第三章机器人运动学PPT课件
合集下载
第3章 机器人运动

3 齐次坐标变换 3.1齐次坐标变换 3.1齐次坐标变换 假设机器人手部拿一个钻头在 工件上实施钻孔作业,已知钻 头中心P点相对于手腕中心的 位置,求P点相对于基座的位 置。
x i o
zb kb yb jb o, ib xb P
z
k
j
y
分别在基座和手部设置为固定坐标系和动坐标系, 如图所示。
P点 相对于固定坐标系
1 4 0 −3 0 7 0 1
T中第一列的三个元素(0,1,0)T表示活动坐标系的u轴与 固定坐标系三个坐标轴之间的投影,故u轴平行于y轴;T中第 二列的三个元素(0,0,1)T表示活动坐标系的v轴与固定坐 标系三个坐标轴之间的投影,故v轴平行于z轴;T中第三列的 三个元素(1,0,0)T表示活动坐标系的w轴与固定坐标系三 个坐标轴之间的投影,故轴w平行于x轴;T中第四列的三个元 素(4,-3,7)T表示活动坐标系的原点与固定坐标系原点之 间的距离。
b
3.3.2 举例 ⋅ i i
z kb k o, xb i o xi y j y j
1 0 0 R = 0 1 0 0 0 1
所以
x0 X 0 = y0 z0
0 0 1 0 0 1 0 0
1 0 A = Trans( x0 , y0 , z0 ) = 0 0
上面所述的坐标变换每步都是相对于固定坐标系进行的,也可以 相对于动坐标系进行变换: 坐标系 {o , : u , v, w} 初始与固定坐标系 {o:x, y, z} 相重合,首先相对于固定坐标系平移
4i − 3 j + 7 k ;然后绕活动系的v轴旋转900;最后绕w轴旋转900。
变换的几何表示如图所示。这是合成变换矩阵为
电机拖动技术基础第三章机器人的运动学PPT课件

第三章 机器人的运动学
►3.1 刚体的位姿描述 ►3.2 坐标变换 ►3.3 齐次坐标和齐次变换 ►3.4 变换方程和欧拉角 ►3.5 机器人运动学的正问题和逆问题
3.1 刚体的位姿描述
一、位姿的定义
刚体参考点的位置(坐标系的位置)和刚体的姿态统称为刚体的位姿。
(为描述机器人本身的各个连杆之间.机器人和环境之间的运动关系,将
n
n o a
手爪的方位由旋转矩阵R规定。
R n
o
a
手爪的位置由位置矢量 p
规定。
代表手p 爪坐标系的原点。
则手爪的位姿可由四个矢量
来 来描述。
noa p
记为:
T n o a p
3.2 坐标变换
定义:由于空间中任意点P在不同坐标系中的描述不同,所以需要 研究从一个坐标系的描述到另一个坐标系的描述之间的变换关,通 常称为坐标变换。
{S}代表工作站(操作台)坐标系(工作站框)
{G}代表目标坐标系(目标框) 它们之间的位姿关系用相应的齐次变换来描述。图3-6 机器人与环境坐标系
B S
T描述工作站框{S}相对于基座{B}的位姿,
S G
T描述目标框{G}相对于工作站{S}的位姿。
对物体进行操作时(搬运或装配机器人),工具框{T}相对目标框{G} 的位姿 直接GT T 影响操作效果。 是机GT T器人控制和轨迹规划的对象。
=
相对于固定坐标系运动 相对于活动坐标系运动
2.变换过程的可逆性
齐次坐标变换过程是可逆的. 若有 ,则逆变换
。
所以有 I44BATABT A B0R BP 1AO BA0R AP 1BO
A BR0BAR
A BRAPB1OBPAO
►3.1 刚体的位姿描述 ►3.2 坐标变换 ►3.3 齐次坐标和齐次变换 ►3.4 变换方程和欧拉角 ►3.5 机器人运动学的正问题和逆问题
3.1 刚体的位姿描述
一、位姿的定义
刚体参考点的位置(坐标系的位置)和刚体的姿态统称为刚体的位姿。
(为描述机器人本身的各个连杆之间.机器人和环境之间的运动关系,将
n
n o a
手爪的方位由旋转矩阵R规定。
R n
o
a
手爪的位置由位置矢量 p
规定。
代表手p 爪坐标系的原点。
则手爪的位姿可由四个矢量
来 来描述。
noa p
记为:
T n o a p
3.2 坐标变换
定义:由于空间中任意点P在不同坐标系中的描述不同,所以需要 研究从一个坐标系的描述到另一个坐标系的描述之间的变换关,通 常称为坐标变换。
{S}代表工作站(操作台)坐标系(工作站框)
{G}代表目标坐标系(目标框) 它们之间的位姿关系用相应的齐次变换来描述。图3-6 机器人与环境坐标系
B S
T描述工作站框{S}相对于基座{B}的位姿,
S G
T描述目标框{G}相对于工作站{S}的位姿。
对物体进行操作时(搬运或装配机器人),工具框{T}相对目标框{G} 的位姿 直接GT T 影响操作效果。 是机GT T器人控制和轨迹规划的对象。
=
相对于固定坐标系运动 相对于活动坐标系运动
2.变换过程的可逆性
齐次坐标变换过程是可逆的. 若有 ,则逆变换
。
所以有 I44BATABT A B0R BP 1AO BA0R AP 1BO
A BR0BAR
A BRAPB1OBPAO
机器人技术基础课件第三章 机器人运动学

T = f(qi) 其中,T为机器人末端执行器的位姿,qi为机器人各个关 节变量。若给定qi,要求确定相应的T,称为正运动学问题 。
30
3.2.1 机器人正运动学方程
如图所示是个三自由度的机器人, 三个关节皆为旋 转关节,第3关节轴线垂直于1、2关节轴线所在的平 面,各个关节的旋转方向如图所示,用D-H方法建立 各连杆坐标系,求出该机器人的运动学方程。
刚体的姿态可由动坐标系的坐
标的轴刚 位方置体向可Q在来用固表齐定示次坐。坐标令标系n形、O式oX、的YZa一中分
别为X′、y ′、z ′坐标轴的 个(4×1)列阵表示为: 单位方向矢量,每个单位方向 矢量在固定坐标系上的分量为 动坐标系各坐标轴的方向余弦, 用齐次坐标形式的(4×1)列阵 分别表示为:
y L1 sin1 L2 sin(1 2 )
通常的矢量形式:
r f ( )
29
3.2.1 机器人正运动学方程
机器人正运动学将关节变量作为自变量,研究机器人末 端执行器位姿与基座之间的函数关系。总体思想是:
(1)给每个连杆指定坐标系; (2)确定从一个连杆到下一连杆变换(即相邻参考系 之间的变化); (3)结合所有变换,确定末端连杆与基座间的总变换 ; (4)建立运动学方程求解。 机器人运动学的一般模型为:
03T 01T12T 23T
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T23T34T 45T56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
30
3.2.1 机器人正运动学方程
如图所示是个三自由度的机器人, 三个关节皆为旋 转关节,第3关节轴线垂直于1、2关节轴线所在的平 面,各个关节的旋转方向如图所示,用D-H方法建立 各连杆坐标系,求出该机器人的运动学方程。
刚体的姿态可由动坐标系的坐
标的轴刚 位方置体向可Q在来用固表齐定示次坐。坐标令标系n形、O式oX、的YZa一中分
别为X′、y ′、z ′坐标轴的 个(4×1)列阵表示为: 单位方向矢量,每个单位方向 矢量在固定坐标系上的分量为 动坐标系各坐标轴的方向余弦, 用齐次坐标形式的(4×1)列阵 分别表示为:
y L1 sin1 L2 sin(1 2 )
通常的矢量形式:
r f ( )
29
3.2.1 机器人正运动学方程
机器人正运动学将关节变量作为自变量,研究机器人末 端执行器位姿与基座之间的函数关系。总体思想是:
(1)给每个连杆指定坐标系; (2)确定从一个连杆到下一连杆变换(即相邻参考系 之间的变化); (3)结合所有变换,确定末端连杆与基座间的总变换 ; (4)建立运动学方程求解。 机器人运动学的一般模型为:
03T 01T12T 23T
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T23T34T 45T56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
机器人学基础_第3章机器人运动学

移动连杆坐标系的建立
移动连杆坐标系的规定:
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿移动关节i轴线与关节i+1轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂线与关节i轴
动到使其原点与连杆i坐标系原点重合的地方。 • (4) 绕Xi旋转αi角,使Zi–1转到与Zi同一直线上。 • 连杆i–1的坐标系经过上述变换与连杆i的坐标系
重合。如果把表示相邻连杆相对空间关系的矩阵 称为A矩阵,那么根据上述变换步骤,从连杆i到 连杆i–1的坐标变换矩阵Ai为
•
(3.13)
• 同理,对联轴器的齐次坐标变换矩阵有 •
• 手部的位置矢量为固定参考系原点指向手 部坐标系{B}原点的矢量P,手部的方向矢 量为n、o、a。于是手部的位姿可用4 4 矩阵表示为
•
•
nX oX a X PX
T
nY
oY
aY
PY
nZ 0
oz 0
aZ 0
PZ 1
• 思考:
• ①说明位姿矩阵的左上角3×3矩阵的几何 意义。
• ②分别说明n, o, a, P的几何意义。
a1 = l 1 =100
a2 = l 2 =100
旧课复习与总结
转动连杆坐标系的建立
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿连杆i两关节轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂
课件:第三章机器人运动学

• 3.1 机器人运动方程的表示
• 3.1.2 运动位置和坐标
• 一旦机械手的运动姿态由某个姿态变换规定之后,它在基坐标系中的 位置就能够由左乘一个对应于矢量p的平移变换来确定。
1 0 0 px
T6
0 0
1 0
0 1
p
y
某姿态变换
pz
0 0
0
1
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 1.广义连杆(D-H坐标)
所有关节全为转动关节时: Zi坐标轴; Xi坐标轴; Yi坐标轴;
连杆长度ai;连杆两端关节公共法线距离 连杆扭角αi;垂直于ai所在平面内两轴的夹角 两连杆距离di;两连杆的相对位置di 两杆夹角θ 两连杆法线的夹角
Robotics运动学
3.1 机器人运动方程的表示
s c 0 0ny
oy
ay
p
y
s
c
0 0
0
0
0 0
1 0
0 1
nz 1
oz 1
az 1
pz 1
sc
0
ss
0
c 0
0 1
(3-39)
Robotics运动学
3.2 机械手运动方程的求解
3.2.1欧拉变换解
重写为
f11(n) f11(o) f11(a) f11( p) cc cs s 0
保持姿态,执行器要绕其自身Y和Z轴反向旋转.
Sph( , , r) Rot(z, )Rot( y, )Trans(0,0, r)Rot( yA, )Rot(zA, )
1 0 0 rcs
0
1
0
rss
第三章机器人的运动学

B R 表示坐标系{B}相对于{A}的方位, R 描述坐标系{A}相对于{B}的方 A B A 1 A T A B 位,且 B R 和 A R 都是正交矩阵,两者互逆。即 A R B R B R
例3.1 若从基坐标系
矩阵为
({B})到手爪坐标系
({E})的旋转变换
。(1)画出两坐标系的相互方位关系(不考虑{E}的
分别代表了ox,oy和oz轴的无穷远
点,用它们分别表示这三个坐标轴的方向。另外,
坐标原点, 没有意义。
代表
注意:位置矢量 究竟是3×1的直角坐标还是4×1的齐次坐标,应 根据上下文而定。
二、齐次变换
齐次变换矩阵是4×4的矩阵,它的完整形式可以看成是由 四个子矩阵组成:
R33 P31 旋转变换 位置矢量 T f13 11 透视变换 比例变换
pBO 1
综合地表示了平移和旋转变换。 对平移变换
A B
A
R I 33 (3阶单位矩阵)
对旋转变换
pBO =0 3(3行1列零向量) 1
一、齐次坐标
一般来说,以N+1维矢量表达N维位置矢量的方法称为齐次 坐标表示法。 在三维直角坐标系中,一个点可以表示 为 次坐标就是 ,它的齐
p p
A B
A p B R p A pBO —坐标旋转和坐标平移的复合变换 可规定一个过渡坐标系{C},{C}的坐标原点与{B}的方位重合,而{C} 的方位与{A}的相同,则
C A B B
C A p BR p BR p C A A B B
原点位置);(2)如果给出OE({E}系的原点)在{B}中的位置矢
机器人学-第3章_机器人运动学

1 0
0 0
Rot(
x, i 1 )
0 0
0
ci1 si1
0
si1 ci1
0
0 0 1
1 0 0 ai1
Trans(ai 1 ,
0,
0)
0 0
1 0
0 1
0 0
0 0 0 1
1 0 0 0
Trans(0,
0,
di
)
0 0
0
1 0 0
0 1 0
0
di 1
cqi sqi 0 0
Rot(z,qi
)
参数如表3-1所示。
表3-1 3R机械臂DH参数
Y3
Y2
X2
Y0
i
i-1
ai-1
di
qi
Y1
X1
1
0
0
0
q1
X0
2
0
L1
0
q2
连杆坐标系布局
30Biblioteka L20q3
12
轴i θi
空间机械臂运动学
轴 i-1
θi-1
本节将导出相邻连杆间坐标系变换的一 般形式,然后将这些独立的变换联系起来 求出连杆n相对连杆0的位置和姿态。
逆运动学的解一般不唯一,显然图中机械臂关于OB轴对称的位置也 是逆运动学问题的一个解。
空间机械臂连杆描述
机械臂可以看成一系列刚体通过关节连接而成的链式运动机构。 一般把这些刚体称为连杆,通过关节将相邻的连杆连接起来。旋转关 节和移动关节是机械臂设计中经常采用的单自由度关节。
称基座为连杆0。第一个可移动连杆为连杆1,机械臂的最末端连
第3章 机器人运动学
运动学研究物体的位姿、速度和加速度之间的关系。
工业机器人课件第三章 机器人运动学

T3= A1 A2 A3
称这些A矩阵的乘积为T矩阵,其前置上标若为0,则可省略。对于六 连杆机械手,有下列T矩阵
T6= A1 A2 A3 A4 A5 A6
手爪坐标系
机械手的运动方向 原点由矢量p表示。 接近矢量a:z轴设在手指接近物体的方向,称为接近矢量 方向矢量o:y轴设在两手指的连线方向,称为方位矢量 法线矢量n:x轴由右手系确定, 即 n = o a ,称为法向矢量。
0 sin i cos i 0
0 0 0 1
对于在第i坐标系中的点ri在第i—1坐标系中表示为:
ri 1 i 1Ai ri
确定第i坐标系相对于机座坐标系的位置的齐次变换矩阵i-1Ti是 各齐次变换矩阵Ai的连乘积,可表示成
0
Ti A1 A2 A3 A4 A5 A6 A j
பைடு நூலகம்
cos i sin cos i i 1 sin i sin i 1 0
例 建立右图所示机器人相邻坐标 系间的转换矩阵 解:建立的坐标系如右图,这是二维坐 标系(在三维空间中,各坐标系的z轴垂 直于纸面),其相邻坐标系的变换矩阵 为
A1 Rz ,Tx ,l1
第三章 机器人运动学
§ 3.1 机器人运动方程的表示
机器人的机械手看作是一系列由关节连接起来的连杆构成的。为机 械手的每一连杆建立一个坐标系,并用齐次变换来描述这些坐标系间 的相对位置和姿态。通常把描述一个连杆与下一个连杆间相对关系的 齐次变换叫做A矩阵。一个A矩阵就是一个描述连杆坐标系间相对平移 和旋转的齐次变换。如果A1表示第一个连杆对于基系的位置和姿态, A2表示第二个连杆相对于第一个连杆的位置和姿态,则第二个连杆在 基系中的位置和姿态可由下列矩阵的乘积给出 T2= A1 A2 同理,若A3表示第三个连杆相对于第二个连杆的位置和姿态,则有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)矩阵与数相乘:该数与矩阵各元素相乘。
(3)矩阵与矩阵相乘: (4) 矩阵的转置:把矩阵的行换成同序数的列,记为
7. 矩阵的逆(逆矩阵) 8. 分块矩阵:分块后的矩阵与普通矩阵的运算相同。
9. 正交矩阵:如果
,则A为正交矩阵。它满足:
如果
是正交矩阵,则
行列式和矩阵的区别:矩阵是按一定方式排成的数表;行列式是 一个数。
三、矢量的点积(内乘积或标量积)
其中θ是a和b两矢量间的夹角,如图3-2所示。 令b=i (i为b方向上的单位矢量),则
图3-2标量积
换句话说:一个矢量在另一个矢量上的投影等于该矢量与另一矢量 方向上单位矢量的点积。
再令a=j (j 为a方向上的单位矢量),则
即两矢量方向上单位矢量的点乘等于两矢量夹角的余弦。
二、坐标旋转
图3-6 坐标旋转
如图3-6,{B}与{A}有共同的坐标原点,但方位不同。令
和
分别是{A}和{B}中的单位主矢量,点P 在两
坐标系中各坐标轴上的坐标分量分别为:
和
所以有 利用点乘的性质和上式共同求解得
将
代入上面三式中并写成矩阵形式得
上式简写为: 此式称为坐标旋转方程。其中旋转矩阵 表示了坐标系{B}相 对于{A}的方位,正好与刚体姿态的描述相同。同理也可得
和 APCO APBO
进而有
例3.2 已知坐标系{B}初始位姿与{A}重合,首先{B}相对{A}的zA轴
转30°,再沿{A}的xA轴移动10个单位,并沿{A}的
,求 。
解:
zB zA
OB OA
xA30oxB
yB 30o
yA
zA zB
OA
(10,5,0)
xA
OB
30o xB
yA yB 30o
所以有:
co 30 s0si3n000 0.86 60.5 0
B ARR (z,300 ) si3n00co 30 s00 0.5 0.860 6
0
0 1 0 0 1
10
A P BO
5
0
最后得:
APBARBPAPBO
四、矢量的叉积(矢量积或叉乘积)
其中矢量c的模为:
图3-3叉乘积
其中θ是a和b间小于等于1800的夹角,若将a按右手法则绕c转 θ角至b,右手拇指指向为c的正方向(如图3-3),c与a、b两者垂 直。
若a和b用分量的形式表示为: 则
a和b的点乘为: 将点乘和叉乘应用于右手笛卡尔坐标系的单位矢量i,j,k,有:
z'θ z
z' θ z
z z'
y' θy
y' y
y' θy
x x’
x θ x’
x θ x’
x’ y’ z’ x
y
z
x’ y’ z’ x y z
x’ y’ z’ x y z
例3.1 若从基坐标系 ({B})到手爪坐标系 ({E})的旋转变换 矩阵为 。(1)画出两坐标系的相互方位关系(不考虑{E}的 原点位置);(2)如果给出OE({E}系的原点)在{B}中的位置矢 量为(1,2,2),画出两坐标系的相对位姿关系;(3)求a,b, c的值。
解:
(1)
xE yE zE xB
yB
zB
(3) a=0,b=1,c=0
zB
xB
yE
zE xE yB
(2)
zB
(1,2,2)
zE xE
yB
xB
yE
三、一般变换
最一般的情况:坐标系{B}的原点既不与{A}重合,方位也不相同。 {C}系与{B}系原点重合,但 方位不同,所以得
{C}系与{A}系原点不重合, 但方位相同,所以得
3.1.2 位姿描述与齐次变换
3.1.2.1 刚体位置姿态(位姿)描述
a) 位置的描述
采用直角坐标描述点的位置,因此,刚体F的位置描述,即OB 点在{A}中描述可用一个3×1的列矢量 (位置矢量)表示,即
其中Px、Py和Pz是点OB在{A}系中的三个坐标分量。
b) 姿态(方位)的描述
采用旋转矩阵来表示刚体姿态(方位) ,即由{B}系的三个
用一组关节变量(di或i)来描述。这组变量通常称为关节矢量或关节坐标,
由这些矢量描述的空间称为关节空间。
• 正向运动学:关节空间末端笛卡儿空间,单射 • 逆向运动学:末端笛卡儿空间关节空间,复射
不同的关节空间,相同的 末端笛卡儿空间
关节空间与末端笛卡儿空 间映射关系
第三章 机器人的运动学
3.1 工业机器人运动学
二、直角坐标系
若基矢量相互正交,即它们在原点o处两 两相交成直角,则它们构成直角坐标系或笛卡 儿坐标系。
若按右手法则绕oz轴转900可以使ox轴转向 oy轴,则称为右手坐标系;按左手法则形成的 坐标系称左手坐标系。
斜角坐标系
图3-1 (a)右手坐标系
本课程使用右手坐标系。
图3-1 (b)左手坐标系
3.1.1 相关知识回顾
一、行列式和矩阵 1. 行列式按照行(或列)展开法则:行列式等于它的任意一行 (或列)各元素与其对应的代数余子式乘积之和。
2.行矩阵 3.列矩阵 4.矩阵相等:两同型矩阵(行数和列数都相等)对应元素相等。
5.单位矩阵:主对角线元素为1,其它所 有的元素都为0的方阵。 6.矩阵的运算 (1)矩阵的加法:两同型矩阵的对应元素相加。
运动学研究的问题
Where is my hand?
Direct Kinematics HERE!
运动学正问题
运动学逆问题
How do I put my hand here?
Inverse Kinematics: Choose these angles!
第三章 机器人运动学 机器人运动学
• 关节空间:有n个自由度的工业机器人所有连杆的位置和姿态,可以
和 都是正交矩阵,因此满足
由 与 互逆,可得
若把 写成行向量的形式 每一个元素都是一个列向量。容易得出 (称正交条件):
,则其中 满足六个约束条件
旋转矩阵的几何意义:旋转矩阵在几何上表示了发生相互旋 转的两坐标系各主轴之间的相互方位关系。
因此写出三个基本的旋转矩阵,即分别绕x、y和z轴转θ角的旋转 矩阵:
单位主矢量相对于坐标系{A}的方向余弦组成:
xB
yB
zB
xA
yA
zA
其中:co scoxB s ,xA ()
既表示了刚体F在{A}系中的方位,也描述了{B}系在{A}系中的 姿态。
3.1.2.2 坐标变换
一、坐标平移
如图3-5,坐标系{B}与{A} 方向相同,但原点不重合。
图3-5 坐标平移
此式称为平移方程。其中 是B系中的原点在A系中的表示。
(3)矩阵与矩阵相乘: (4) 矩阵的转置:把矩阵的行换成同序数的列,记为
7. 矩阵的逆(逆矩阵) 8. 分块矩阵:分块后的矩阵与普通矩阵的运算相同。
9. 正交矩阵:如果
,则A为正交矩阵。它满足:
如果
是正交矩阵,则
行列式和矩阵的区别:矩阵是按一定方式排成的数表;行列式是 一个数。
三、矢量的点积(内乘积或标量积)
其中θ是a和b两矢量间的夹角,如图3-2所示。 令b=i (i为b方向上的单位矢量),则
图3-2标量积
换句话说:一个矢量在另一个矢量上的投影等于该矢量与另一矢量 方向上单位矢量的点积。
再令a=j (j 为a方向上的单位矢量),则
即两矢量方向上单位矢量的点乘等于两矢量夹角的余弦。
二、坐标旋转
图3-6 坐标旋转
如图3-6,{B}与{A}有共同的坐标原点,但方位不同。令
和
分别是{A}和{B}中的单位主矢量,点P 在两
坐标系中各坐标轴上的坐标分量分别为:
和
所以有 利用点乘的性质和上式共同求解得
将
代入上面三式中并写成矩阵形式得
上式简写为: 此式称为坐标旋转方程。其中旋转矩阵 表示了坐标系{B}相 对于{A}的方位,正好与刚体姿态的描述相同。同理也可得
和 APCO APBO
进而有
例3.2 已知坐标系{B}初始位姿与{A}重合,首先{B}相对{A}的zA轴
转30°,再沿{A}的xA轴移动10个单位,并沿{A}的
,求 。
解:
zB zA
OB OA
xA30oxB
yB 30o
yA
zA zB
OA
(10,5,0)
xA
OB
30o xB
yA yB 30o
所以有:
co 30 s0si3n000 0.86 60.5 0
B ARR (z,300 ) si3n00co 30 s00 0.5 0.860 6
0
0 1 0 0 1
10
A P BO
5
0
最后得:
APBARBPAPBO
四、矢量的叉积(矢量积或叉乘积)
其中矢量c的模为:
图3-3叉乘积
其中θ是a和b间小于等于1800的夹角,若将a按右手法则绕c转 θ角至b,右手拇指指向为c的正方向(如图3-3),c与a、b两者垂 直。
若a和b用分量的形式表示为: 则
a和b的点乘为: 将点乘和叉乘应用于右手笛卡尔坐标系的单位矢量i,j,k,有:
z'θ z
z' θ z
z z'
y' θy
y' y
y' θy
x x’
x θ x’
x θ x’
x’ y’ z’ x
y
z
x’ y’ z’ x y z
x’ y’ z’ x y z
例3.1 若从基坐标系 ({B})到手爪坐标系 ({E})的旋转变换 矩阵为 。(1)画出两坐标系的相互方位关系(不考虑{E}的 原点位置);(2)如果给出OE({E}系的原点)在{B}中的位置矢 量为(1,2,2),画出两坐标系的相对位姿关系;(3)求a,b, c的值。
解:
(1)
xE yE zE xB
yB
zB
(3) a=0,b=1,c=0
zB
xB
yE
zE xE yB
(2)
zB
(1,2,2)
zE xE
yB
xB
yE
三、一般变换
最一般的情况:坐标系{B}的原点既不与{A}重合,方位也不相同。 {C}系与{B}系原点重合,但 方位不同,所以得
{C}系与{A}系原点不重合, 但方位相同,所以得
3.1.2 位姿描述与齐次变换
3.1.2.1 刚体位置姿态(位姿)描述
a) 位置的描述
采用直角坐标描述点的位置,因此,刚体F的位置描述,即OB 点在{A}中描述可用一个3×1的列矢量 (位置矢量)表示,即
其中Px、Py和Pz是点OB在{A}系中的三个坐标分量。
b) 姿态(方位)的描述
采用旋转矩阵来表示刚体姿态(方位) ,即由{B}系的三个
用一组关节变量(di或i)来描述。这组变量通常称为关节矢量或关节坐标,
由这些矢量描述的空间称为关节空间。
• 正向运动学:关节空间末端笛卡儿空间,单射 • 逆向运动学:末端笛卡儿空间关节空间,复射
不同的关节空间,相同的 末端笛卡儿空间
关节空间与末端笛卡儿空 间映射关系
第三章 机器人的运动学
3.1 工业机器人运动学
二、直角坐标系
若基矢量相互正交,即它们在原点o处两 两相交成直角,则它们构成直角坐标系或笛卡 儿坐标系。
若按右手法则绕oz轴转900可以使ox轴转向 oy轴,则称为右手坐标系;按左手法则形成的 坐标系称左手坐标系。
斜角坐标系
图3-1 (a)右手坐标系
本课程使用右手坐标系。
图3-1 (b)左手坐标系
3.1.1 相关知识回顾
一、行列式和矩阵 1. 行列式按照行(或列)展开法则:行列式等于它的任意一行 (或列)各元素与其对应的代数余子式乘积之和。
2.行矩阵 3.列矩阵 4.矩阵相等:两同型矩阵(行数和列数都相等)对应元素相等。
5.单位矩阵:主对角线元素为1,其它所 有的元素都为0的方阵。 6.矩阵的运算 (1)矩阵的加法:两同型矩阵的对应元素相加。
运动学研究的问题
Where is my hand?
Direct Kinematics HERE!
运动学正问题
运动学逆问题
How do I put my hand here?
Inverse Kinematics: Choose these angles!
第三章 机器人运动学 机器人运动学
• 关节空间:有n个自由度的工业机器人所有连杆的位置和姿态,可以
和 都是正交矩阵,因此满足
由 与 互逆,可得
若把 写成行向量的形式 每一个元素都是一个列向量。容易得出 (称正交条件):
,则其中 满足六个约束条件
旋转矩阵的几何意义:旋转矩阵在几何上表示了发生相互旋 转的两坐标系各主轴之间的相互方位关系。
因此写出三个基本的旋转矩阵,即分别绕x、y和z轴转θ角的旋转 矩阵:
单位主矢量相对于坐标系{A}的方向余弦组成:
xB
yB
zB
xA
yA
zA
其中:co scoxB s ,xA ()
既表示了刚体F在{A}系中的方位,也描述了{B}系在{A}系中的 姿态。
3.1.2.2 坐标变换
一、坐标平移
如图3-5,坐标系{B}与{A} 方向相同,但原点不重合。
图3-5 坐标平移
此式称为平移方程。其中 是B系中的原点在A系中的表示。