限流电阻等。

然后,连接电路板上的各个元器件,使用焊锡将其固定在电路板上。

注意保持电路的紧凑和结构的稳定,防止元器件之间短路或松动。

接着,搭建电源电路的输入和输出端。

将输入端与市电或其他电源连接,确保输入电压和电流在稳定范围内。

将输出端与需要供电的设备连接,确保输出电压和电流符合设备的要求。

最后,进行电源的测试和调试。

将电源接通电源,通过电压表和电流表测量稳压电源的输出电压和电流,确保其在稳定范围内。

根据需要,可以使用可调电阻来调节输出电压,以确保满足设备的电源要求。

需要注意的是,直流稳压电源设计和制作过程中要保证安全。

如需接通电源泄漏和短路保护装置,注意绝缘和接地,避免触电和设备损坏。

总之,设计和制作直流稳压电源需要根据自己的需求选择稳压器件,设计电路图,制作电路板,搭建输入输出端,进行测试和调试。

通过这些步骤,一个简单的直流稳压电源就可以制作完成。

在直流稳压电源设计和制作的过程中,还需要考虑一些其他要素,如过流保护、过压保护和温度保护等。

这些保护措施可以提高电源的可靠性和安全性。

过流保护是指在输出端口控制电流的大小,防止电流超过设定值而损坏设备或电源本身。

常用的过流保护电路有两种:电阻式和电子式。

电阻式过流保护是通过在输出回路中串联一定大小的电阻,当电流超过设定值时,电阻将发热并触发保险丝或继电器断开电路,实现过流保护。

开关直流稳压电源设计

开关直流稳压电源设计

开关直流稳压电源设计设计原理:关键参数:开关直流稳压电源的关键参数包括输出电压精度、输出电流、纹波电压和负载调节率等。

输出电压精度表示开关直流稳压电源输出的电压与设定值之间的偏差。

输出电流表示电源能够提供的最大负载电流。

纹波电压表示输出电压的波动情况,是由开关器件的开关操作引起的。

负载调节率表示在负载变化时,输出电压的变化程度。

主要组成部分:一个典型的开关直流稳压电源由以下几个主要组成部分构成:1.输入端:输入端通常有一个交流电源或者一个整流电路,将交流电转换为直流电。

在输入端还可能包含一些滤波电容和短路保护电路。

2.开关电路:开关电路由各种开关器件组成,包括晶体管、场效应管和硅控整流元件等。

开关周期性地打开和关闭,调节输入电压的占空比,从而调节输出电压。

在开关电路中,还可能包含一些保护电路,如过流保护和过压保护等。

3.控制电路:控制电路是开关直流稳压电源中的重要组成部分。

它根据输出电压与设定值之间的偏差,生成控制信号,控制开关器件的开关操作。

控制电路通常由一个误差放大器、一个比较器和一个参考电压源组成。

4.输出端:输出端是开关直流稳压电源输出电压的终点。

它通常由一个输出电感、一个输出滤波电容和一个负载组成。

输出电感和输出电容起到滤波作用,减小输出电压的纹波。

负载则是电源供电的目标设备。

5.反馈回路:反馈回路起到监测输出电压并调整开关操作的作用。

它通常由一个反馈电阻和一个反馈电压比较器组成。

反馈电阻将输出电压分压为反馈电压,反馈电压比较器将反馈电压与设定值进行比较,生成控制信号。

总结:开关直流稳压电源是一种常用的电源设计,用于提供稳定的直流电压输出。

它通过开关器件的开关操作调节输入电压,并通过反馈机制保持输出电压稳定。

设计开关直流稳压电源需要考虑关键参数,包括输出电压精度、输出电流、纹波电压和负载调节率等。

主要的组成部分包括输入端、开关电路、控制电路、输出端和反馈回路。

开关直流稳压电源的设计涉及到多个领域的知识,包括电源电路、电子器件和控制理论等。

直流稳压电源设计方案

直流稳压电源设计方案

直流稳压电源设计方案
在电子设备的设计中,直流稳压电源是一个非常重要的部分,它能够为电路提
供稳定的直流电压,保证电路正常运行。

本文将介绍一种简单而有效的直流稳压电源设计方案,希望能对大家有所帮助。

首先,我们需要准备的材料和器件有,变压器、整流桥、滤波电容、稳压管、
电阻、电容、稳压二极管等。

其中,变压器用于将交流电转换为低压交流电,整流桥用于将交流电转换为直流电,滤波电容用于滤除电压波动,稳压管用于稳定输出电压,电阻和电容用于限流和滤波,稳压二极管用于过压保护等。

其次,我们需要按照以下步骤进行电路连接:
1. 将变压器的输入端连接到交流电源,输出端连接到整流桥的输入端。

2. 整流桥的输出端接入滤波电容,滤波电容的另一端接入稳压管的输入端。

3. 稳压管的输出端接入输出端子,输出端子与电路负载相连。

4. 在电路中加入适当的电阻和电容,用于限流和滤波。

5. 最后,加入稳压二极管,用于过压保护。

接下来,我们需要对电路进行调试和测试:
1. 首先,接通交流电源,观察整流桥输出端的波形,确保整流正常。

2. 然后,测量滤波电容输出端的波形,调整电容容值,使输出电压尽可能稳定。

3. 接着,测试稳压管的工作状态,调整稳压管参数,使输出电压达到设计要求。

4. 最后,测试整个电路的稳定性和过压保护功能,确保电路工作正常并且安全
可靠。

通过以上步骤,我们可以完成一个简单而有效的直流稳压电源设计。

当然,实际的电路设计中还需要考虑更多因素,比如负载变化、温度变化等,需要进行更为详细的设计和测试。

希望本文的内容能给大家带来一些启发和帮助,谢谢阅读!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟电子技术课程设计报告题目名称:直流稳压电源电路设计姓名:学号:班级:指导教师:成绩:目录1课程设计任务和要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 2方案设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 3单元电路设计与参数计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 4总原理图及元器件清单⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 5安装与调试⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11 6性能测试与分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 7结论与心得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 8参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14课程设计题目:直流稳压电源电路设计一、课程设计任务和要求:1)用桥式整流电容滤波集成稳压块电路设计固定的正负直流电源(±12V)。

2)输出可调直流电压,范围:1.5∽15V;3)输出电流:IOm≥1500mA;(要有电流扩展功能)4)稳压系数Sr≤0.05;具有过流保护功能。

二、方案设计:稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成,如下图1所示,其整流与稳压过程的电压输出波形如图2所示。

图1稳压电源的组成框图图二整流与稳压过程波形图电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。

降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。

脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。

滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。

方案一、单相半波整流电路半波单相整流电路简单,电路及其电压输出波形分别如图3、图4所示,使用元件少,它只对交流电的一半波形整流,其输出波形只利用了交流电的一半波形则整流效率不高,且输出波形脉动大,其值为:S=U2√2⁄√2 Uπ=π2≈1.57,直流成分小,U0= √2U2π≈0.45U2,变压器利用率低。

图3 单相半波整流电路图 4 单相半波整流电路电压输出波形图方案二、单相全波整流电路使用的整流器件是半波电路的两倍,整流电压脉动较小,是半波的一半,无滤波电路时的输出电压U0=0.9U2,变压器的利用率比半波电路的高,整流器件所承受的反向电压要求较高。

方案三、单相桥式整流电路单相桥式整流电路使用的整流器件较多,但其实现了全波整流电路,它将U2的负半周也利用起来,所以在变压器副边电压有效值相同的情况下,输出电压的平均值是半波整流电路的两倍,且如果负载也相同的情况下,输出电流的平均值也是半波整流电路的两倍,且其与半波整流电路相比,在相同的变压器副边电压下,对二极管的参数要求一样,还具有输出电压高、变压器利用率高、脉动小等优点。

所以综合三种方案的优缺点决定用方案三。

三、单元电路设计与参数计算整流电路采用单相桥式整流电路,电路如图5所示,图 5 单相桥式整流电路当U2>0时,电流由+流出,经D1、R L、D2流入-,即D1、D2导通,D3、D4截止;当U2<0时,电流由-流出,经D3、R L、D4流入+,即D3、D4导通,D1、D2截止。

电路的输出波形如图6所示。

图6 单相桥式整流电路输出波形在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即:I f = 12I01电路中的每只二极管承受的最大反向电压为2U2(U2是变压器副边电压有效值)。

在设计中,常利用电容器两端的电压不能突变和流过电感器的电流不能突变的特点,将电容器和负载电容并联或电容器与负载电阻串联,以达到使输出波形基本平滑的目的。

选择电容滤波电路后,直流输出电压:U01=(1.1~1.2)U2,直流输出电流:I01=I2(1.5~2)(I2是变压器副边电流的有效值),稳压电路可选集成三端稳压器电路。

±12V直流稳压电源电路总体原理电路图如图7所示,可调式直流稳压电源电路总体原理电路图如图8所示,电流扩展直流稳压电源电路总体原理电路图如图9所示:图7 12V直流稳压电源图8 可调式直流稳压电图 9 电流可拓展直流稳压电源电路1.选集成稳压器,确定电路形式(1)、在±12V直流稳压电源电路实验中的稳压电路,采用固定式三端稳压器,主要使用了集成块78系列及79系列。

78××系列输出为正电压,输出电流可达1A,如7812的输出电流为5mA~1A,它的输出电压为12V。

和78××系列对应的有79××系列,它输出为负电压,如7912表示输出电压为–12V和输出电流为5mA~1A。

故称之为三端式稳压器。

典型应用电路图如图10所示。

图10应用电路图(2)、在可调式直流稳压电源电路中要求输出电压可调,所以选可调式三端稳压器LM317,其特性参数=3V,最大输入、输出压差(V i−V0=+1.2V~+37V,I0max=1.5A,最小输入、输出压差(V i−V0)minV0)=40V,能满足设计要求,故选用LM317组成的稳压电路。

稳压器内部含有过流、过热保护电路,max具有安全可靠,性能优良、不易损坏、使用方便等优点。

其电压调整率和电流调整率均优于固定式集成稳压构成的可调电压稳压电源。

电路系列的引脚功能相同,典型电路如图12所示.。

R1与R P1组成电压输⁄)式中1.25是集成稳压块输出端与调整端之间的固有参考电压出调节电路,输出电压V0≈1.25(1+R P1R1VREF,此电压加于给定电阻R1两端,将产生一个恒定电流通过输出电压调节电位器R P1,电阻R1常取值120~240Ω,取R1=240Ω,则R P1min=48Ω,R P1max=2.64kΩ,故取R P1为5kΩ的精密线绕可调电位器,与其并联的电容器C 可进一步减小输出电压的纹波。

图中加入了二极管D ,用于防止输出端短路时10μF 大电容放电倒灌入三端稳压器而被损坏。

图12(3)、在电流扩展中用大功率三极管TIP41C 和LM7812稳压器,TIP41C 三极管为NPN 管,主要参数为:最大工作电压100V ,最大工作电流6A ,最大耗散功率65W 。

设三端稳压器的最大输出电流为I 0max ,则晶体管的最大基极电流I Bmax =I 0max -I R ,因而负载电流的最大值为I Lmax =(1+β)(I 0max -I R ),故其负载采用大功率的电阻,取R L =3.9Ω,为10W 的电阻。

图中二极管用于消除U BE 对输出电压的影响。

2.选择电源变压器电源变压器的作用是将电网220V 的交流电压U 1变换成整流滤波电路所需要的交流电压U 2,通常根据变压器副边输出的功率P 2来选用变压器。

变压器副边与原边的功率比为:P1P 2=η,式中,η为变压器的效率。

一般小型变压器的效率如表1所示。

由LM317输入电压与输出电压最小压差:(V i −V 0)min =3V ,最大压差为:(V i −V 0)max =40V,可得到LM317的输入电压范围为:V 0max +(V i −V 0)min ≤V i ≤V 0min +(V i −V 0)max15V+3V ≤V i ≤1.5V+40V18V ≤V i ≤41.5V副边电压V 2≥V imin 1.1⁄=181.1⁄V ,取V 2=17V ,副边电流I 2>I 0max ≥1.5A ,取I 2=1A,通过电流扩展可达到I 2≥1.5A ,则变压器副边输出功率P 2≥I 2V 2=25.5W 。

由表1可得到变压器的效率η=0.7,则原边输入功率P 1≥P 2η⁄=36.43W 。

为留有余地,选功率为50W 的电源变压器。

3.选整流二极管及滤波电容(1)、在±12V直流稳压电源电路设计中整流二极管D选1N4007即可,其极限参数为V RM≥1000V,I F=1A,满足V RM>√2V2。

滤波电容容量较大,一般采用电解电容器,选用3300μF/50V即可。

电容滤波电路利用电容的充放电作用,使输出电压趋于平滑。

(2)、在可调式直流稳压电源电路及电流扩展直流稳压电源电路中整流二极管D选1N4007,其极限参数为V RM≥1000V,I F=1A。

满足V RM>√2V2,I F=I0max的条件。

滤波电容C可由纹波电压和稳压系数来确定,滤波电路的电路图如图14(a)所示,其输出电压波形如图14(b)、(c)所示,将脉动的直流电压变为平滑的直流电压。

已知,V0=15V,V i=18V,取∆V0P−P=9mV, S r=0.005<0.05,符合要求,则稳压器的输入电压的变化量:∆V i=∆V0P−P V iV0·S r=2.2V滤波电容: C=I·t∆V i=I0max t∆V i=3636μ电容的耐压应大于√2V2=24V。

故取2只3300μF/50V的电容相并联。

(a)(b)(c)图14 滤波电路及其输出波形四、总原理图及元器件清单1.可调式直流稳压电源总原理图如图15所示,±12V直流稳压电源总原理图如图16所示,电流扩展直流稳压电源电路总原理图如图17所示:图15 可调式直流稳压电源总原理图图16 ±12V直流稳压电源总原理图图17 电流可拓展直流稳压电源电路2.元件清单:五、安装与调试因以上各电路非常相似,很接近,只是在小范围有点差别,所以在安装和调试时是类似的,安装调试如下:1. 首先在变压器的原边接入保险丝FU,以防电路短路损坏变压器或其他元器件,其额定电流要略大于I0max,选FU的熔断电流为1A,各元器件按理论电路图正确焊接,注意布局紧密,不出现虚焊或漏焊。

2. 先选好适当大小的电路板,再合理布局。

3. 安装时先安装较小的元器件,先安装集成稳压电路,再安装整流电路,最后安装滤波电路,有三极管时因三极管对温度很敏感,所以要最后安装,但在安装的过程中要特别注意电容、二极管和三极管TIP41C的极性,并且要注意LM 7812 、LM 7912和LM317管脚的接法。

注意安装要一级测试一级,检查电路安装无误后,再连接安装变压器。

4.接通电源后,静置一会待电路稳定后没出现任何故障(如芯片被烧等)再进行测量,若出现类似状况应立即断开直流电源,检查问题所在并及时排除故障再进行测量。

用万用表分别测量变压器原、副边线圈的输出电压,滤波后的输出电压,7812,7912的输入和输出电压。

对于稳压电路则主要测试集成稳压器是否能正常工作。

其输入端加直流电压V i≤18V,调节RP1,输出电压V0随之变化,说明稳压电路正常工作。

相关文档
最新文档