M48Z02
中国民用航空规章

(民航局令第 209 号)
中国民用航空规章
பைடு நூலகம்
第 25 部 运输类飞机适航标准
[CCAR-25-R4]
1985 年 12 月 31 日发布 [1990 年 7 月 18 日第一次修订] [1995 年 12 月 18 日第二次修订] [2001 年 5 月 14 日第三次修订] [2011 年 11 月 7 日第四次修订]
中国民用航空局
-1-
运输类飞机适航标准
(民航局令第 209 号)
目录
A分部 总则....................................................................................................................................1 第 25.1 条 适用范围..............................................................................................................1 第 25.2 条 [备用] ...................................................................................................................1 第 25.3 条 ETOPS型号设计批准的专用条款......................................................................1
运输类飞机适航标准民航局令第209号中国民用航空规章第25部运输类飞机适航标准ccar25r41985年12月31日发布1990年7月18日第一次修订1995年12月18日第二次修订2001年5月14日第三次修订2011年11月7日第四次修订运输类飞机适航标准民航局令第209号ccar25r41中国民用航空局令第209号运输类飞机适航标准ccar25r4已经2011年10月26日中国民用航空局局务会议通过现予公布自2011年12月7日起施行
ST AN1009 Application note 数据手册

AN1009APPLICATION NOTE “Negative Undershoot” NVRAM Data CorruptionMiniaturisation in microelectronics has led, inevitably, to the inadvertent appearance of parasitic devices. Adjacent conducting paths end up being separated by a gap that is so narrow that it ceases to isolate them properly from each other. Parasitic tunnelling devices, bipolar transistors, and thyristors end up being formed, with each one causing its own distinctive misbehaviour.The occurrence of parasitic SCRs (silicon controlled rectifiers) causes the well-studied problem of latch-up. The occurrence of parasitic bipolar transistors, such as the one shown in Figure 1, is normally less serious, but leads to a particular type of problem in battery-powered circuits. It is this problem that is ad-dressed in this document.The problem manifests itself in battery-powered memory as data corruption: the unintentional flipping from 1 to 0, or from 0 to 1, of bits of data in the memory array. It is caused when a negative pulse is inadvertently applied to the emitter of an inadvertently formed parasitic bipolar transistor, causing it to go into conduction mode, and to connect two otherwise isolated signal lines.ANATOMY OF A PARASITIC BIPOLAR TRANSISTORFigure 1 shows the cross section of a CMOS gate, with one MOSFET formed directly in the N-type sub-strate, and the other in a P-well. Under certain conditions, the P-well can start to behave as the base re-gion of a parasitic bipolar NPN transistor, with the N-type substrate as its collector region, and the N+ diffusion contact of the MOSFET as its emitter region.Figure 1. Cross-Section of an NPN Parasitic Bipolar TransistorDecember 19981/4AN1009 - APPLICATION NOTE 2/4The P-well is held at ground, so the parasitic NPN transistor should never turn on. If, though, a negative pulse is applied to the pad, and hence to the emitter of the parasitic NPN transistor, the transistor would be put into its conducting mode. Once the pad is taken to -V be , the parasitic bipolar transistor turns on,and pulls current from the substrate.When the memory device is being powered by the external power source, the effect of this extra parasitic current will be negligible, and will be compensated for by the external power source. When the memory device is being powered from the internal battery, though, the battery is unable to compensate for the extra current, and so the supply voltage will fall. As soon as the supply voltage falls below a critical value, SRAM cells in the memory array will cease to hold their stored data reliably.The parasitic bipolar transistor starts to turn on when the pad is taken to about -0.6 V. In battery mode, the impact on the substrate will start to be felt once the current drain through the bipolar transistor is approx-imately -0.6mA. The substrate will be pulled to approximately 1.0V once the current through the bipolar transistor reaches -1.5mA. As the magnitude of the negative current increases, it directly reduces the lev-el of internal V CC (the substrate voltage). A current drain of approximately -2.0mA will bring internal V CC to ground, thus leaving the SRAM array completely unpowered.Figure 2. Substrate Vversus Negative UndershootsFigure 2 superimposes three pairs of curves: three negative undershoot pulses of 100, 500 and 1000ns duration; and the corresponding effects that are felt by the V CC substrate voltage.Thus, we see that the effect on the substrate voltage is proportional to the duration of the negative under-shoot pulse. It is also proportional to its magnitude (its amplitude). It is also proportional to the number of pins that receive the negative undershoot pulse (the example, above, is the effect of just one pin on the chip going negative).3/4AN1009 - APPLICATION NOTEREMEDIESST is continually making design and process modifications to improve the performance of its products.Immunity to negative undershoot will be improved over time, but only where it does not have a negative impact on other performance measures, such as operating speed.The application designer is, therefore, advised to take steps to avoid negative undershoot pulse from be-ing introduced. The first step is to improve the cleanliness of each of the signals. Table 1 lists the pins of ST’s NVRAMS that are affected (those that consist of an N+ diffusion in a P-well on an N-type substrate).All pins that are connected to N+ diffusion are susceptible to negative undershoot, but special attention should be given to the V CC pin. This is connected to internal circuitry that increases the pin’s sensitivity to negative undershoots, to the extent that pulses of greater than -0.3V may affect the substrate voltage.The second step, therefore, is to clamp the power lines (V CC and V SS ) with a Schottky diode, to short out any attempt by them to go negative. Its effectiveness depends on its speed of operation set against the speed and energy content of the negative-going pulse (the current sink capability of the pulse). An off-the-shelf diode with a V be of approximately 0.32V, and a current rating of 100mA, will generally reduce the occurrence of the problem to negligible proportions. However, the higher the current sink capability of the negative pulse, the more likely an RF Schottky diode is required.The Schottky diode should be placed as close to the device pin as possible.V CC can be subject to mechanical noise, the switching of V CC on and off, and to negative spikes coming from the power supply during initial power up. The third step, then, is to clean up the power supply, par-ticularly its behaviour at power-on and power-off, where the memory device is expected to continue to power itself from its internal battery. Particular care should be taken when working with programmable power supplies. Forcing a programmable power supply from a positive voltage to 0 volts without taking care to step down the voltage can generate a negative undershoot pulse.The fourth step is to protect each of the pins, mentioned in Table 1, by its own individual Schottky diode.No pin should exceed -0.3V, and their collective reverse current should not be allowed to exceed -1.0mA,especially when the memory device is being battery-powered.Table 1. List of the Pins on Devices that are Affected by the Problem Device Substrate Type PIns Connected to N+ DiffusionM40Z111 N-13, 16M40Z300 N-4, 10, 13, 16, 20, 22, 23M48Z02, M48Z12 N-AllM48Z08, M48Z18 P-none (not applicable)M48Z58, M48Z59 N-1, 11-13, 19-15, 26, 28M48Z35 N-AllM48T02, M48T12 N-AllM48T08, M48T18 P-none (not applicable)M48T58, M48T59, M48T559N-1, 11-13, 15-19, 26, 28M48T35 N-AllM48T37 N-1, 4-10, 13, 15-20, 22-26, 30,31,33-39AN1009 - APPLICATION NOTE 4/4If you have any questions or suggestions concerning the matters raised in this document, please send them to the following electronic mail addresses:***************** (for application support)***************** (for general enquiries)Please remember to include your name, company, location, telephone number and fax number.Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.© 1998 STMicroelectronics - All Rights ReservedThe ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners.STMicroelectronics GROUP OF COMPANIESAustralia - Brazil - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.。
挖掘机的液压系统设计与仿真计算说明书

摘要液压系统是目前挖掘机必不可少的组成部分,液压系统通过改变压强增大作用力来工作。
完整的液压系统包括:动力元件、执行元件、控制元件、辅助元件和液压油。
挖掘机的工作环境复杂多变,所以对于液压系统提出了很高的设计要求。
在搜集国内外液压系统相关资料的基础上,了解其发展过程,分析总结了液压挖掘机的技术发展动态,了解液压挖掘机液压系统的结构。
液压挖掘机由多个系统组成,包括液压系统、传动系统、操纵系统、发动机、油箱、转台等等。
本设计从分析液压挖掘机的基本原理出发,分析了液压挖掘机的结构,工作原理,油路控制,从而确定了液压挖掘液压系统的设计方案,并对所设计的液压系统进行了模型建立,到模型仿真,以确保所设计的液压系统的安全可靠,结构优良,价格经济。
本设计还细致分析了液压挖掘机的液压元件的选型,与设计计算,采用的CAD设计出了液压挖掘机的原理图,运用了simulationx进行的模型建立与仿真,确保了所建立的模型的正确性。
运用simulationx建立系统模型的与仿真这是本设计的一大特点。
关键词:液压系统液压挖掘机液压元件SummaryThe hydraulic system is an integral part of excavator, hydraulic system is to work by changing the pressure to increase the force. The intact hydraulic system is including: power components, the implementation of components, control components, auxiliary components and hydraulic oil. The excavator working environment is complex and changeable, so it is very high requirement of design to hydraulic system.In the collection of domestic and foreign hydraulic system on the basis of relevant information, understanding of its development process, analyzed and summarized the technology development of hydraulic excavator. Understand hydraulic excavator hydraulic system structure. Hydraulic excavator is composed of a plurality of system components, including the hydraulic system, drive system, control system, engine, fuel tank, table and so on. My design focused on the design of hydraulic system of excavator. Keywords: hydraulic system excavatory目录第一章绪论 (1)1.1 挖掘机的简介 (1)1.2 国内外的发展趋势 (2)1.2.1 国内发展趋势 (2)1.2.2 国外发展趋势 (2)1.3 本设计的主要内容 (3)1.3.1 了解液压挖掘机液压系统的结构 (3)1.3.2 挖掘机液压系统设计要求 (3)第二章液压挖掘机结构与工作原理 (5)2.1 液压挖掘机的系统组成 (5)2.1.1 动力系统 (5)2.1.2 液压系统 (5)2.1.3 机械系统 (5)2.1.4 控制系统 (6)2.2 液压挖掘机传动原理 (6)第三章挖掘机工况分析以及液压系统设计方案的的确定 (7)3.1 液压系统的工况分析 (7)3.1.1 挖掘工况分析 (8)3.2 挖掘机液压系统的设计要求 (8)3.2.1 满斗举升回斗工况分析 (10)3.2.2 卸载工况分析 (10)3.2.3 空斗返回工况分析 (11)3.3 挖掘机液压系统的设计要求 (11)3.3.1 动力性要求 (11)3.3.2 操纵性要求 (11)3.3.3 节能性要求 (12)3.3.4 安全性要求 (12)3.3.5 其它性能要求 (12)3.4 液压系统方案拟订 (13)第四章液压系统的设计 (14)4.1 确定油缸所受的作用力 (14)4.1.1 铲斗油缸作用力的分析 (14)4.1.2 斗杆油缸作用的确定 (16)4.1.3 动臂油缸作用力分析 (18)4.2 各油缸尺寸的确定 (19)4.2.1 铲斗油缸工作压力的确定 (19)4.2.2 缸径D和油塞杠直径d的确定 (19)4.2.3 缸壁厚和外径的计算 (20)4.3 斗杆油缸尺寸的计算 (21)4.3.1 由铲斗油缸计算步骤知斗杆缸受力平衡 (21)4.3.2 缸壁厚和外径的计算 (21)4.4 动臂缸的尺寸计算 (21)4.4.1 由铲斗油缸计算步骤知动臂油缸受力平衡 (21)4.4.2 缸壁厚和外径的计算 (21)4.6 各液压缸和马达流量的确定 (23)4.6.1 每个缸的流量计算 (23)4.6.2 回转马达的流量的计算及选型 (23)4.6.3 行走马达的选用 (24)4.6.4 主回路液压泵的选择 (25)4.7 管路油管的选择 (25)4.7.1 油管内径的确定 (25)4.7.2 管接头的选择 (26)4.7.3 螺塞的选用 (26)4.8 液压油箱的确定 (26)4.8.1 液压系统的发热和升温的验算 (27)4.9 液压装置的结构设计 (27)4.9.1 阀集成款 (28)第五章挖掘机液压系统模型的建立与仿真 (29)5.1 关于仿真软件Simulationx (29)5.1.1 Simulationx的简介 (29)5.1.2 S在液压系统中的应用 (30)5.2在Simulationx中选取液压元器件 (30)5.2.1 液压元器件的选取 (30)5.2.2其他各种元件的选取 (34)5.3 挖掘机液压系统仿真模型的建立 (36)5.3.1草图的绘制 (37)5.3.2元器件参数的设置 (37)5.3.3仿真模式 (42)5.4 仿真的结果 (42)5.4.1液压泵的仿真曲线 (42)5.4.2内燃机的仿真曲线 (43)5.4.3控制铲斗缸的三位四通换向阀的仿真曲线 (43)5.4.4液压缸的仿真曲线 (44)5.4.5控制液压马达的三位四通阀的仿真曲线 (44)5.4.5回转马达的仿真曲线 (45)5.5挖掘臂的局部仿真 (45)5.5.1元件的参数设置 (46)结论 (48)参考文献 (49)致谢 (50)第一章绪论作为具有多功能这一特性的机械,液压挖掘机被广泛使用于交通运输,矿山采掘和电力工程等施工中,挖掘机减轻了作业难度,提高作业效率,加快建设速度以及提高劳动生产率方面表现出十分显著的作用。
总线防盗报警控制器-大华

使用,但是却会导致系统自动的转发相应端口的数据,从而导致本应该受限的数据被他人窃 取。 如果已在路由器上手工打开了 HTTP 和 TCP 端口映射,我们强烈建议您关闭此功能。在实际 的使用场景中,我们强烈建议您不开启此功能。
电源要求
请务必按照要求使用电池,否则可能导致电池起火、爆炸或燃烧的危险! 更换电池时只能使用同样类型的电池! 产品必须使用本地区推荐使用的电线组件(电源线),并在其额定规格内使用。 请使用满足 SELV(安全超低电压)要求的电源,并按照 IEC60950-1 符合 Limited Power
部分老版本的 IP 摄像机固件,系统的主密码更改后,ONVIF 密码不会自动跟着更改。你需要更 新摄像机的固件或者手动更新 ONVIF 密码。 6. 只转发必须使用的端口 只转发必须使用的网络端口。避免转发一段很长的端口区。不要把设备的 IP 地址设置成 DMZ。 如果摄像机是连接到本地的 NVR,你不需要为每一台摄像机转发端口,只有 NVR 的端口需
在适用法律未明令禁止的程度下,对于因使用或无法使用本产品或服务而引起的任何利润、 收入、销售损失、数据丢失或采购替代商品或服务的成本、财产损害、人身伤害、业务中断、 商业信息损失,或者任何特殊的、直接的、间接的、附带的、经济性、覆盖性、惩罚性、特 殊或从属损害,无论是基于何种责任理论(合同、侵权、过失或其他),本公司及其员工、 许可方或附属公司都不承担赔偿责任,即使其已被告知存在此种损害的可能性也是如此。某 些司法管辖区不允许对人身伤害、附带或从属损害等进行责任限制,则此限制可能不适用于 您。
要被转发。 7. 关闭 SmartPSS 的自动登录功能 如果你使用 SmartPSS 来监控你的系统而你的电脑是有多个用户,请必须把自动登录功能关闭。 增加一道防线来防止未经授权的人访问系统。 8. 在 SmartPSS 上使用不同于其他设备的用户名和密码 万一你的社交媒体账户,银行,电邮等账户信息被泄漏,获得这些账户信息的人也无法入侵你的 视频监控系统。 9. 限制普通账户的权限 如果你的系统是为多个用户服务的,请确保每一个用户只获得它的作业中必须的权限。
M48Z12-150PC1TR资料

1/16April 2003Rev. 3.1M48Z02M48Z125V, 16 Kbit (2Kb x 8) ZEROPOWER ® SRAMFEATURES SUMMARYs INTEGRATED, ULTRA LOW POWER SRAM and POWER-FAIL CONTROL CIRCUITs UNLIMITED WRITE CYCLESsREAD CYCLE TIME EQUALS WRITE CYCLE TIMEsAUTOMATIC POWER-FAIL CHIP DESELECT and WRITE PROTECTIONsWRITE PROTECT VOLTAGES(V PFD = Power-fail Deselect Voltage):–M48Z02: V CC = 4.75 to 5.5V;4.5V ≤ V PFD ≤ 4.75V–M48Z12: V CC = 4.5 to 5.5V;4.2V ≤ V PFD ≤ 4.5VsSELF-CONTAINED BATTERY IN THE CAPHAT™ DIP PACKAGEsPIN and FUNCTION COMPATIBLE WITH JEDEC STANDARD 2K x 8 SRAMsM48Z02, M48Z12TABLE OF CONTENTSSUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5Table 3. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Figure 5. AC Testing Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6OPERATION MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Table 6. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Figure 6. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Table 7. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 7. WRITE Enable Controlled, WRITE AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 8. Chip Enable Controlled, WRITE AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Table 8. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 9. Checking the BOK Flag Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 10. Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Table 10. Power Down/Up Trip Points DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 11. Crystal Accuracy Across Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11V CC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure 12. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12PACKAGE MECHANICAL INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152/163/16M48Z02, M48Z12SUMMARY DESCRIPTIONThe M48Z02/12 ZEROPOWER ® RAM is a 2K x 8non-volatile static RAM which is pin and functional compatible with the DS1220.A special 24-pin, 600mil DIP CAPHAT™ package houses the M48Z02/12 silicon with a long life lithi-um button cell to form a highly integrated battery backed-up memory solution.The M48Z02/12 button cell has sufficient capacity and storage life to maintain data functionality for an accumulated time period of at least 10 years in the absence of power over commercial operating temperature range.The M48Z02/12 is a non-volatile pin and function equivalent to any JEDEC standard 2K x 8 SRAM.It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed.Table 1. Signal NamesA0-A10Address Inputs DQ0-DQ7Data Inputs / Outputs E Chip Enable G Output Enable W WRITE Enable V CC Supply Voltage V SSGroundM48Z02, M48Z124/16MAXIMUM RATINGStressing the device above the rating listed in the “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicat-ed in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rat-ing conditions for extended periods may affect de-vice reliability. Refer also to the STMicroelectronics SURE Program and other rel-evant quality documents.Table 2. Absolute Maximum RatingsNote: 1.Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.Symbol ParameterValueUnit T A Ambient Operating TemperatureGrade 10 to 70°CGrade 6–40 to 85T STG Storage Temperature (V CC Off, Oscillator Off)–40 to 85°C T SLD (1)Lead Solder Temperature for 10 seconds 260°C V IO Input or Output Voltages –0.3 to 7V V CC Supply Voltage –0.3 to 7V I O Output Current 20mA P DPower Dissipation1W5/16M48Z02, M48Z12DC AND AC PARAMETERSThis section summarizes the operating and mea-surement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure-ment Conditions listed in the relevant tables. De-signers should check that the operating conditions in their projects match the measurement condi-tions when using the quoted parameters.Table 3. Operating and AC Measurement ConditionsNote:Output Hi-Z is defined as the point where data is no longer driven.Table 4. CapacitanceNote: 1.Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested.2.At 25°C, f = 1MHz.3.Outputs deselected.ParameterM48Z02M48Z12Unit Supply Voltage (V CC )4.75 to5.54.5 to5.5V Ambient Operating Temperature (T A )Grade 10 to 700 to 70°C Grade 6––40 to 85°C Load Capacitance (C L )100100pF Input Rise and Fall Times ≤ 5≤5ns Input Pulse Voltages0 to 30 to 3V Input and Output Timing Ref. Voltages1.51.5VSymbol Parameter (1,2)MinMax Unit C IN Input Capacitance 10pF C IO (3)Input / Output Capacitance10pFM48Z02, M48Z126/16Table 5. DC CharacteristicsNote: 1.Valid for Ambient Operating Temperature: T A = 0 to 70°C or –40 to 85°C; V CC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).2.Outputs deselected.3.Negative spikes of –1V allowed for up to 10ns once per Cycle.OPERATION MODESThe M48Z02/12 also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single 5V supply for an out of tolerance condi-tion. When V CC is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operation brought on by low V CC . As V CC falls be-low approximately 3V, the control circuitry con-nects the battery which maintains data operation until valid power returns.Table 6. Operating ModesNote:X = V IH or V IL ; V SO = Battery Back-up Switchover Voltage.1.See Table 10, page 11 for details.Symbol ParameterTest Condition (1)MinMax Unit I LI Input Leakage Current 0V ≤ V IN ≤ V CC ±1µA I LO (2)Output Leakage Current 0V ≤ V OUT ≤ V CC ±1µA I CC Supply CurrentOutputs open 80mA I CC1Supply Current (Standby) TTL E = V IH 3mA I CC2Supply Current (Standby) CMOS E = V CC – 0.2V3mA V IL (3)Input Low Voltage –0.30.8V V IH Input High Voltage 2.2V CC + 0.3V V OL Output Low Voltage I OL = 2.1mA 0.4V V OHOutput High VoltageI OH = –1mA2.4VMode V CCE G W DQ0-DQ7Power Deselect 4.75 to 5.5Vor4.5 to5.5VV IH X X High Z Standby WRITE V IL X V IL D IN Active READ V IL V IL V IH D OUT Active READ V IL V IH V IH High Z Active Deselect V SO to V PFD (min)(1)X X X High Z CMOS Standby Deselect≤ V SO (1)XXXHigh ZBattery Back-up Mode7/16M48Z02, M48Z12READ ModeThe M48Z02/12 is in the READ Mode whenever W (WRITE Enable) is high and E (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 16,384 locations in the static storage array. Thus, the unique address specified by the 11 Address Inputs defines which one of the 2,048 bytes of data is to be accessed.Valid data will be available at the Data I/O pins within Address Access time (t AVQV ) after the last address input signal is stable, providing that the E and G access times are also satisfied. If the E and available after the latter of the Chip Enable Access time (t ELQV ) or Output Enable Access time (t GLQV ).The state of the eight three-state Data I/O signals is controlled by E and G. If the outputs are activat-ed before t AVQV , the data lines will be driven to an indeterminate state until t AVQV . If the Address In-puts are changed while E and G remain active,output data will remain valid for Output Data Hold time (t AXQX ) but will go indeterminate until the next Address Access.Table 7. READ Mode AC CharacteristicsNote: 1.Valid for Ambient Operating Temperature: T A = 0 to 70°C or –40 to 85°C; V CC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).SymbolParameter (1)M48Z02/M48Z12Unit–70–150–200MinMaxMin MaxMin Maxt AVAV READ Cycle Time70150200ns t AVQV Address Valid to Output Valid 70150200ns t ELQV Chip Enable Low to Output Valid 70150200ns t GLQV Output Enable Low to Output Valid 357580ns t ELQX Chip Enable Low to Output Transition 51010ns t GLQX Output Enable Low to Output Transition 555ns t EHQZ Chip Enable High to Output Hi-Z 253540ns t GHQZ Output Enable High to Output Hi-Z 253540ns t AXQXAddress Transition to Output Transition1055nsM48Z02, M48Z128/16WRITE ModeThe M48Z02/12 is in the WRITE Mode whenever W and E are active. The start of a WRITE is refer-enced from the latter occurring falling edge of W or E. A WRITE is terminated by the earlier rising edge of W or E. The addresses must be held valid throughout the cycle. E or W must return high for a minimum of t EHAX from Chip Enable or t WHAX from WRITE Enable prior to the initiation of anoth-er READ or WRITE cycle. Data-in must be valid t D-VWH prior to the end of WRITE and remain valid for t WHDX afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and G, a low on W will disable the outputs t WLQZ after W falls.9/16M48Z02, M48Z12Table 8. WRITE Mode AC CharacteristicsNote: 1.Valid for Ambient Operating Temperature: T A = 0 to 70°C or –40 to 85°C; V CC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).SymbolParameter (1)M48Z02/M48Z12Unit–70–150–200MinMaxMin MaxMin Maxt AVAV WRITE Cycle Time70150200ns t AVWL Address Valid to WRITE Enable Low 000ns t AVEL Address Valid to Chip Enable 1 Low 000ns t WLWH WRITE Enable Pulse Width5090120ns t ELEH Chip Enable Low to Chip Enable 1 High 5590120ns t WHAX WRITE Enable High to Address Transition 01010ns t EHAX Chip Enable High to Address Transition 01010ns t DVWH Input Valid to WRITE Enable High 304060ns t DVEH Input Valid to Chip Enable High 304060ns t WHDX WRITE Enable High to Input Transition 555ns t EHDX Chip Enable High to Input Transition 555ns t WLQZ WRITE Enable Low to Output Hi-Z 255060ns t AVWH Address Valid to WRITE Enable High 60120140ns t AVEH Address Valid to Chip Enable High 60120140ns t WHQXWRITE Enable High to Output Transition51010nsM48Z02, M48Z1210/16Data Retention ModeWith valid V CC applied, the M48Z02/12 operates as a conventional BYTEWIDE™ static RAM.Should the supply voltage decay, the RAM will au-tomatically power-fail deselect, write protecting it-self when V CC falls within the V PFD (max), V PFD (min) window. All outputs become high imped-ance, and all inputs are treated as “don't care.”Note: A power failure during a WRITE cycle may corrupt data at the currently addressed location,but does not jeopardize the rest of the RAM's con-tent. At voltages below V PFD (min), the user can be assured the memory will be in a write protected state, provided the V CC fall time is not less than t F .The M48Z02/12 may respond to transient noise spikes on V CC that reach into the deselect window during the time the device is sampling V CC . There-fore, decoupling of the power supply lines is rec-ommended.The power switching circuit connects external V CC to the RAM and disconnects the battery when V CC rises above V SO . As V CC rises, the battery voltage is checked. If the voltage is too low, an internal Battery Not OK (BOK) flag will be set. The BOK flag can be checked after power up. If the BOK flag is set, the first WRITE attempted will be blocked.The flag is automatically cleared after the first WRITE, and normal RAM operation resumes. Fig-ure 9 illustrates how a BOK check routine could be structured.For more information on a Battery Storage Life re-fer to the Application Note AN1012.CC PFD may perform inadvertent WRITE cycles after V CC rises above V PFD (min) but before normal system operations begin. Even though a power on reset is being applied to the processor, a reset condition may not occur until after the system is running.Table 9. Power Down/Up AC CharacteristicsNote: 1.Valid for Ambient Operating Temperature: T A = 0 to 70°C or –40 to 85°C; V CC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).2.V PFD (max) to V PFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after V CC pass-es V PFD (min).3.V PFD (min) to V SS fall time of less than t FB may cause corruption of RAM data.Table 10. Power Down/Up Trip Points DC CharacteristicsNote: 1.All voltages referenced to V SS .2.Valid for Ambient Operating Temperature: T A = 0 to 70°C or –40 to 85°C; V CC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).3.At 25°C, V CC = 0V.Symbol Parameter (1)Min MaxUnit t PD E or W at V IH before Power Down 0µs t F (2)V PFD (max) to V PFD (min) V CC Fall Time 300µs t FB (3)V PFD (min) to V SS V CC Fall Time 10µs t R V PFD (min) to V PFD (max) V CC Rise Time 0µs t RB V SS to V PFD (min) V CC Rise Time 1µs t RECE or W at V IH after Power Up2msSymbol Parameter (1,2)Min Typ Max Unit V PFD Power-fail Deselect Voltage M48Z02 4.5 4.6 4.75V M48Z124.24.3 4.5V V SO Battery Back-up Switchover Voltage 3.0V t DR (3)Expected Data Retention Time10YEARSV CC Noise And Negative Going TransientsIn addition to transients that are caused by normal SRAM operation, power cycling can generate neg-ative voltage spikes on V CC that drive it to values below V SS by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, STMicroelectronics recom-mends connecting a schottky diode from V CC to V SS (cathode connected to V CC, anode to V SS). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommendedfor surface mount.PACKAGE MECHANICAL INFORMATIONTable 11. PCDIP24 – 24-pin Plastic DIP, Battery CAPHAT™, Package Mechanical DataSymbmm inchesTyp Min Max Typ Min MaxA8.899.650.3500.380 A10.380.760.0150.030 A28.388.890.3300.350 B0.380.530.0150.021 B1 1.14 1.780.0450.070 C0.200.310.0080.012 D34.2934.80 1.350 1.370 E17.8318.340.7020.722 e1 2.29 2.790.0900.110 e325.1530.730.990 1.210 eA15.2416.000.6000.630 L 3.05 3.810.1200.150 N2424PART NUMBERINGTable 12. Ordering Information SchemeExample:M48Z02–70PC1TRDevice TypeM48ZSupply Voltage and Write Protect Voltage02 = V CC = 4.75 to 5.5V; V PFD = 4.5 to 4.75V12 = V CC = 4.5 to 5.5V; V PFD = 4.2 to 4.5VSpeed–70 = 70ns (M48Z02/12)–150 = 150ns (M48Z02/12)–200 = 200ns (M48Z02/12)PackagePC = PCDIP24Temperature Range1 = 0 to 70°C6 = –40 to 85°CShipping Methodblank = TubesTR = Tape & ReelFor a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest you.REVISION HISTORYTable 13. Document Revision HistoryDate Rev. #Revision Details May 1999 1.0First issue09-Jul-01 2.0Reformatted; Temperature information added to tables (Table 2, 3, 4, 5, 7, 8, 9, 10); Figure updated (Figure 10)17-Dec-01 2.1Remove references to “clock” in document20-May-02 2.2Updated V CC Noise and Negative Going Transients text 01-Apr-03 3.0v2.2 template applied; test condition updated (Table 10) 22-Apr-03 3.1Fix error in Ordering Information (Table 12)Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is registered trademark of STMicroelectronicsAll other names are the property of their respective owners.© 2003 STMicroelectronics - All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.。
HIVERT系列高压变频用户手册-北京合康亿盛

用 户 手 册
User's Manual
2007 年 4 月 版本 V2.3
北京合康亿盛科技有限公司
高压变频器用户手册
目
录
HIVERT 系列高压变频器 ................................................................................................................................... 1 安全性规则和警告 ............................................................................................................................................ 5 1 概述 ................................................................................................................................................................. 6 1.1 变频器特性 .......................................................................................................................................... 6 1.1.1 高质量电源输入 ................................................................
无主之地2物品代码

一.职业模组(Class mod)Slayer魔虫杀手:Siren魔女- BL2(B/xW5GzSODS8R6Q4nsh9p7gcFFyZSLTX+ZJ4sz5aoQkwq13KP/U=)Gunzerker狂枪- BL2(B4hgAAeoggUc1Cl+5aK0SLjy7Cy49lFAOnbLcJ5BEnQCHC cjPL0=)Commando大兵- BL2(BwAAAAAY+wAADWihQxAyGQXBAUEAwf///////////38DwQkBAME=) Assassin刺客- BL2(B5Uono1fQVbEvnaQmaVfr9968LMl82ZSLIKed8JkETRZ0H ew1ek=)Mechromancer机械术士- BL2(B/YBS0vgn2mDVaCLdv8IOuIOg1sBJb+EkfQf4pPECpQBxf+mBjk=) Legendary传奇等级:Siren魔女- BL2(B2v78Y4Y2slMRbsd/wiYnY7XhLSX66hldXIz2KWcLalO7ZPqB4w=) Gunzerker狂枪- BL2(B3oPyLUyOGB4Sf95U1tUVwyG/agB9jcpoOTaVp7w3gfOilYIqd8=)Commando大兵- BL2(B8u36hWenluPIJ94/8/Y29GdJeKmyrwfeIuADLrPwKfb24QdzRA=) Assassin刺客- BL2(B3d8ZAHCv2OJfQ/thfKmFgvAcWkyerM/4dQFWSfb83qwC4sV1HY=)Mechromancer机械术士- BL2(B0Gc1zI5ebSRAc2ikDvzhrkgDPfO1YHvAZgO2l07QdWE4g +HN+Q=).圣物(Relic)步枪伤害+ 30.0% - BL2(B6BjTREH1JMZIFqmY/Wqp9PP1XxwtdIWrsdDz11Zbus=)火箭筒伤害+30% - BL2(B0fyJ5OPAFcdIWjYBrN80plSPjifHyPzuw7c1jfJrSA=)手枪伤害+30% - BL2(B5VpQsNIALELyvb72kfu6adq7q3phM3rdUMJEl+CGvk=)霰弹枪伤害+30% - BL2(B76PERK4JO8J+b8PXfdByb8JFTQtdKXQOSzoqqo7mk8=)SMG伤害+30% - BL2(Bx12+PplgSlwdYw6U8tc4zN0TiB6C0pjE1tZfuN1Rmg=)狙击枪伤害+30% - BL2(B/+m5j7CUTa8uxjo8IzNKoYV0eopN2IbRdhlCIgqY1Q=)腐蚀伤害+30% - BL2(B3lEXxgRhJ3UIxnQFnbjrKJnhuYjywaBnTS6sHmTgEE=)爆炸伤害+30% - BL2(B/DHLPEd6QPr+bji1PR6fG1R/2To17QV0vc7X7cUcPo=)火焰伤害+30% - BL2(Bzj92DpCvE5QSW6PfUVoQT7zd1SdCb/GQTQ9bo4kWOU=)电击伤害+30% - BL2(B6JSwh4r/VZQXaBJRJil3VFzwnUKSQK8Q3wASD+Cd1Q=)紫渣覆盖+30% - BL2(B8ATVlV9kFt7Ub6ey6nMJQ0pt5ZLdqddjberICje96I=)冷却速度+35% - BL2(B+Lq6TaLTx0hFzXQ9QNdPDl7+Kuwr/gwuZPsrhsTIuY=)护甲+30% / 护甲回复+30% - BL2(B9VwTYghEVkhnIvcwHQPMhPo/frDh21ac0Mjv14y3XE=)肉搏伤害+30% / 主技能冷却速度+30% - BL2(B60OdnBLaY37U3ZA2bZdQu+cEg/rlehGhlXNP5BWAtk=)争取活命时间+30% / 第二次生命值+151% - BL2(B2isf7Mpuis+NBJr6Y0wzkJChCKxuJF5LSDkk7KEdLE=)最大生命值+50% - BL2(BxxbUfsoQnPX7lUv1lkosgyoeVGmb8m6BkyOHH4qYls=)(@@@@@@@)比较混乱的项:助推器- 车辆护甲+76% / 升压速率+109% / 升压延迟+52.2%? ?- BL2(B2V7zhfU8R7/+sZ9pMB5WN8UAFlwZyWlyhhlloIQEM4=)警官徽章- 霰弹枪伤害+11.3% / 霰弹枪换弹速度+48% - BL2(B0QD6JbyeyaxvV1AtJ05M3duJxCw9RNLV3fDnS8pWcE=)莫西的馈赠- 战斗经验获得+8.4% -BL2(B4mu7NxVimm1PNAxqe2QlfqsizKx1f7xPEn5a0MqbRk=)大好商机- 商店刷新速率+32.5% - BL2(B1cjgcvYiOgIhF2AwHhXNDosL59kijWNIHQ3ZwJmSOU=)警徽- 手枪伤害+22% / 手枪开火速度+56% / 争取活命时间+15% - BL2(B3HUr/uT9K3iwYR9luB3I5XsZeguue9VosXk4nNgYF4=)魔虫之血- 每秒生命回复+0.5% - BL2(B1I5GOPu+Zw1KFhO9Yt31DvCAZlTOTc94OCPCBnKvrc=)寻宝猎人圣物- 稀有物品掉落率+5% - BL2(Bxmpm5T6HMCZ7gMLEsnUMzzoJTpxYgPlNG12/FeLQy8=)BL2(B8YuJ5zIpkvZTH2sSv938Gppci8ZXRbbIxmT6KtI+5s=)加成弹药。
QBL4208-x-1k NEMA17(42mm)3相BLDC电机加小型光增量编码器套件说明书

QBL4208-100-04-025-1K QBL4208-61-04-013-1KEncoder +Motor Kits for BLDCQBL4208-x-1k Hardware ManualHardware Version V1.00|Document Revision V1.40•16.04.2021QBL4208-x-1k is a NEMA17(42mm)3-phase BLDC motor including a small size optical incremental encoder kit.Besides the standard HALL sensor signals,it comes with an encoder resolution of 64lines (4096counts).Trinamic’s BLDC motors are quality motors for universal use.They feature a long life due to ball bearings and no wearing out parts.Features •Low Cost•High Resolution •Small Dimension•Standard Incremental Encoder Inter-face•Including optional HALL SensorsApplications•Closed Loop Servo Motors •Industrial Automation•Automated Equipment •RoboticsSimplified Block Diagram©2021TRINAMIC Motion Control GmbH &Co.KG,Hamburg,Germany Terms of delivery and rights to technical change reserved.QBL4208-x-1k Hardware Manual•Hardware Version V1.00|Document Revision V1.40•16.04.20212/17 Contents1Order Codes3 2Motor Specifications and Characteristics42.1Technical and Mechanical Parameters (4)2.2Torque-Speed Diagrams (5)2.2.1QBL4208-61-04-013-1k (5)2.2.2QBL4208-100-04-025-1k (6)3Technical Specifications of the Encoders63.1Electrical Encoder Parameters (6)3.2Mechanical Encoder Parameters (7)3.3Environmental Encoder Parameters (7)4Connectors and Signals74.1Motor Connector (7)4.2Hall Signal Connector (8)4.3Encoder Connector (8)4.4Encoder Wave Form (9)5Mechanical Drawings9 6Motor Sizing116.1Peak Torque Requirement (11)6.2RMS Torque Requirement (11)6.3Motor Velocity (11)7Figures Index13 8Tables Index14 9Supplemental Directives159.1Producer Information (15)9.2Copyright (15)9.3Trademark Designations and Symbols (15)9.4Target User (15)9.5Disclaimer:Life Support Systems (15)9.6Disclaimer:Intended Use (15)9.7Collateral Documents&Tools (16)10Revision History1710.1Hardware Revision (17)10.2Document Revision (17)QBL4208-x-1k Hardware Manual•Hardware Version V1.00|Document Revision V1.40•16.04.20213/17 1Order CodesOrder Code Old Order Code Description Size mm(LxWxH)42x42x79QBL4208-61-04-013-1k QBL4208-61-04-013-1024-AT Motor+Encoder Mod-ule,NEMA173-phaseBLDC motor(3.5A/0.13Nm,4000rpm,round shaft)with inte-grated HALL sensorsand incremental en-coder kit,resolutionof64lpr(4.096cpr),ABN,TTL42x42x118 QBL4208-100-04-025-1k QBL4208-100-04-025-1024-AT Motor+Encoder Mod-ule,NEMA173-phaseBLDC motor(7.0A/0.25Nm,4000rpm,round shaft)with inte-grated HALL sensorsand incremental en-coder kit,resolutionof64lpr(4.096cpr),ABN,TTLTable1:Order codesOther encoder resolutions,signal output types,and customized motor options(without HALL signals for example)on request.QBL4208-x-1k Hardware Manual•Hardware Version V1.00|Document Revision V1.40•16.04.20214/172Motor Specifications and CharacteristicsTRINAMIC’s BLDC motors are quality motors for universal use.They feature a long life due to ball bearings and no wearing out parts.These BLDC motors give a goodfit to the TRINAMIC family of medium and high current BLDC motor modules and custom/customized solutions.2.1Technical and Mechanical ParametersThe main characteristics are:•Hall Effect Angle:120°electric angle•Shaft run out:0.025mm•Insulation Class:B•Radial Play:0.02mm450G load•Max Radial Force:28N(10mm fromflange)•Max Axial Force:10N•Dielectric Strength:500VDC For One Minute•Insulation Resistance:100M Ohm min.500VDC•Recommended Ambient Temp.:-20to+40°C•Bearing:Brushless motorsfitted with ball bearings•Coil windings in delta topologySpecifications Unit QBL4208-61-04-013-1k QBL4208-100-04-025-1k No.of Poles88No.of Phases33Rated Voltage V2424Rated Phase Current A 3.47 6.95Rated Speed RPM40004000Rated Torque Nm0.1250.25Max Peak Torque Nm0.380.75Torque Constant Nm/A0.0360.036Line to Line ResistanceΩ0.720.28Line to Line Inductance mH 1.20.54Max Peak Current A10.620Length(LMAX)mm61100Rotor Inertia kgm2x10−64896Mass kg0.450.8Table2:Electrical and Mechanical Characteristics MotorQBL4208-x-1k Hardware Manual•Hardware Version V1.00|Document Revision V1.40•16.04.20215/172.2Torque-Speed DiagramsThe torque-speedfigures detail motor torque characteristics measured in block commutation.Please be careful not to operate the motors outside the bluefield.This is possible for short times only because of a resulting high coil temperature.The motors have insulation class B.The bluefield is described by rated speed and rated torque.2.2.1QBL4208-61-04-013-1kVelocity vs.torque measured with24V supply voltage.Figure1:QBL4208-61-04-013-1k velocity vs.torque characteristicQBL4208-x-1k Hardware Manual•Hardware Version V1.00|Document Revision V1.40•16.04.20216/172.2.2QBL4208-100-04-025-1kVelocity vs.torque measured with24V supply voltage.Figure2:QBL4208-100-04-025-1k velocity vs.torque characteristics3Technical Specifications of the Encoders3.1Electrical Encoder ParametersParameter Min Typ Max Unit Supply voltage 4.55 5.5VSupply current110mARise/fall time10ns Frequency1500kHz Output Voltage"‘H"’ 2.4VInput Voltage"‘L"’0.4VMax.output current20mADisc lines64lines Resolution4096incrementsTable3:Electrical Characteristics EncoderQBL4208-x-1k Hardware Manual•Hardware Version V1.00|Document Revision V1.40•16.04.20217/17 3.2Mechanical Encoder ParametersParameter Min Typ Max Unit Hollow Diameter(symbol D in drawings)5/6.35mm Starting Torque0.8Ncm Shaft Loading Axial50N Shaft Loading Radial80N Max.RPM6000rpm Net weight30gTable4:Mechanical Specifications3.3Environmental Encoder ParametersParameter DescriptionOperating Temperature-20–+85°CStorage Temperature-20–+85°COperating Humidity RH85%max,non collecting Shock490m/s2,3Dx2times Vibration 1.2mm,10-55kHz,3Dx30min Protection IP40Table5:Environmental Specifications4Connectors and Signals4.1Motor Connector#Color Wire Type Signal Name1Yellow UL1430AWG20Phase U2Red UL1430AWG20Phase V3Black UL1430AWG20Phase WTable7:Connector and signals of motorQBL4208-x-1k Hardware Manual•Hardware Version V1.00|Document Revision V1.40•16.04.20218/17 4.2Hall Signal Connector#Color Wire Type Signal Name1Red UL1430AWG26VCC Hall Sensor+5VDC to+24VDC2Blue UL1430AWG26HALL A3Green UL1430AWG26HALL B4White UL1430AWG26HALL C5Black UL1430AWG26GND,Sensor GroundTable9:HALL sensor connector and signals4.3Encoder Connector#Color Wire Type Signal Name1Red UL2517AWG28VCC2Black UL2517AWG28GND3White UL2517AWG28A+4White/Black UL2517AWG28Black A-5Green UL2517AWG28B+6Green/Black UL2517AWG28B-7Yellow UL2517AWG28Z+8Yellow/Black UL2517AWG28Z-9Blue UL2517AWG28ShieldTable11:Connector and signals of the encoderThe required encoder cable connector is a Molex type5023800900CLIK-MATE™crimp housing using Molex type5023810000CLIK-MATE™crimp terminals.Figure3:Connection and circuit diagram for the line driver outputsQBL4208-x-1k Hardware Manual•Hardware Version V1.00|Document Revision V1.40•16.04.20219/17 4.4Encoder Wave FormFigure4:Example wave form for CCW rotation5Mechanical DrawingsFigure5:Dimensions of motor&encoder kit(all units=mm)Motor Type Body LengthQBL4208-61-04-013-1k61mmQBL4208-100-04-013-1k100mmTable13:Motor lengthFigure6:Length of motor wires/cables(all units=mm)6Motor SizingFor the optimum solution it is important tofit the motor to the application.The three key parameters are peak torque requirement,RMS torque requirement and motor velocity.6.1Peak Torque RequirementPeak torque TP is the sum of the torque due to acceleration of inertia(T I),load(T L)and friction(T F):T P=T J+T L+T FThe torque due to inertia is the product of the load(including motor rotor)inertia and the load accelera-tion:T J=T+aThe torque due to the load is defined by the configuration of the mechanical system coupled to the motor. The system also determines the amount of torque required to overcome the friction.6.2RMS Torque RequirementRoot-Mean-Square or RMS torque is a value used to approximate the average continuous torque require-ment.Its statistical approximation is with•t1:acceleration time•t2:run time•t3:deceleration time•t4:time in a moveT RMS=T2P+(T L+T F)2∗t2+(T J−T L−T F)2∗t3t1+t2+t3+t46.3Motor VelocityThe motor velocity is also dictated by the configuration of the mechanical system that is coupled to the motor shaft,and by the type of move that is to be affected.For example,a single velocity application would require a motor with rated velocity equal to the average move velocity.A point to point positioning would require a motor with a rated velocity higher than the average move velocity.(The higher velocity would account for acceleration,deceleration and run times of the motion profile).Figure6.1:Trapezoidal move and triangular move relates rated motor velocity to average move velocity for two point to point positioning move profiles.Table14:Trapezoidal and triangular move symbols7Figures Index1QBL4208-61-04-013-1k velocity vs.torque characteristic (5)2QBL4208-100-04-025-1k velocity vs.torque characteristics (6)3Connection and circuit diagram for the line driver outputs.........84Example wave form for CCW rotation9 5Dimensions of motor&encoder kit (all units=mm). (9)6Length of motor wires/cables(all units=mm) (10)8Tables Index1Order codes (3)2Electrical and Mechanical Characteris-tics Motor (4)3Electrical Characteristics Encoder (6)4Mechanical Specifications (7)5Environmental Specifications (7)7Connector and signals of motor...79HALL sensor connector and signals.8 11Connector and signals of the encoder8 13Motor length (9)14Trapezoidal and triangular move sym-bols (12)15Hardware Revision (17)16Document Revision (17)9Supplemental Directives9.1Producer Information9.2CopyrightTRINAMIC owns the content of this user manual in its entirety,including but not limited to pictures,logos, trademarks,and resources.©Copyright2021TRINAMIC.All rights reserved.Electronically published by TRINAMIC,Germany.Redistribution of sources or derived formats(for example,Portable Document Format or Hypertext Markup Language)must retain the above copyright notice,and the complete data sheet,user manual,and doc-umentation of this product including associated application notes;and a reference to other available product-related documentation.9.3Trademark Designations and SymbolsTrademark designations and symbols used in this documentation indicate that a product or feature is owned and registered as trademark and/or patent either by TRINAMIC or by other manufacturers,whose products are used or referred to in combination with TRINAMIC’s products and TRINAMIC’s product doc-umentation.This Hardware Manual is a non-commercial publication that seeks to provide concise scientific and tech-nical user information to the target user.Thus,trademark designations and symbols are only entered in the Short Spec of this document that introduces the product at a quick glance.The trademark designation /symbol is also entered when the product or feature name occurs for thefirst time in the document.All trademarks and brand names used are property of their respective owners.9.4Target UserThe documentation provided here,is for programmers and engineers only,who are equipped with the necessary skills and have been trained to work with this type of product.The Target User knows how to responsibly make use of this product without causing harm to himself or others,and without causing damage to systems or devices,in which the user incorporates the product.9.5Disclaimer:Life Support SystemsTRINAMIC Motion Control GmbH&Co.KG does not authorize or warrant any of its products for use in life support systems,without the specific written consent of TRINAMIC Motion Control GmbH&Co.KG. Life support systems are equipment intended to support or sustain life,and whose failure to perform, when properly used in accordance with instructions provided,can be reasonably expected to result in personal injury or death.Information given in this document is believed to be accurate and reliable.However,no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use.Specifications are subject to change without notice.9.6Disclaimer:Intended UseThe data specified in this user manual is intended solely for the purpose of product description.No rep-resentations or warranties,either express or implied,of merchantability,fitness for a particular purposeor of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given.In particular,this also applies to the stated possible applications or areas of applications of the product. TRINAMIC products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (safety-Critical Applications)without TRINAMIC’s specific written consent.TRINAMIC products are not designed nor intended for use in military or aerospace applications or environ-ments or in automotive applications unless specifically designated for such use by TRINAMIC.TRINAMIC conveys no patent,copyright,mask work right or other trade mark right to this product.TRINAMIC as-sumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.9.7Collateral Documents&ToolsThis product documentation is related and/or associated with additional tool kits,firmware and other items,as provided on the product page at:.10Revision History10.1Hardware RevisionTable15:Hardware Revision 10.2Document RevisionTable16:Document RevisionQBL4208-100-04-025-1K QBL4208-61-04-013-1K。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M48Z02是16K 位零功耗非易失性SRAM ,与DS1220管脚、功能兼容,采用特殊的24
管脚、600mil DIP CAPHAT 封装、内置一颗长寿命锂电池,从而构成了一个高集成度的存储器电池备份方案,数据保存时间达10年以上。
M48Z02是一种
非易失性,管脚、功能兼容标准2Kx8 SRAM,它也可以代替许多ROM 、EPROM 和EEPROM ,而没有特殊的写时序或写次数限制。
◇ 产品特性 ◇ ◇ 应用领域 ◇
内部集成超低功耗SRAM ,电源失效控制电路以及电池 无限次写周期 读、写周期时间相等
自动电源失效检测和写保护
写保护电压:4.50V ≤VPFD≤ 4.75V
CaphatTMDIP 封装,内置电池
管脚和功能兼容标准的2K x 8bit SRAM
器件
温度范围:工业级,-40℃~ 85℃
POS
仪器仪表
工业控制等
◇ 引脚图 ◇
◇ 功能框图 ◇。