3中考一轮复习教案之函数及其图象
2023年中考数学第一轮复习之模块三 函数—专题3 反比例函数(含解析)

2023年中考数学第一轮复习模块三 函数题型梳理题型一、反比例函数概念及其解析式 1.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)2.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________.3(2022·黑龙江哈尔滨)已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.题型二、反比例函数的图像与性质1.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)2.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1y B .2yC .3yD .4y3.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .4.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .题型三、反比例函数k 的几何意义1.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .102.(2022·黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.1-D.2-3.(2022·四川内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数8yx=和kyx=的图象交于P、Q两点.若S∥POQ=15,则k的值为()A.38B.22C.﹣7D.﹣224.(2022·广西桂林)如图,点A在反比例函数y=kx的图像上,且点A的横坐标为a(a<0),AB∥y轴于点B,若AOB的面积是3,则k的值是_____.5.(2022·辽宁)如图,在平面直角坐标系中,∥AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S ∥OAB =1,则k 的值为___________.6.(2022·山东烟台)如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.7.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.8.(2022·贵州铜仁)如图,点A 、B 在反比例函数ky x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.题型四、反比例函数的不等式问题1.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >2.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)ky k x=>的图象上,若120y y <<,则a 的取值范围是______.3.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.题型五、反比例函数的实际问题1.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( ) A .50y x =+ B .50y x =C .50y x=D .50=x y2.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态3.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .4.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)当3m 10V =时,求该气体的密度ρ.题型六、反比例函数的综合题1.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =,120BDC ∠=︒,BCD S =△()0ky x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-2.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220ky k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .93.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.4.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.5.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.6.(2022·四川宜宾)如图,∥OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM分别交于点A 、B (点B 不与点M 重合).若AB ∥OM 于点B ,则k 的值为______.题型七、反比例函数与一次函数综合1.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0ky k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.2.(2022·黑龙江大庆)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)ky x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.3.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫⎪⎝⎭两点,且与反比例函数22ky x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式; (2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.4.(2022·湖南岳阳)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式; (2)求ABC 的面积;(3)请结合函数图象,直接写出不等式kmx x<的解集.5.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式; (2)求OCD 的面积.6.(2022·湖北恩施)如图,在平面直角坐标系中,O 为坐标原点,已知∥ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.7.(2022·山东青岛)如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =.(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.8.(2022·辽宁营口)如图,在平面直角坐标系中,OAC 的边OC 在y 轴上,反比例函数()0ky x x=>的图象经过点A 和点()2,6B ,且点B 为AC 的中点.(1)求k 的值和点C 的坐标; (2)求OAC 的周长.9.(2022·内蒙古呼和浩特)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于A 、B 两点,且A 点的横坐标为1,过点B 作BE x ∥轴,AD BE ⊥于点D ,点71,22⎛⎫- ⎪⎝⎭C 是直线BE上一点,且AC =.(1)求一次函数与反比例函数的解析式; (2)根据图象,请直接写出不等式0mkx b x+-<的解集.10.(2022·四川达州)如图,一次函数1y x=+与反比例函数kyx=的图象相交于(,2)A m,B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2023年中考数学第一轮复习模块三 函数题型梳理题型一、反比例函数概念及其解析式 1.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1) 【答案】C【分析】先利用反比例函数(0)ky k x=≠的图象经过点(2,3)-,求出k 的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断. 【详解】解:∥反比例函数(0)ky k x=≠的图象经过点(2,3)-,∥k =2×(﹣3)=﹣6,∥(﹣2)×(﹣3)=6≠﹣6, (﹣3)×(﹣2)=6≠﹣6, 1×(﹣6)=﹣6, ,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C .2.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________. 【答案】6【分析】将点()3,A n ,代入1y x =-,求得n ,进而即可求解. 【详解】解:将点()3,A n ,代入1y x =-, 即312n =-=, ()3,2A ∴,326k ∴=⨯=, 故答案为:6.【点睛】本题考查了一次函数与反比例函数综合,求得点A 的坐标是解题的关键.3(2022·黑龙江哈尔滨)已知反比例函数6y x =-的图象经过点()4,a ,则a 的值为___________.【答案】32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可. 【详解】解:把点()4,a 代入6y x =-得:6342a =-=-. 故答案为:32-.题型二、反比例函数的图像与性质1.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)【答案】>【分析】根据反比例函数的性质,k >0,在每个象限内,y 随x 的增大而减小,进行判断即可. 【详解】解:∥k >0,∥在每个象限内,y 随x 的增大而减小, 25<, ∥1y >2y . 故答案为:>.2.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1yB .2yC .3yD .4y【答案】D【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>,∥在每个象限内,y 随x 的增大而减小,∥点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上, ∥1234y y y y >>>,故选D .3.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .【答案】A【分析】根据题意可得0,0k b >>,从而得到一次函数y kx b =-+的图象经过第一、二、四象限,反比函数by x=的图象位于第一、三象限内,即可求解. 【详解】解:根据题意得:0,0k b >>, ∥0k -<,∥一次函数y kx b =-+的图象经过第一、二、四象限,反比函数by x=的图象位于第一、三象限内.故选:A 4.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .【答案】D【分析】分0k >或0k <,根据一次函数与反比例函数的性质即可得出答案. 【详解】解:当0k >时,一次函数1y kx =+经过第一、二、三象限,反比例函数ky x=位于第一、三象限;当0k <时,一次函数1y kx =+经过第一、二、四象限,反比例函数ky x=位于第二、四象限; 故选:D .题型三、反比例函数k 的几何意义1.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .10【答案】B【分析】作AD ∥x 轴,BC ∥x 轴,由1122OBE OCBE AOE ADOE S S S S ∆∆==,即可求解; 【详解】解:如图,作AD ∥x 轴,BC ∥x 轴,∥8OCBE S BC BE =⋅=,2ADOE S AD AE =⋅=∥10OCBE ADOE S S += ∥1122OBE OCBE AOE ADOE S S S S ∆∆==,∥()152AOB OBE AOE OCBE ADOE S S S S S ∆∆∆=+=+=故选:B . 2.(2022·黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-【答案】D【分析】连接OA ,设AB 交y 轴于点C ,根据平行四边形的性质可得1522AOBOBADS S ==,AB ∥OD ,再根据反比例函数比例系数的几何意义,即可求解.【详解】解:如图,连接OA ,设AB 交y 轴于点C ,∥四边形OBAD 是平行四边形,平行四边形OBAD 的面积是5, ∥1522AOBOBADSS ==,AB ∥OD ,∥AB ∥y 轴, ∥点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上, ∥3,22COBCOAkSS ==-,∥35222AOBCOBCOAk SSS=+=-=,解得:2k =-.故选:D .3.(2022·四川内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S ∥POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【答案】D【分析】设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a-,则PQ =PM +MQ =kb a -,再根据ab =8,S △POQ =15,列出式子求解即可.【详解】解:设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =ka-,∥PQ =PM +MQ =kb a-. ∥点P 在反比例函数y =8x的图象上,∥ab =8.∥S △POQ =15,∥12PQ •OM =15,∥12a (b ﹣k a)=15.∥ab ﹣k =30. ∥8﹣k =30, 解得:k =﹣22. 故选:D .4.(2022·广西桂林)如图,点A 在反比例函数y =kx的图像上,且点A 的横坐标为a (a <0),AB ∥y 轴于点B ,若AOB 的面积是3,则k 的值是 _____.【答案】﹣6【分析】根据题意和反比例函数的性质,可以得到k 的值. 【详解】解:设点A 的坐标为(a ,ka),由图可知点A 在第二象限,∥a <0,0ka>, ∥k <0,∥∥AOB 的面积是3, ∥32k a a⋅=,解得k =-6, 故答案为:-6. 5.(2022·辽宁)如图,在平面直角坐标系中,∥AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S ∥OAB =1,则k 的值为___________.【答案】2【分析】作A 过x 轴的垂线与x 轴交于C ,证明∥ADC ∥∥BDO ,推出S ∥OAC = S ∥OAB =1,由此即可求得答案.【详解】解:设A (a ,b ) ,如图,作A 过x 轴的垂线与x 轴交于C ,则:AC =b ,OC =a ,AC ∥OB ,∥∥ACD =∥BOD =90°,∥ADC =∥BDO ,∥∥ADC ∥∥BDO ,∥S ∥ADC =S ∥BDO ,∥S ∥OAC =S ∥AOD + S ∥ADC =S ∥AOD + S ∥BDO = S ∥OAB =1, ∥12×OC ×AC =12ab =1, ∥ab =2,∥A (a ,b ) 在y =k x上, ∥k =ab =2 .故答案为:2 .6.(2022·山东烟台)如图,A ,B 是双曲线y =k x(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.【答案】6【分析】应用k 的几何意义及中线的性质求解. 【详解】解:D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.7.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)k y x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.【答案】4- 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值. 【详解】解:设点,k A a a ⎛⎫ ⎪⎝⎭, ∥点D 为线段AB 的中点.AB ∥y 轴∥22AB AD a ==-,又∥()1242=⨯-⨯=ABC k S a a△, ∥4k =-.故答案为:4-8.(2022·贵州铜仁)如图,点A 、B 在反比例函数k y x =的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.【答案】3 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,可得AD a =,k OD a =,从而得到CD =3a ,再由BC AC ⊥.可得点B 3,3⎛⎫ ⎪⎝⎭k a a ,从而得到23k BC a=,然后根据AOD AOBC OBCD S S S =+四边形梯形,即可求解. 【详解】解∥设点,k A a a ⎛⎫ ⎪⎝⎭, ∥AC y ⊥轴,∥AD a =,k OD a=,∥12AD AC =, ∥AC 2a =,∥CD =3a ,∥BC AC ⊥.AC y ⊥轴,∥BC ∥y 轴,∥点B 3,3⎛⎫ ⎪⎝⎭k a a , ∥233k k k BC a a a=-=, ∥AOD AOBC OBCD S S S =+四边形梯形,四边形AOBC 间面积为6, ∥12136232k k a k a a ⎛⎫+⨯=+ ⎪⎝⎭, 解得:3k =.故答案为:3.题型四、反比例函数的不等式问题1.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >【答案】D 【分析】根据图象进行分析即可得结果;【详解】解:∥22x x >∥12y y >由图象可知,函数12y x =和22y x=分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-,, 由图象可以看出当10x -<<或1x >时,函数12y x =在22y x =上方,即12y y >,故选:D .2.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)k y k x=>的图象上,若120y y <<,则a 的取值范围是______.【答案】1a > 【分析】反比例函数中k >0,则同一象限内y 随x 的增大而减小,由于120y y <<,得到021a a <-<,从而得到a 的取值范围.【详解】解:∥在反比例函数y =k x中,k >0, ∥在同一象限内y 随x 的增大而减小,∥120y y <<,∥这两个点在同一象限,∥021a a <<-,解得:1a >,故答案为:1a >.3.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2m y x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.【答案】-2<x <0或x >4【分析】先求出n 的值,再观察图象,写出一次函数的图象在反比例函数的图象下方时对应的自变量的取值范围即可.【详解】解:∥反比例函数2m y x=的图象经过A (-2,2), ∥m =-2×2=-4, ∥4y x=-, 又反比例函数4y x=-的图象经过B (n ,-1), ∥n =4,∥B (4,-1), 观察图象可知:当12y y <时,图中一次函数的函数值小于反比例函数的函数值,则x 的取值范围为:-2<x <0或x >4.故答案为:-2<x <0或x >4.题型五、反比例函数的实际问题1.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .50y x =+B .50y x =C .50y x =D .50=x y 【答案】C【分析】根据:平均每人拥有绿地y =总面积总人数,列式求解. 【详解】解:依题意,得:平均每人拥有绿地50y x=. 故选:C2.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态【答案】C【分析】根据函数图象分析即可判断A ,B ,根据图3公式计算即可判定C ,D .【详解】解:根据函数图象可得,A.R 随K 的增大而减小,则呼气酒精浓度K 越大,1R 的阻值越小,故正确,不符合题意;B. 当K =0时,1R 的阻值为100,故正确,不符合题意;C. 当K =10时,则332200102200101022mg/100ml M K --=⨯⨯=⨯⨯=,该驾驶员为酒驾状态,故该选项不正确,符合题意;D. 当120=R 时,40K =,则332200102200401088mg/100ml M K --=⨯⨯=⨯⨯=,该驾驶员为醉驾状态,故该选项正确,不符合题意;故选:C.3.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .【答案】400【分析】先根据待定系数法求出反比例函数解析式,再把S =0.25代入,问题得解. 【详解】解:设反比例函数的解析式为()0k p k S=≠, 由图象得反比例函数经过点(0.1,1000),∥0.11000100k =⨯=,∥反比例函数的解析式为100p S =, 当S =0.25时,1004000.25p ==.故答案为:400 4.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V 的函数解析式;(2)当3m 10V =时,求该气体的密度ρ.【答案】(1)()100V Vρ=> (2)13kg/m【分析】(1)用待定系数法即可完成;(2)把V =10值代入(1)所求得的解析式中,即可求得该气体的密度.(1)设密度ρ关于体积V 的函数解析式为()0,0k V k V ρ=>≠, 把点A 的坐标代入上式中得:2.54k =, 解得:k =10, ∥()100V V ρ=>. (2)当3m 10V =时,10110ρ==(3kg/m ). 即此时该气体的密度为13kg/m .题型六、反比例函数的综合题1.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =,120BDC ∠=︒,BCD S =△()0k y x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-【答案】C【分析】过点C 作CE ∥y 轴于点E ,延长BD 交CE 于点F ,可证明∥COE ∥∥ABE (AAS ),则OE =BD由S ∥BDC =12•BD •CF CF =9,由∥BDC =120°,可知∥CDF =60°,所以DF D 的纵坐标为C (m ,D (m +9,,则k m +9),求出m 的值即可求出k 的值.【详解】解:过点C 作CE ∥y 轴于点E ,延长BD 交CE 于点F ,∥四边形OABC 为平行四边形,∥AB ∥OC ,AB =OC ,∥∥COE =∥ABD ,∥BD ∥y 轴,∥∥ADB =90°,∥∥COE ∥∥ABD (AAS ),∥OE =BD∥S ∥BDC =12•BD •CF ∥CF =9,∥∥BDC =120°,∥∥CDF =60°,∥DF∥点D 的纵坐标为设C (m,D (m +9,,∥反比例函数y =k x(x <0)的图像经过C 、D 两点, ∥km +9),∥m =-12,∥k =-故选:C .2.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220k y k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9【答案】B 【分析】设P A =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k +t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k ),再点C 在反比例函数y =1k x的图象上,整理后,即可得出结论.【详解】解:连接AC ,与BD 相交于点P ,设P A =PB =PC =PD =t (t ≠0).∥点D 的坐标为(3,23k ), ∥点C 的坐标为(3-t ,23k +t ). ∥点C 在反比例函数y =2k x 的图象上, ∥(3-t )(23k +t )=k2,化简得:t =3-23k , ∥点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k , ∥点B 的坐标为(3,6-23k ),∥3×(6-23k )=1k ,整理,得:1k +2k =18. 故选:B .3.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)k y x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.【答案】4【分析】作CF 垂直y 轴, 设点B 的坐标为(0,a ),可证明AOB BFC ≌(AAS ),得到CF =OB =a ,BF =AO =3,可得C 点坐标,因为E 为正方形对称线交点,所以E 为AC 中点,可得E 点坐标,将点C 、E 的坐标代入反比例函数解析式中,即可求出k 的值.【详解】作CF 垂直y 轴于点F ,如图,设点B 的坐标为(0,a ),∥四边形ABCD 是正方形,∥AB =BC ,∥ABC =90°,∥∥OBA +∥OAB =∥OBA +∥FBC =90°∥∥OAB =∥FBC在∥BFC 和∥AOB 中90OAB FBC AOB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∥AOB BFC ≌∥BF =AO =3,CF =OB =a∥OF =OB +BF =3+a∥点C 的坐标为(a ,3+a )∥点E 是正方形对角线交点,∥点E 是AC 中点,∥点E 的坐标为33,22+a +a ⎛⎫ ⎪⎝⎭∥反比例函数(0,0)k y x k x=>>的图象经过点C ,E ∥()()133/223k a a k a a⎧==+⎪+⎪⎨⎪=+⎪⎩ 解得:k =4故答案为:44.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0k y k x=≠经过AC 边的中点D,若BC =k =______. 【答案】32- 【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB是等腰直角三角形,再根据BC = A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k△【详解】∥ABC 是等腰直角三角形,BC x ⊥轴.∥90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB ==. ∥AOB 是等腰直角三角形.∥BO AO ===故:A,(C .(D . 将D 点坐标代入反比例函数解析式.32D D k x y =⋅==-. 故答案为:32-. 5.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.【答案】24【分析】过点C作CE∥y轴,由正方形的性质得出∥CBA=90°,AB=BC,再利用各角之间的关系得出∥CBE=∥BAO,根据全等三角形的判定和性质得出OA=BE=2,OB=CE=4,确定点C的坐标,然后代入函数解析式求解即可.【详解】解:如图所示,过点C作CE∥y轴,∥点B(0,4),A(2,0),∥OB=4,OA=2,∥四边形ABCD为正方形,∥∥CBA=90°,AB=BC,∥∥CBE+∥ABO=90°,∥∥BAO+∥ABO=90°,∥∥CBE=∥BAO,∥∥CEB=∥BOA=90°,∥ABO BCE,∥OA=BE=2,OB=CE=4,∥OE=OB+BE=6,∥C(4,6),将点C代入反比例函数解析式可得:k=24,故答案为:24.6.(2022·四川宜宾)如图,∥OMN是边长为10的等边三角形,反比例函数y=kx(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB∥OM于点B,则k的值为______.【答案】【分析】过点B 作BC ∥x 轴于点C ,过点A 作AD ∥x 轴于点D ,设OC =x ,利用含30度角的直角三角形的性质以及勾股定理求得点B (x ),点A (15-2x ,-,再利用反比例函数的性质列方程,解方程即可求解.【详解】解:过点B 作BC ∥x 轴于点C ,过点A 作AD ∥x 轴于点D ,如图:∥∥OMN 是边长为10的等边三角形,∥OM =MN =ON =10,∥MON =∥MNO =∥M =60°,∥∥OBC =∥MAB =∥NAD =30°,设OC =x ,则OB =2x ,BC ,MB =10-2x ,MA =2MB =20-4x ,∥NA =10-MA =4x -10,DN =12NA =2x -5,AD x -- ∥OD =ON -DN =15-2x ,∥点B (x ),点A (15-2x ,-,∥反比例函数y =k x(x >0)的图象与边MN 、OM 分别交于点A 、B ,∥x =(15-2x -,解得x =5(舍去)或x =3,∥点B (3,,∥k题型七、反比例函数与一次函数综合1.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0k y k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.【答案】(1)8k ,12p = (2)点C 的坐标为(4,2)【分析】(1)先求出点B 的坐标,得到3OB =,结合点A 的横坐标为2,求出AOB 的面积,再利用:3:4AOB COD S S =△△求出4COD S =,设,k C m m ⎛⎫ ⎪⎝⎭,代入面积中求出k ,得到反比例函数解析式,再将点A 横坐标代入出点A 纵坐标,最后将点A 坐标代入直线()30y px p =+≠即可求解;(2)根据(1)中点C 的坐标得到点E 的坐标,结合OE 将四边形BOCE 分成两个面积相等的三角形,列出关于m 的方程,解方程即可求解.(1)解:∥直线3y px =+与y 轴交点为B ,∥()0,3B ,即3OB =.∥点A 的横坐标为2, ∥13232AOB S =⨯⨯=. ∥:3:4AOB COD S S =△△,∥4COD S =, 设,k C m m ⎛⎫ ⎪⎝⎭,∥142k m m⋅=, 解得8k .∥点()2,A q 在双曲线8y x=上, ∥4q =, 把点()2,4A 代入3y px =+,得12p =, ∥8k ,12p =; (2)解:由(1)得,k C m m ⎛⎫ ⎪⎝⎭, ∥1,32E m m ⎛⎫+ ⎪⎝⎭. ∥OE 将四边形BOCE 分成两个面积相等的三角形,∥BOE COE S S =△△, ∥32BOE S π=△,13422COE m S m ⎛⎫=+- ⎪⎝⎭△, ∥3134222m m π⎛⎫=+- ⎪⎝⎭, 解得4m =或4m =-(不符合题意,舍去),∥点C 的坐标为(4,2).2.(2022·黑龙江大庆)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.【答案】(1)3y x=(2)【分析】(1)用待定系数法求出函数解析式;(2)作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,进行计算即可;(1) 解:把(3,)(31,)3k a b a b ++,代入1y x =-,得 313113b a k b a =-⎧⎪⎨+=+-⎪⎩, 解得,3k =, 所以反比例函数解析式是3y x=;(2)存在点P 使∥ABP 周长最小,理由: 解133y x y x ⎧=⎪⎪⎨⎪=⎪⎩和33y x y x =⎧⎪⎨=⎪⎩得, 31x y =±⎧⎨=±⎩和13x y =±⎧⎨=±⎩, 0x ,∴31x y =⎧⎨=⎩和13x y , ∴()()3,1,1,3A B ,作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,当点A 、P 、'B 在一条直线上时,线段'AB 的长度最短,所以存在点P 使∥ABP 周长最小,∥ABP 的周长=AB BP AP ++'AP AB B A =++'AB B A =+ ,===3.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.【答案】(1)115,22y x =-+22.y x= (2)01x <<或4x >, (3)65【分析】(1)先运用待定系数法求出直线解析式,再根据OAP △的面积为54和直线解析式求出点P 坐标,从而可求出反比例函数解析式;(2)联立方程组并求解可得点K 的坐标,结合函数图象可得出x 的取值范围;(3)作点K 关于x 轴的对称点K ',连接KK ',PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小,求出点C 的坐标,再根据PKC AKM KMC PAC S S S S ∆∆∆∆=--求解即可.(1)解:∥一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点, ∥把()5,0A ,50,2B ⎛⎫ ⎪⎝⎭代入11y k x b =+得, 1505,2k b b +=⎧⎪⎨=⎪⎩,解得,11252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∥一次函数解析式为115,22y x =-+ 过点P 作PH x ⊥轴于点H ,∥(5,0),A∥5,OA 又5,4PAO S ∆= ∥15524PH ⨯⨯= ∥1,2PH = ∥151222x -+=, ∥4,x = ∥1(4,)2P ∥1(4,)2P 在双曲线上, ∥2142,2k =⨯= ∥22.y x= (2) 解:联立方程组得,15222y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得,1112x y =⎧⎨=⎩ ,22412x y =⎧⎪⎨=⎪⎩∥(1,2),k根据函数图象可得,反比例函数图象在直线上方时,有01x <<或4x >, ∥当21y y >时,求x 的取值范围为01x <<或4x >,(3)解:作点K 关于x 轴的对称点K ',连接KK '交x 轴于点M ,则K '(1,-2),OM =1,连接PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小, 设直线PK '的解析式为,y mx n =+ 把1(4,),(1,2)2P K '-代入得,2142m n m n +=-⎧⎪⎨+=⎪⎩解得,56176m n ⎧=⎪⎪⎨⎪=-⎪⎩∥直线PK '的解析式为517,66y x =- 当0y =时,106657x -=,解得,751x =, ∥17(,0)5C ∥175OC = ∥17121,55MC OC OM =-=-= 178555AC OA OC =-=-= 514AM OA OM =-=-=,∥PKC AKM KMC PAC S S S S ∆∆∆∆=--1112181422225252=⨯⨯-⨯⨯-⨯⨯ 122455=-- 65= 4.(2022·湖南岳阳)如图,反比例函数()0k y k x =≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式;(2)求ABC 的面积;(3)请结合函数图象,直接写出不等式k mx x<的解集. 【答案】(1)2y x =- (2)4(3)1x <-或01x <<【分析】(1)把点()1,2A -代入()0k y k x=≠可得k 的值,求得反比例函数的解析式; (2)根据对称性求得B 、C 的坐标然后利用三角形面积公式可求解. (3)根据图象得出不等式k mx x <的解集即可. (1)解:把点()1,2A -代入()0k y k x =≠得:21k =-, ∥2k =-, ∥反比例函数的解析式为2y x=-; (2)∥反比例函数()0k y k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B , ∥()1,2B -,∥点C 是点A 关于y 轴的对称点, ∥()1,2C ,∥2CD =, ∥()122242ABC S =⨯⨯+=△. (3) 根据图象得:不等式k mx x<的解集为1x <-或01x <<. 5.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x =>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.。
初中函数图像优质课教案

初中函数图像优质课教案知识与技能:1. 了解一次函数、正比例函数、反比例函数的定义和性质。
2. 学会用描点法、解析法画出一次函数、正比例函数、反比例函数的图像。
3. 能够分析实际问题,选择合适的函数模型。
过程与方法:1. 通过观察、实验、探究等方法,发现一次函数、正比例函数、反比例函数的图像特点。
2. 学会用数形结合的思想方法分析函数问题。
情感态度价值观:1. 培养学生的团队合作精神,提高学生解决实际问题的能力。
2. 培养学生对数学的兴趣,激发学生学习函数的积极性。
二、教学内容:1. 一次函数的定义和性质。
2. 正比例函数的定义和性质。
3. 反比例函数的定义和性质。
4. 用描点法、解析法画一次函数、正比例函数、反比例函数的图像。
5. 实际问题中的函数模型选择。
三、教学过程:1. 引入:通过生活中的实例,引导学生思考函数的概念和作用。
2. 讲解:讲解一次函数、正比例函数、反比例函数的定义和性质,引导学生通过实验、观察发现函数图像的特点。
3. 实践:让学生动手用描点法、解析法画出一次函数、正比例函数、反比例函数的图像,培养学生的动手能力。
4. 应用:分析实际问题,让学生选择合适的函数模型,培养学生的应用能力。
5. 总结:通过总结,使学生对一次函数、正比例函数、反比例函数的概念、性质和图像有更深刻的理解。
四、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究。
2. 利用现代教育技术,如多媒体、网络等资源,提高教学效果。
3. 注重个体差异,因材施教,让每个学生都能在课堂上得到锻炼和发展。
4. 创设生动活泼的课堂氛围,鼓励学生积极参与,培养学生的创新精神。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、思维品质和合作能力。
2. 作业完成情况:检查学生对函数概念、性质和图像的理解和应用能力。
3. 实践报告:评估学生在实际问题中选择合适的函数模型的能力。
4. 学生自评、互评和他评:了解学生的学习情况,提高学生的自我认知和评价能力。
高中数学函数的图像教案

高中数学函数的图像教案教学目标:1.了解数学函数的概念和性质2.掌握如何绘制常见函数的图像3.通过图像分析,掌握函数的特点和规律教学过程:一、导入环节(5分钟):1.引入函数概念:什么是函数?函数的自变量和因变量分别代表什么意义?2.回顾基本函数:线性函数、二次函数、指数函数、对数函数等常见函数的表达式和特点。
二、拓展练习(15分钟):1.让学生通过计算绘制简单函数的图像,如y=x,y=x^2,y=2^x等。
2.引导学生观察图像特征,比较不同函数之间的差异和规律。
三、探究与讨论(20分钟):1.通过交流讨论,探索函数图像的对称性、单调性、最值、零点等特点。
2.引导学生思考函数图像与函数表达式之间的关系,如何通过图像分析函数性质。
四、综合应用(10分钟):1.设计探究问题:给出一个函数的图像,要求学生根据图像特征写出函数表达式并分析函数性质。
2.让学生在小组内合作讨论,提高分析和解决问题的能力。
五、总结反思(5分钟):1.总结本节课学习到的函数图像特点和分析方法。
2.帮助学生提出自己的疑惑和思考,引导他们如何进一步深入学习和应用函数知识。
教学反馈:1.检查学生课堂互动情况,了解学生对函数图像的理解和掌握程度。
2.根据学生表现和反馈情况,调整教学策略,针对性地进行知识巩固和强化训练。
拓展延伸:1.引导学生自主探索更多函数的图像,挖掘数学函数的更多奥秘和规律。
2.鼓励学生开展实际问题求解,提高数学应用能力和创新意识。
注:以上教案仅为范本,具体实施时可根据教学实际情况和学生特点进行调整和改进。
初中数学 函数及其图象 专题复习教案

初中数学函数及其图象专题复习教案一、总述函数及其图象是初中数学的重要内容。
函数与许多知识有深刻的内在联系,关联着丰富的几何知识,又是进一步学习的基础,所以,以函数为背景的问题,题型多变,可谓函数综合题长盛不衰,实际应用题异彩纷呈,图表分析题形式多样,开放、探索题方兴未艾,函数在中考中占有重要的地位。
二、复习目标1、理解平面直角坐标的有关概念,知道各象限及坐标轴上的点的坐标特征,能确定一点关于x轴、y轴或原点的对称点的坐标。
2、会从不同角度确定自变量的取值范围。
3、会用待定系数法求函数的解析式。
4、明确一次函数、二次函数和反比例函数的图象特征,知道图象形状、位置与解析式系数之间的关系。
5、会用一次函数和二次函数的知识解决一些实际问题。
三、知识要点(一)平面直角坐标系中,x轴上的点表示为(x,0);y轴上的点表示为(0,y);坐标轴上的点不属于任何象限。
(二)一次函数解析式:y = kx + b(k、b是常数,k ≠0),当b = 0时,是正比例函数。
(1)当k >0时,y 随 x 的增大而增大;(2)当k <0时,y 随x 的增大而减小。
(三)二次函数1、解析式:(1)一般式:y = ax2 + bx + c (a≠0 );(2)顶点式:y = a ( x – m ) 2+ n,顶点为(m , n);(3)交点式:y = a (x – x1 ) ( x-x2 ),与x 轴两交点是(x1,0),(x2,0)。
2、抛物线位置由a、b、c决定。
(1)a决定抛物线的开口方向:a>0开口向上;a<0开口向下。
(2)c决定抛物线与y轴交点的位置:① c>0图象与y轴交点在x轴上方;② c=0图象过原点;③ c<0图象与y轴交点在x轴下方。
(3)a、b决定抛物线对称轴的位置,对称轴abx2-=。
① a、b同号对称轴在y轴左侧;② b = 0对称轴是y轴;③ a、b异号对称轴在y轴右侧。
(4)顶点)44,2(2abacab--。
九年级数学综合复习专题教案(函数及其图象)

九年级数学综合复习专题教案(函数及其图象)一、教学目标1. 理解函数的定义及其相关概念,如函数的域、值域、单调性、奇偶性等。
2. 掌握函数图象的绘制方法,能熟练绘制常见函数的图象。
3. 能够运用函数的性质解决实际问题,提高解决问题的能力。
二、教学内容1. 函数的定义及性质函数的定义:函数的概念、函数的表示方法、函数的域、值域。
函数的性质:单调性、奇偶性、周期性。
2. 函数图象的绘制绘制函数图象的方法:列表法、解析法、图象平移法。
常见函数图象的绘制:线性函数、二次函数、指数函数、对数函数。
三、教学重点与难点1. 重点:函数的定义及其性质,函数图象的绘制方法。
2. 难点:函数图象的绘制方法,函数性质的应用。
四、教学方法1. 采用问题驱动法,引导学生通过探究、合作、交流的方式学习。
2. 利用多媒体课件,展示函数图象,增强直观感受。
3. 注重个体差异,给予学生充分的思考空间,提高学生的自主学习能力。
五、课时安排1. 函数的定义及性质:2课时2. 函数图象的绘制:2课时3. 实践与应用:1课时教学过程:第一课时:函数的定义及性质1. 引入:复习八年级学习的函数概念,引导学生回顾函数的表示方法。
2. 讲解:讲解函数的定义,强调函数的域、值域的概念。
3. 练习:学生自主完成练习题,巩固函数的定义及其性质。
第二课时:函数的性质1. 引入:通过实例引导学生理解函数的单调性、奇偶性、周期性。
2. 讲解:讲解函数的单调性、奇偶性、周期性的判定方法。
3. 练习:学生自主完成练习题,巩固函数的性质。
第三课时:函数图象的绘制1. 引入:复习八年级学习的函数图象绘制方法。
2. 讲解:讲解列表法、解析法、图象平移法绘制函数图象的方法。
3. 练习:学生自主完成练习题,掌握函数图象的绘制方法。
第四课时:常见函数图象的绘制1. 引入:引导学生观察生活中的实例,发现函数图象的形状。
2. 讲解:讲解线性函数、二次函数、指数函数、对数函数的图象特点及绘制方法。
【中考一轮复习】反比例函数的图象及性质课件

典型例题---反比例函数的图象与性质
【例1】已知点A(1,y1),B(2,y2),C(-3,y3)都在反比例函数
y
6 x
的图象上,则y1、y2、y3的大小关系是( D )
A.y3<y1<y2 B.y1<y2<y3 C.y2<y1<y3 D.y3<y2<y1
方法一:求出函数值再比较函数值的大小;
方法二:利用图象比较函数值的大小;
Ox D
当堂训练---反比例函数的图象与性质
3.已知点P(a,m),Q(b,n)都在反比例函数 y 2 的图象上,且
x
a<0<b,则下列结论一定正确的是( D )
A.m+n<0 B.m+n>0
C.m<n
D.m>n
4.反比例函数 y k 的图象经过点(3,-2),下列各点在图象上的 x
是( D )
1及.如y2图=,2x直的线图l象⊥分x于别点交P于,且点与A反、比B,例连函接数OA,yO1B=,已4x 知 △AOB的面积为_1__.
yl A
B
2y.2如 图kx2 ,(x平行0)的于图x轴象的分直别线相与交函于数A,yB1两 k点x1 (,x点 0A)在与点 B的右侧,C为x轴上的一个动点,若△ABC的面积为
数的图象 对称,由于反比例函数中自变量x≠0,函数y≠0,所以,它 及性质 的图象与x轴、y轴都__没__有__交点,即双曲线的两个分支
无限接近坐标轴,但永远达不到坐标轴。
考点聚焦---反比例函数的图象与性质
函数
图象形状 图象位置 增减性 延伸性 对称性
k>0
yk x k<0
y
函数图象的 在每一支
典型例题---用待定系数法求解析式
【例3】若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则
中考数学一轮精品复习教案函数及其应用

五、函数及其应用(6课时)教学目标:1.立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能.2.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.3.通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点与难点重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,.难点:把数学知识转化为自身素质.增强用数学的意识.教学时间:6课时【课时分布】函数部分在第一轮复习时大约需要6个课时,其中包括单元测试.下表为内容及课时安排.课时数内容1变量与函数、平面直角坐标系2 一次函数与反比例函数的图象和性质1 二次函数的图象和性质2 函数的应用函数单元测试与评析教学过程:【知识回顾】1.知识脉络2.基础知识(1)一次函数的图象:函数y =kxb (k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y =kx 平行的一条直线.一次函数的性质:设y =kx b (k ≠0),则当k >0时,y 随x 的增大而增大;当k <0, y 随x 的增大而减小.正比例函数的图象:函数y =kx (k 是常数,k ≠0)的图象是过原点及点(1,k )的一条直线.当k >0时,图象过原点及第一、第三象限;当k <0时,图象过原点及第二、第四象限.正比例函数的性质:设y =kx (k ≠0),则当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.(2)反比例函数的图象:函数xky =(k ≠0)是双曲线.当k >0时,图象在第一、第三象限;当k <0时,图象在第二、第四象限.反比例函数的性质:设xky =(k ≠0),则当k >0时,在每个象限中,y 随x 的增大而减小;当k <0时,在每个象限中,y 随x 的增大而增大.(3)二次函数一般式:)0(2≠++=a c bx ax y .实际问题平面直角坐标系函 数一次函数的图象与性质反比例函数的图象与性二次函数的图象与性质函 数的应用变量图象:函数)0(2≠++=a c bx ax y 的图象是对称轴平行于y 轴的抛物线. 性质:设)0(2≠++=a c bx ax y①开口方向:当a >0时,抛物线开口向上,当a <0时,抛物线开口向下; ②对称轴:直线abx 2-=; ③顶点坐标()44,22ab ac a b --; ④增减性:当a >0时,如果abx 2-≤,那么y 随x 的增大而减小,如果2b x a ≥-,那么y 随x 的增大而增大;当a <0时,如果ab x 2-≤,那么y 随x的增大而增大,如果2bx a≥-,那么y 随x 的增大而减小.顶点式()()20y a x h k a =-+≠.图象:函数()()20y a x h k a =-+≠的图象是对称轴平行于y 轴的抛物线.性质:设()()20y a x h k a =-+≠①开口方向:当a >0时,抛物线开口向上,当a <0时,抛物线开口向下; ②对称轴:直线x h =; ③顶点坐标(,)h k ;④增减性:当a >0时,如果x h ≤,那么y 随x 的增大而减小,如果x h ≥,那么y 随x 的增大而增大;当a <0时,如果x h ≤,那么y 随x 的增大而增大,如果x h ≥,那么y 随x 的增大而减小. 3.能力要求例1如图,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴. 给出四个结论:① 0abc <;② 20a b +>;③ 1a c +=; ④1a >.其中正确结论的序号是 .【解】由图象可知:a >0,b <0,c <0,∴abc >0; ∵对称轴x =2b a -在(1,0)的左侧,∴2ba-<1,∴20a b +>; ∵图象过点(-1,2)和(1,0),∴20a b c a b c -+=⎧⎨++=⎩,∴1a c +=,b =-1;∴a =1-c >1.∴正确的序号为:②③④.【说明】函数图象是研究函数性质的有力工具,是数形结合思想方法的重要运用.本题通过形(图象及其位置)的条件得出数(相等和不等关系)的结论.教师在复习总要加强这种思想方法的渗透. 例2设直线1y x b =+与抛物线22y x c =+的交点为A (3,5)和B . ⑴求出b 、c 和点B 的坐标; ⑵画出草图,根据图像回答:当x 在什么范围时12y y ≤.【分析】与一次函数、二次函数的图象交点有关的问题,可通过转化为方程(组)的思路解决.借助于函数图象可直观地解决函数值的大小比较. 【解】(1)∵直线1y x b =+与抛物线22y x c =+的交于点A (3,5),∴3595b c +=⎧⎨+=⎩,∴24b c =⎧⎨=-⎩,∴12y x =+,224y x =-.由224y x y x =+⎧⎨=-⎩得121223,,05x x y y =-=⎧⎧⎨⎨==⎩⎩∴B (-2,0). (2)图象如图所示, 由图象可知:当2x ≤-或3x ≥时,12y y ≤.【说明】本题着重考查与函数图象交点有关的问题及函数值的大小比较问题,要求学生能够利用数形结合思想,沟通函数和方程(组)、不等式的联系和相互转化.例3 已知抛物线y=ax 2+bx+c 的顶点为(1,-4),且抛物线在x 轴上截得的线段长为4,求抛物线的解析式. 【解】∵抛物线的顶点为(1,4),∴设抛物线的解析式为()214y a x =--,∴抛物线的对称轴为直线x =1, 又∵抛物线在x 轴上截得的线段长为4, ∴抛物线与x 轴的交点为(1,0),(3,0),∴0=4a4,∴a =1,∴抛物线的解析式为()214y x =--,即223y x x =--.【说明】抛物线的对称性常常是解题的切入口,本题也可以通过设抛物线与x 轴的交点为()12,0,(,0)x x ,则124x x -=,利用根与系数的关系来求解,但这样显然比较繁琐.例4 利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月销售量为p (吨),月利润为y (元),月销售额为w (元),.(1)当每吨售价是240元时,计算此时的月销售量;求出p 与x 的函数关系式(不要求写出x 的取值范围);(2)求出y 与x 的函数关系式(不要求写出x 的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 【解】(1)当每吨售价是240元时,此时的月销售量p =260240457.56010-+⨯=吨;由题意得:p =260457.510x -+⨯,即p =32404x -+. (2)y =()()31001002404x p x x ⎛⎫-=--+ ⎪⎝⎭,即y =23315240004x x -+-.(3)配方得:y =()2321090754x --+,∴当x =210时,y max =9075(元). (4)w =32404xp x x ⎛⎫=-+ ⎪⎝⎭,即w =()23160192004x --+,∴当x =160时w max =19200.∴y 与w 不是同时取得最大值,小静说法不对. 【说明】本题是一次函数和二次函数在实际生活中的综合运用,学生关键要理解商品经济中的进价(成本价),售价,单位利润(每件商品的利润),销售数量,总利润,销售额的概念及其关系.单位利润=售价-进价,总利润=单位利润×销售数量,销售额=售价×销售数量.例5如图,平面直角坐标系中,四边形OABC 为矩形,点A B ,的坐标分别为(40)43(),,,,动点M N ,分别从O B ,同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A运动,点N 沿BC 向终点C 运动,过点M 作MP OA ⊥,交AC 于P ,连结NP ,已知动点运动了x 秒.(1)P 点的坐标为( )(用含x 的代数式表示);(2)试求NPC △面积S 的表达式,并求出面积S 的最大值及相应的x 值; (3)当x 为何值时,NPC △是一个等腰三角形?简要说明理由.【分析】求P 点坐标,由图可知,就是要求线段OM ,PM ,由△APM ∽△ACO 可得;求△NPC 的面积的关键是用x 的代数式表示边CN 上的高PQ ;△NPC 是等腰三角形有三种情形,不能遗漏.【解】(1)由题意可知,(03)C ,,(0)(43)M x N x -,,,,P ∴点坐标为()x x 3,3-4. (2)设NPC △的面积为S ,在NPC△中,4NC x =-,NC 边上的高为34x ,其中04x ≤≤.221333(4)(4)(2)2882S x x x x x 3∴=-⨯=-+=--+4. S ∴的最大值为32,此时2x =.(3)延长MP 交CB 于Q ,则有PQ BC ⊥.NBAMPCOyx NBAMPCOyx Q①若NP CP =,PQ BC NQ CQ x ⊥==,.34x ∴=,43x ∴=. ②若CP CN =,则35444CN x PQ x CP x =-==,,,516449x x x -=∴=,.③若CN NP =,则4CN x =-.3424PQ NQ x ==-, ,在Rt PNQ △中,222PN NQ PQ =+.2223(4)(42)()4x x x ∴-=-+,12857x ∴=. 综上所述,43x =,或169x =,或12857x =.【说明】本题为双动点综合题,是中考的压轴题,有较大的难度.(1)(2)两小题与函数有关,解题的关键在于把握动点的运动规律,用x 的代数式表示出动点的路程,从而结合相似形的知识把其它有关线段也用x 的代数式表示出来为解题服务.(3)要用到分类讨论的思想方法.。
教案数学高中函数图像

教案数学高中函数图像
教学重点和难点:函数的图像概念和性质;绘制一元二次函数、绝对值函数、指数函数、对数函数的图像。
教学准备:黑板、彩色粉笔、教材、教学PPT。
教学过程:
一、导入
教师通过引导学生回顾函数的概念和性质,引出本节课的主题——函数的图像。
二、讲解
1. 函数的图像概念和性质:函数的图像是由函数的自变量和因变量按照一定规律对应所得到的图形。
图像的性质包括对称性、增减性、奇偶性等。
2. 绘制一元二次函数的图像:通过讲解一元二次函数的一般式和顶点式,并结合实例进行绘图。
3. 绘制绝对值函数、指数函数、对数函数的图像:讲解这些特殊函数的性质和图像特点,引导学生绘制图像。
三、练习
老师布置练习题,让学生通过计算和绘图来加深对函数图像的理解和掌握。
四、拓展
引导学生思考如何利用函数图像解决实际问题,例如通过函数图像分析函数的性质、求解方程等。
五、总结
总结本节课的重点内容,强调函数图像的重要性和应用价值。
六、作业
布置作业:练习册上的相关题目,让学生巩固和深化所学内容。
教学反思
通过本节课的教学,学生能够掌握函数图像的基本原理和方法,并能够独立绘制一些常见函数的图像。
同时,通过练习和实例分析,学生能够运用函数图像解决实际问题,提高了他们的数学建模能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1O y x-1-2-3-3-2-1231132(+,-)(+,+)(-,-)(-,+)⎪⎩⎪⎨⎧) b - , a - ()b , a - () b - , a(第三篇 函数及其图象专题九 平面直角坐标系一、考点扫描 一、平面直角坐标系1. 坐标平面上的点与有序实数对构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征。
4. 点P (a ,b )关于 对称点的坐标5、两点之间的距离6、线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=二、函数的概念1、概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数。
2.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义 3.函数的表示方法; (1)解析法 (2)列表法 (3)图象法 二、考点训练1、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2、点P (-1,-3)关于y 轴对称的点的坐标是( ) (A )(-1,3) (B )(1,3) (C )(3,-1) (D )(1,-3)3、(2005年重庆市)点A (m-4,1-2m )在第三象限,则m 的取值范围是( ) A .m>12B .m<4C .12<m<4 D .m>44、(2006年怀化市)放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,图(1)、图(2)分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了________千克.”5、菱形边长为6,一个内角为120°,它的对角线与两坐标轴重合,则菱形四个顶点的坐标分别是6、(2006年南京市)在平面直角坐标系中, ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)(第6题) (第7题)7、(2006年长春市)如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′,•若点A 的坐标为(a ,b ),则点A ′的坐标为( )A .(a ,-b )B .(b ,a )C .(-b ,a )D .(-a ,b ) 8、(2006年贵阳市)小明根据邻居家的故事写了一道小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y •表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,•那么下面的图象与上述诗的含义大致吻合的是( )三、例题剖析1、(06年益阳)在平面直角坐标系中,点A 、B 、C 的 坐标分别为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是________.2、(2006年绍兴市)如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2006次,点P 依次落在点P 1,P 2,P 3,P 4,…P 2006的位置,则P 2006的横坐标X 2006=_______. ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧原点轴轴y x 21212211P P )0()0()1(x x x P x P -=, , ,, 21212211P P )0()0()2(y y y P y P -=, ,,,22122121222111)()()()()3(y y x x P P y x P y x P -+-=,,,,23、(2006年茂名市)如图,在平面直角坐标系XOY 中,直角梯形OABC ,BC ∥AO ,A (-2,0),B (-1,1),将直角梯形OABC 绕点O 顺时针旋转90°后,点A 、B 、C 分别落在A ′、B ′、C ′处.请你解答下列问题: (1)在如图直角坐标系XOY 中画出旋转后的梯形O ′A ′B ′C ′.(2)求点A 旋转到A ′所经过的弧形路线长.4、(2006年烟台市)先将一矩形ABCD 置于直角坐标系中,使点A •与坐标系中原点重合,边AB 、AD 分别落在x 轴、y 轴上(如图1),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB=4,BC=3,则图1和图2中点B 的坐标为______,点C •的坐标为_______.四、综合应用1、2006年常州市)在平面直角坐标系中描出下列各点A (2,1),B (0,1),C (-4,3),D (6,3),并将各点用线段依次连接构成一个四边形ABCD .(1)四边形ABCD 是什么特殊的四边形?(2)在四边形ABCD 内找一点P ,使得△APB 、△BPC 、△CPD 、△APD •都是等腰三角形,请写出P 点的坐标.专题十 一次函数及反比例函数其应用一、考点扫描 1、一次函数(1)、一次函数及其图象如y=kx+b (k ,b 是常数,k ≠0),那么,y 叫做x 的一次函数。
特别地,如果y=kx (k 是常数,k ≠0),那么,y 叫做x 的正比例函数一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线(2)、一次函数的性质当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小。
1、反比例函数(1) 反比例函数及其图象 如果)0,(≠=k k xky 是常数,那么,y 是x 的反比例函数。
反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象 (2)反比例函数的性质当K>0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y 随x 的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。
3.待定系数法先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式 二、考点训练 1、若函数y=(m 2-1)x 235m m +-为反比例函数,则m=________.2、若一次函数y=2x222m m --+m-2的图象经过第一、第二、三象限,则m= .3、(2006年常德市)已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y=•的图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 2<y 3<y 14、已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为( )5、(2006年威海市)如图,过原点的一条直线与反比例函数y=k x(k<0)的图像分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点的坐标为( ) A .(a ,b ) B .(b ,a ) C .(-b ,-a ) D .(-a ,-b )3 (第5题) (第6题) 6、(06年长春市)如图,双曲线y=8x的一个分支为( )A .①B .②C .③D .④7、如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b>0的解集是( )A .x>0B .x>2C .x>-3D .-3<x<28、(2006年贵阳市)函数y 1=x+1与y 2=ax+b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_______.9、(2005年杭州市)已知一次函数y=kx-k ,若y 随x 的增大而减小,则该函数的图像经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限10、(2006年绍兴市)如图,一次函数y=x+5的图象经过点P (a ,b )和点Q (c ,d ),•则a (c-d )-b (c-d )的值为________. 11、(2006年重庆市)如图,已知函数y=ax+b 和y=kx 的图象交于点P , 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是________.12、(2006年安徽省)一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________. 三、例题剖析1、(2006年南京市)某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克. (1)分别求出x ≤40和x ≥40时y 与x 之间的关系式; (2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?2、(2006年吉林省)小明受《乌鸦喝水》故事的启发,• 利用量筒和体积相同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题: (1)放入一个小球量筒中水面升高_______cm ;(2)求放入小球后量筒中水面的高度y (cm )与小球个数x (个)•之间的一次函数关系式(不要求写出自变量的取值范围); (3)量筒中至少放入几个小球时有水溢出?3、(06年烟台市)如图,一次函数y=kx+b 的图象与反比例函数y=m x图象交于A (-2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.4、(2006年重庆市)如图,矩形AOCB 的两边OC 、OA 分别位于x轴、y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是_________.5、(2006年伊春市)某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程;加工过程中,当油箱中油量为10升时,•机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y (升)与机器运行时间x (分)之间的函数图象.根据图象回答下列问题: (1)求在第一个加工过程中,油箱中油量y (升)与机器运行时间x (分)之间的函数关系式(不必写出自变量x 的取值范围);(2)机器运行多少分钟时,第一个加工过程停止? (3)加工完这批工件,机器耗油多少升?应用与探究41、某厂从2002年起开始投入技术改进资金,经技术改进后,•某产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式; (2)按照这种变化规律,若2006年已投入技改资金5万元. ①预计生产成本每件比2005年降低多少万元?②如果打算在2006年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)专题十一 二次函数图象及其性质一、考点扫描1、理解二次函数的概念:y=ax 2+bx+c (a,b,c 是常数,a ≠0) 2、会把二次函数的一般式化为顶点式,确定图象的顶点坐标)44,2(2a b ac a b --、对称轴abx 2-=和开口方向,会用描点法画二次函数的图象;3、会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(x +k)2+h 的图象,了解特殊与一般相互联系和转化的思想;4、会用待定系数法求二次函数的解析式;5、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。