苏科版江苏省无锡市宜兴市2017-2018学年八年级(下)期末数学试卷(含解析)

合集下载

2017-2018学年苏科版八年级下数学期末专题复习试卷(四)有答案

2017-2018学年苏科版八年级下数学期末专题复习试卷(四)有答案

学校班级准考证号姓名----------------------------------------装----------------------------------------------------订 2017~2018学年第二学期期终初二数学中午作业四本次考试范围;苏科版八年级数学下册《中心对称图形—平行四边形》、《分式》、《反比例函数》、《二次根式》加九年级上册《一元二次方程》和下册《相似形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。

1.下列方程中,一元二次方程是()A 、221x x =0 B 、02bx ax C 、1)2)(1(x x D 、052322y xy x 2.若关于的方程032a x x 有一个根为—1,则另一个根为()A .—2 B .2 C .4 D .—3 3.以3,4为两实数根的一元二次方程为() A 、01272x x B 、01272x x C 、01272x x D 、01272x x 4.用配方法解一元二次方程01062x x 时,下列变形正确的为()A 、1)32x ( B 、1)32x (C 、19)32x ( D 、19)32x (5.用换元法解方程62)2(22x x x x 时,设y x x 2,原方程可化为()A 、y 2+y -6=0 B 、y 2+y +6=0 C 、y 2-y -6=0 D 、y 2-y +6=0 6.已知21x x 、是方程2—2—1=0的两个根,则2111x x 的值为()A 、—2 B 、21 C 、21 D 、2 7.关于x 的一元二次方程0122x kx 有两个不相等实数根,则k 的取值范围是() A 、1k B 、1k C 、0k D 、1k 且0k 8.方程组0122mxyy x 有唯一解,则m 的值是()A 、2 B、2 C、2 D 、以上答案都不对9.有两个关于的一元二次方程:M :02c bx axN :02abx cx,其中0ca ,以下列四个结论中,错误的是()A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号异号,那么方程N 的两根符号也异号;[;;;]C 、如果5是方程M 的一个根,那么15是方程N 的一个根;D 、如果方程M 和方程N 有一个相同的根,那么这个根必定是1x 10.方程2+=0的根是________ .11.已知关于的方程(m +2)2+4m +1=0是一元二次方程,则m 的取范围值是.12.若实数a 、b 满足(a +b) (a +b -2)-8=0,则a +b =__________. 13.如果关于的一元二次方程2+4-m =0没有实数根,则m 的取值范围是________.14.已知方程组201242kxyy x y 有两组不相等的实数解,则k 的取值范围.15.如果m ,n 是两个不相等的实数,且满足m 2—m=3,n 2—n =3,则代数式2n 2﹣mn +2m +2015的值等于__________. 16.正数a 是一元二次方程2﹣5+m =0的一个根,—a 是一元二次方程2+5﹣m =0的一个根,则a 的值是.17.用适当的方法解下列方程:(每小题4分)(1)422x(2)22+3—1=0(用配方法解)(3) 2232xx x(4)(+1)(+8)=-2(5)xxx x222322(6)1032y xy x 18.已知:关于的方程01222mmxx.(1)求证:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求m 的值.19.已知关于的一元二次方程2+(m -1)-2m 2+m =0(m 为实常数)有两个实数根1,2.(1)当m 为何值时,方程有两个不相等的实数根;(2)若12+22=2,求m 的值.20.当m 取何值时,方程的解为正数?21.已知:方程组)12(0212x k yyx kx 有两组不同的实数解11y yx x ,22y yx x .(1)求实数的取值范围.(2)是否存在实数,使21121x x ?若存在,请求出所有符合条件的的值;若不存在,请说明理由.42121(1)(21)1xm x x x x x.作业四:题号 1 2 3 4 5 6 7 8 9 答案CABDCADCD10、1=0,2=—1;11、m ≠—2;12、—2或4;13、m <—4;14、1k 且0k;15、2026;16、5。

苏科版2018年第二学期期末八年级数学试题一及答案

苏科版2018年第二学期期末八年级数学试题一及答案

22.( 本题 10 分 ) 已知,关于 x 的方程 x 2 mx 1 m 2 1 0 ,
4 ( 1)不解方程,判断此方程根的情况;
( 2)若 x 2 是该方程的一个根,求 m 的值.
4
苏科版 2018 年第二学期期末八年级数学试题一及答案
23.(本题满分 10 分)如图,已知△ ABC 的三个顶点坐标为 A(﹣ 3,4)、B(﹣ 7,1)、 C(﹣ 2, 1).
23. (本题 10 分)(1)(4 分) 图略 A′(3,-4) (2)(6 分 ) (2,4) (-8, 4) (-6 ,-2) 24. (每题 5 分,共 10 分) (1)45 人 (2)7000 元
25. (每题 4 分,本题 12 分)(1) k
4 (2) a
3 ( 3) AF<BF
2
26. (本题 14 分) (1) ①( 3 分)垂直,证明略 ; ②( 4 分)不可能
苏科版 2018 年第二学期期末八年级数学试题一及答案
2017~ 2018 学年度第二学期期末考试 八年级数学试题
(时间 120 分钟,满分 150 分)
一、选择题( 每小题 3 分,共 18 分)
1.化简 ( 4) 2 的结果是( ▲ )
A. -4
B. 4
C.
4
D. 16
x2
2.如果把分式
y 2 中 x、y 的值都扩大为原来的 2 倍,则分式的值(
图1
图2
图3
6
苏科版 2018 年第二学期期末八年级数学试题一及答案
2017 ~ 2018 学年度第二学期期末考试 八年级数学参考答案
一、选择题:(每题 3 分,共 18 分)
1.B 2.B 3.D 4.C 5.C 6.D

苏科版2017~2018学年初二数学第二学期期末测试卷 有答案

苏科版2017~2018学年初二数学第二学期期末测试卷 有答案

2017-2018学年第二学期初二数学期末试卷一.选择题(共10小题,每小题3分,共30分) 1.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是……………………( ) A .对重庆市中学生每天学习所用时间的调查;B .对全国中学生心理健康现状的调查; C .对某班学生进行6月5日是“世界环境日”知晓情况的调查; D .对重庆市初中学生课外阅读量的调查;2.下列标识中,既是轴对称图形,又是中心对称图形的是…………………………( )A .B .C .D .3.分式的值为0,则…………………………………………………………( )A . x=﹣2B . x=±2C . x=2D . x=0 4.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是………………( ) A .(6,1) B . (3,2) C . (2,3) D . (﹣3,2)5.( )A B ;C ;D6.下列等式一定成立的是……………………………………………………………( )A -=B =; C 3±; D .=9;7.(2015•巴中)下列说法中正确的是………………………………………………( ) A .“打开电视,正在播放新闻节目”是必然事件 B .“抛一枚硬币,正面向上的概率为12”表示每抛两次就有一次正面朝上;C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近;D .为了解某种节能灯的使用寿命,选择全面调查; 8.函数y=kx+1与函数k y x=在同一坐标系中的大致图象是……………………( )A .B .C .D .9.如图,正比例函数1y 与反比例函数2y 相交于点E (﹣1,2),若1y >2y >0,则x 的取值范围是( )A . x <﹣1;B . ﹣1<x <0;C . x >1;D . 0<x <1;10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为………………………………………………( ) A .2B .4C.D.二.填空题(共8小题,每小题3分,共24分) 111= ;12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是 . 13.若双曲线21k y x-=的图象经过第二、四象限,则k 的取值范围是 .14()210n +=,则m n -的值为 . 15.若关于x 的方程2111x m x x ++=--产生增根,则m = .16.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE ∥BD ,DE ∥AC ,若AD=4,则四边形CODE 的周长 .18.如图,已知点A 是双曲线y =3x在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (∠AOB =90°),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图像上运动,则这个函数关系式为 .第10题图第9题图 第17题图第16题图第18题图三.解答题(共10小题,共76分) 19.计算:(1)-; (2)22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭;20.解方程: (1)=(2)= ﹣3.21.先化简,再求值:221ab a b a b ⎛⎫-÷⎪--⎝⎭,其中1a =+,1b =.22.如图,平行四边形ABCD 中,EF 过AC 的中点O ,与边AD 、BC 分别相交于点E 、F . (1)试判断四边形AECF 的形状,并说明理由.(2)若EF ⊥AC ,试判断四边形AECF 的形状,并说明理由.(3)请添加一个EF 与AC 满足的条件,使四边形AECF 是矩形,并说明理由.23. 如图,平行四边形ABCD 放置在平面直角坐标系A (-2,0)、B (6,0),D (0,3),反比例函数的图象经过点C .(1)求点C 的坐标和反比例函数的解析式;(2)将四边形ABCD 向上平移m 个单位后,使点B 恰好落在双曲线上,求m 的值.24.(2015•岳阳)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调(1)频数分布表中的m= ,n= ; (2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为 ;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是 .25.如图,已知反比例函数1k y x=和一次函数2y a x b =+的图象相交于点A 和点D ,且点A的横坐标为1,点D 的纵坐标为-1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1. (1)求反比例函数和一次函数的解析式.(2)若一次函数2y a x b =+的图象与x 轴相交于点C ,求∠ACO 的度数. (3)结合图象直接写出:当12y y >时,x 的取值范围.26.(2015•济南)济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.27.如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线kyx=(x>0)也恰好经过点A.(1)求k的值;(2)如图2,过O点作OD⊥AC于D点,求22C D A D-的值;(3)如图3,点P为x轴上一动点.在(1)中的双曲线上是否存在一点Q,使得△PAQ是以点A为直角顶点的等腰三角形.若存在,求出点P、点Q的坐标,若不存在,请说明理由.28. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.参考答案一、选择题:1.C ;2.A;3.C;4.C;5.D;6.B;7.C;8.A;9.A;10.C;二、填空题:1;12.712;13. 12k<;14.2;15.2;16.3;17.16;18. 3yx=;三、解答题:19.(13;(2)1x -;20.(1)3x =-;(2)2x =;21. ab +=22. 解:(1)四边形AECF 的形状是平行四边形,理由是:∵平行四边形ABCD ,∴AD ∥BC ,∴∠DAO=∠ACF ,∠AEO=∠CFO , ∵EF 过AC 的中点O ,∴OA=OC ,在△AEO 和△CFO 中∠EAO =∠OCF ,∠AEO =∠CFO ,OA =OC ,∴△AEO ≌△CFO , ∴OE=OF ,∵OA=CO ,∴四边形AECF 是平行四边形, (2)四边形AECF 是菱形,理由是:由(1)知四边形AECF 是平行四边形, ∵EF ⊥AC ;∴四边形AECF 是菱形. (3)添加条件:EF=AC ,理由是:由(1)知四边形AECF 是平行四边形, ∵EF=AC ,∴四边形AECF 是矩形. 23.(1)C (8,3),24yx=;(2)4m=;24.(1)24,0.3;(2)108°;(3)110;25.(1)12y x=,21y x =+;(2)45°;(3)2x <- 或01x <<;26.240; 27. 解:(1)过点A 分别作AM ⊥y 轴于M 点,AN ⊥x 轴于N 点,△AOB 是等腰直角三角形,∴AM=AN .∴可设点A 的坐标为(a ,a ),点A 在直线y=3x-4上,∴a=3a-4, 解得a=2,则点A 的坐标为(2,2). 将点A (2,2)代入反比例函数的解析式为k y x=,求得k=4.则反比例函数的解析式为4yx=.(2)点A 的坐标为(2,2),在Rt △AMO 中,222A O A MM O=+=4+4=8.∵直线AC 的解析式为y=3x-4,则点C 的坐标为(0,-4),OC=4. 在Rt △COD 中,222O C O D C D =+(1);在Rt △AOD 中,222A O A DO D=+(2);(1)-(2),得2222C D A DO CO A-=-=16-8=8.(3)双曲线上是存在一点Q (4,1),使得△PAQ 是等腰直角三角形.过B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过A 点作AP ⊥AQ 交x 轴于P 点,则△APQ 为所求作的等腰直角三角形.在△AOP 与△ABQ 中,∠OAB-∠PAB=∠PAQ-∠PAB ,∴∠OAP=∠BAQ ,AO=BA ,∠AOP=∠ABQ=45°,∴△AOP ≌△ABQ (ASA ),∴AP=AQ , ∴△APQ 是所求的等腰直角三角形.∵B (4,0),点Q 在双曲线4yx=上,∴Q (4,1),则OP=BQ=1.则点P 、Q 的坐标分别为(1,0)、(4,1).28. 解:(1)1(2)如图1,当∠EMC=90°时,四边形DCEF 是菱形.∵∠EMC=∠ACD=90°,∴DC ∥EF .∵BC ∥AD ,∴四边形DCEF 是平行四边形,∠BCA=∠DAC .由(1)可知:CD=4,AC=∵点M 为AC 的中点,∴CM= Rt △EMC 中,∠CME=90°,∠BCA=30°.∴CE=2ME ,可得(()2222EM E +=,解得:ME=2.∴CE=2ME=4.∴CE=DC .又∵四边形DCEF 是平行四边形, ∴四边形DCEF 是菱形.(3)点E 在运动过程中能使△BEM 为等腰三角形.理由:如图2,过点B 作BG ⊥AD 与点G ,过点E 作EH ⊥AD 于点H ,连接DM . ∵DC ∥AB ,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°-30°-90°=60°.∴∠ABG=30°.∴AG=12AB=2,BG=∵点E 的运动速度为每秒1个单位,运动时间为t 秒, ∴CE=t ,BE=8-t .在△CEM 和△AFM 中∠BCM =∠MAF,MC =AM,∠CME =∠AMF,∴△CEM ≌△AFM .∴ME=MF ,CE=AF=t .∴HF=HG-AF-AG=BE-AF-AG=8-t-2-t=6-2t .∵EH=BG= Rt △EHF 中,ME=12=.∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM=BM .∵在Rt △DBG 中,DG=AD+AG=10,BG=BM=12⨯=要使△BEM 为等腰三角形,应分以下三种情况: 当EB=EM 时,有()()221812624t t ⎡⎤-=+-⎣⎦,解得:t=5.2.当EB=BM 时,有8-t=t=8-当EM=BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t=5.2或t=8-时,△BEM 为等腰三角形.。

20172018学年宜兴八年级下数学阶段检测试卷含答案苏科版

20172018学年宜兴八年级下数学阶段检测试卷含答案苏科版

2017-2018学年3月份阶段练习八年级数学卷试一、选择题(每题3分,共30分)1. 下列根式中,最简二次根式就是………………………………………… ()A 、9aB 、22a b + C 、3aD 、0.5 2. 下面调查中,适合采用普查的就是……………………………………()A 、调查全国中学生心理健康现状B 、调查您所在的班级同学的身高情况C 、调查我市食品合格情况D 、调查无锡电视台《第一瞧点》收视率3. 如果=2a -1,那么………………………………………… ()A 、aB 、a ≤C 、aD 、a ≥4. 下列事件就是随机事件的就是……………………………………………… ()A 、购买一张福利彩票,中特等奖B 、在一个标准大气压下,纯水加热到100℃,沸腾C 、任意三角形的内角与为180°D 、在一个仅装着白球与黑球的袋中摸出红球5. 下列各式中,与18就是同类二次根式的就是……………………………… ()A 、8B 、 6C 、13D 、276. 在代数式a 4 、、、、1a m+中,分式的个数有…… ()A 、2个B 、3个C 、4个D 、5个7. 下列计算中,正确的就是………………………………………………… ()A 532B 114293= C 2×35 D ()22552-=8. 把分式22xyx y-中的x 、y 的值都扩大到原来的2倍,则分式的值… ()A 、不变B 、扩大到原来的2倍C 、扩大到原来的4倍D 、缩小到原来的129. 某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1、2小时清理完另一半垃圾、设乙车单独清理全部垃圾的时学校:班级:姓名:考试号:装订线内请勿答题间为x 小时,根据题意可列出方程为………………………………… ()A 、1.2 1.216x += B 、1.2 1.2162x += C 、1.2 1.2132x += D 、1.2 1.213x+= 10. 在直角坐标系中,一直线a 向下平移3个单位后所得直线b 经过点A(0,3),将直线b 绕点A 顺时针旋转60°后所得直线经过点B(-3,0),则直线a 的函数关系式为………………………………………………………………………… ()A 、y=-3xB 、y=-33xC 、y=-3x+6D 、y=-33x+6二、填空题(每空2分,共16分) 11. 2的平方根就是、 12. 当x 时,123x x -+-在实数范围内有意义。

江苏省无锡市2017-2018学年苏科版八年级(下)期末数学试卷(解析版)

江苏省无锡市2017-2018学年苏科版八年级(下)期末数学试卷(解析版)

江苏省无锡市2017-2018学年八年级(下)期末数学试卷一、选择题(本题共8个小题,每小题4分,共32分)1.下列式子中,属于最简二次根式的是( )A.B.C.D.2.刘翔为了迎战2008年北京奥运会刻苦进行110米栏训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的( )A.平均数B.中位数C.众数D.方差3.如图,在△ABC中,D,E分别是边AB,AC的中点,已知BC=10,则DE的长为( )A.3B.4C.5D.64.一次函数y=﹣3x+5的图象经过( )A.第一、三、四象限B.第二、三、四象限C.第一、二、三象限D.第一、二、四象限5.下列计算结果正确的是( )A. +=B.3﹣=3C.×=D.=56.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( )A.6,6B.7,6C.7,8D.6,87.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+b上,则y1,y2,y3的值的大小关系是( )A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y28.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是( )A.B.C.D.二、填空题(本题共6个小题,每小题3分,共18分)9.函数的自变量x的取值范围是 .10.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m= .11.已知一次函数y=﹣x+b的图象过点(8,2),那么此一次函数的解析式为 .12.直角三角形的两边为3和4,则该三角形的第三边为 .13.若实数a、b满足,则= .14.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1,根据前面各式的规律可得(x﹣1)(x n+x n﹣1+…+x+1)= (其中n为正整数).三、解答题(本题共9个小题,共70分)15.(8分)计算.(1)9+2﹣+3(2)(2﹣1)(+1)﹣(1﹣2)216.(6分)四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求菱形的面积.17.(6分)如图所示,在平行四边形ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求平行四边形ABCD的周长.18.(6分)某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:学生平时成绩期中成绩期末成绩小东708090小华907080请你通过计算回答:小东和小华的学期总评成绩谁较高?19.(8分)已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.20.(7分)如图,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=,MB=2MC,求AB的长.21.(9分)已知,直线y=2x+3与直线y=﹣2x﹣1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.22.(8分)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.23.(12分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(2)求自变量x的取值范围;(3)怎样安排生产每天获得的利润最大,最大利润是多少?参考答案与试题解析一、选择题(本题共8个小题,每小题4分,共32分)1.解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.解:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选:D.3.解:∵△ABC中,D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,故DE=AD=×10=5.故选:C.4.解:∵一次函数y=﹣3x+5中,k=﹣3<0,b=5>0,∴此一次函数的图象经过一、二、象限.故选:D.5.解:A、和不是同类二次根式,不能合并,故A错误;B、3﹣=(3﹣1)=2,故B错误;C、×==,故C正确;D、,故D错误.故选:C.6.解:把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.故选:B.7.解:∵直线y=﹣3x+b,k=﹣3<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.8.解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.二、填空题(本题共6个小题,每小题3分,共18分)9.解:根据题意得:4﹣2x≥0,解得x≤2.10.解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.11.解:把(8,2)代入y=﹣x+b得﹣8+b=2,解得b=10,所以一次函数解析式为y=﹣x+10.故答案为y=﹣x+10.12.解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,所以x=;所以第三边的长为5或.故答案为:5或.13.解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.14.解:(x﹣1)(x n+x n﹣1+…x+1)=x n+1﹣1.故答案为:x n+1﹣1.三、解答题(本题共9个小题,共70分)15.解:(1)9+2﹣+3==10;(2)(2﹣1)(+1)﹣(1﹣2)2=6+﹣1﹣1+4﹣12=﹣8+5.16.解:∵四边形ABCD为菱形,∴AC⊥BD,则OB==3,∴AC=8,BD=6,S菱形ABCD=AC•BD=×6×8=24.17.解:在△AFB中,AF⊥BF,∠A=60°,AF=3cm,∴∠ABF=30°,AB=2AF=6cm,同理在△BEC中,BC=2EC=4cm,在平行四边形ABCD中,AB=CD,AD=BC,∴平行四边形ABCD的周长为=2(AB+BC)=20cm.18.解:小东总评成绩为70×20%+80×30%+90×50%=83(分);小华总评成绩为90×20%+70×30%+80×50%=79(分).∴小东的学期总评成绩高于小华.19.解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.20.解:如图,连接MA,∵M在线段AB的垂直平分线上,∴MA=MB=2MC,∵∠C=90°,∴AC2+CM2=MA2,即3+MC2=4MC2,解得MC=1,∴MB=2MC=2,∴BC=3,在Rt△ABC中,由勾股定理可得AB===2,即AB的长为2.21.解:(1)在y=2x+3中,当x=0时,y=3,即A(0,3);在y=﹣2x﹣1中,当x=0时,y=﹣1,即B(0,﹣1);(2)依题意,得,解得;∴点C的坐标为(﹣1,1);(3)过点C作CD⊥AB交y轴于点D;∴CD=1;∵AB=3﹣(﹣1)=4;∴S△ABC=AB•CD=×4×1=2.22.(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.23.解:(1)此车间每天所获利润y(元)与x(人)之间的函数关系式是y=6x•150+5(20﹣x)•260=26000﹣400x.(2)由解得12.5≤x≤20因为x为整数,所以x=13,14,…,20(3)∵y随x的增大而减小,∴当x=13时,y最大=26000﹣400×13=20800.即安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.(2分)。

2017~2018学年苏科版八年级数学下册期末试卷含答案解析

2017~2018学年苏科版八年级数学下册期末试卷含答案解析

2017~2018学年八年级(下)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥22.下列根式中,最简二次根式是()A.B. C.D.3.对于函数y=,下列说法错误的是()A.它的图象分布在一、三象限B.它的图象与直线y=﹣x无交点C.当x<0时,y的值随x的增大而减小D.当x>0时,y的值随x的增大而增大4.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为()A.1 B.2 C.4 D.85.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=06.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.7.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=8.如图已知双曲线y=(k<0)经过直角△OAB斜边OA的中点D,且与直角边AB交于点C,若点A 坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题(本大题共有10小题,每小题3分,共30分)9.化简:=.10.若反比例函数y=图象经过点A(﹣,),则k=.11.当x=2014时,分式的值为.12.将一批数据分成5组,列出频率分布表,其中第一组与第五组的概率之和是0.2,第二与第四组的概率之和是0.25,那么第三组的概率是.13.菱形的两条对角线的长分别为6和8,则它的面积是.14.为了了解10000只灯泡的使用寿命,从中抽取10只进行试验,则该考察中的样本容量是.15.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是.16.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长.17.已知(﹣1,y1),(﹣2,y2)是反比例函数y=﹣的图象上的两个点,则y1、y2的大小关系是(用“<”表示)18.如图,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA 上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是.三、解答题(本大题共有9小题,共86分)19.计算:.20.解方程: +=1.21.先化简,再求值:(1﹣)÷,其中x=2.22.2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.24.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE 分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.25.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求一次函数和反比例函数的表达式及点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数.26.某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.27.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.28.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.(3)在x轴上是否存在点Q,使得△QBC是等腰三角形?若存在,请直接写出Q点坐标;若不存在,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【专题】计算题.【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:2﹣x≥0,解得:x≤2.故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.2.下列根式中,最简二次根式是()A.B. C.D.【考点】最简二次根式.【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.3.对于函数y=,下列说法错误的是()A.它的图象分布在一、三象限B.它的图象与直线y=﹣x无交点C.当x<0时,y的值随x的增大而减小D.当x>0时,y的值随x的增大而增大【考点】反比例函数的性质.【分析】根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、∵函数y=中k=6>0,∴此函数图象的两个分支分别在一、三象限,故本选项正确;B、∵函数y=位于一三象限,直线直线y=﹣x位于二四象限,故无交点,故本选项正确;C、∵当x<0时,函数的图象在第一象限,∴y的值随x的增大而减小,故本选项正确;D、∵当x>0时,函数的图象在第三象限,∴y的值随x的增大而减小,故本选项错误.故选D.【点评】本题考查的是反比例函数的性质,即反比例函数y=xk(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.4.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为()A.1 B.2 C.4 D.8【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2EF.【解答】解:∵点E、F分别为AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4.故选C.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.5.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=0【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件得到x2﹣4=0且x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解x2﹣4=0得x=±2,而x≠﹣2,∴x=2.故选A.【点评】本题考查了分式的值为零的条件:当分式的分子为零并且分母不为零时,分式的值为零.6.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】由五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的有①⑤,直接利用概率公式求解即可求得答案.【解答】解:∵五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:.故答案选:B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m所用天数相同”可得方程=.【解答】解:设甲队每天修路x m,依题意得:=,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.如图已知双曲线y=(k<0)经过直角△OAB斜边OA的中点D,且与直角边AB交于点C,若点A 坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数图象上点的坐标特征;反比例函数系数k的几何意义.【分析】根据A点坐标可直接得出D点坐标,代入双曲线y=(k<0)求出k的值,进可得出△OBC的面积,由S△AOC=S△AOB﹣S△OBC即可得出结论.【解答】解:∵D是OA的中点,点A的坐标为(﹣6,4),∴D(﹣3,2),∵知双曲线y=(k<0)经过点D,∴k=(﹣3)×2=﹣6,∴S△OBC=×|6|=3,∴S△AOC=S△AOB﹣S△OBC=×6×4﹣3=9.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(本大题共有10小题,每小题3分,共30分)9.化简:=3.【考点】二次根式的性质与化简.【专题】计算题.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.10.若反比例函数y=图象经过点A(﹣,),则k=﹣1.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣,)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=图象经过点A(﹣,),∴=,即k=﹣1.故答案为:﹣1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.当x=2014时,分式的值为2017.【考点】分式的值.【分析】先把分子因式分解,再约去x﹣3,得x+3,把x=2014代入求值【解答】解:==x+3,当x=2014时,==x+3=2014+3=2017,故答案为:2017.【点评】本题主要考查了分式的值,解题的关键是把分子进行因式分解.12.将一批数据分成5组,列出频率分布表,其中第一组与第五组的概率之和是0.2,第二与第四组的概率之和是0.25,那么第三组的概率是0.55.【考点】利用频率估计概率.【专题】推理填空题.【分析】根据一组数据总的概率是1,可以得到第三组的概率是多少.【解答】解:由题意可得,第三组的概率是:1﹣0.2﹣0.25=0.55,故答案为:0.55.【点评】本题考查利用频率估计概率,解题的关键是明确题意,知道一组数据总的概率是1.13.菱形的两条对角线的长分别为6和8,则它的面积是24.【考点】菱形的性质.【专题】计算题.【分析】菱形的面积等于对角线乘积的一半.【解答】解:∵菱形的面积等于对角线乘积的一半,∴面积S=×6×8=24.故答案为24.【点评】此题考查菱形的面积计算方法,属基础题.菱形的面积=底×高=对角线乘积的一半.14.为了了解10000只灯泡的使用寿命,从中抽取10只进行试验,则该考察中的样本容量是10.【考点】总体、个体、样本、样本容量.【分析】样本容量是样本中包含个体的数目,不带单位.依据定义即可判断.【解答】解:根据样本容量的定义得:样本容量为10.故答案为:10.【点评】本题样本容量的定义,特别需要注意的是:样本容量不能带单位,比较简单.15.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是.【考点】几何概率.【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故答案为:.【点评】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.16.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长16.【考点】菱形的判定与性质;矩形的性质.【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=4,即可判定四边形CODE是菱形,继而求得答案.【解答】解:∵四边形ABCD是矩形,∴BD=AC,DO=BO,AO=CO,∴OD=OA,∵∠AOB=120°,∴∠DOA=60°,∴△AOD是等边三角形,∴DO=AO=AD=OC=4,∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×4=16,故答案为:16.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.17.已知(﹣1,y1),(﹣2,y2)是反比例函数y=﹣的图象上的两个点,则y1、y2的大小关系是2<y1(用“<”表示)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质可找出反比例函数在第二象限内为减函数,再结合﹣1>﹣2即可得出结论.【解答】解:∵在反比例函数y=﹣中k=﹣4<0,∴该反比例函数在第二象限内y随x的增加而减小,∵﹣1>﹣2,∴y2<y1.故答案为:y2<y1.【点评】本题考查了反比例函数的性质,解题的关键是根据反比例函数的系数找出反比例函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数的单调性比求出点的坐标再进行比较要简便很多,因此我们可以根据反比例函数的性质找出其单调性来解决问题.18.如图,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是2.【考点】轴对称-最短路线问题;坐标与图形性质;正方形的性质.【分析】作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长,利用勾股定理即可求解.【解答】解:作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长.则OD′=2,因而AD′===2.则PD+PA和的最小值是2.故答案是:2.【点评】本题考查了正方形的性质,以及最短路线问题,正确作出P的位置是关键.三、解答题(本大题共有9小题,共86分)19.计算:.【考点】实数的运算;负整数指数幂.【专题】探究型.【分析】先根据绝对值的性质、负整数指数幂及算术平方根计算岀各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=3﹣2﹣4+3=﹣1.【点评】本题考查的是实数的运算,熟知绝对值的性质、负整数指数幂及算术平方根的计算是解答此题的关键.20.解方程: +=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.先化简,再求值:(1﹣)÷,其中x=2.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=2时,原式==1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取80名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;(2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C”所对扇形的圆心角的度数,然后补全条形统计图即可;(3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.【解答】解:(1)本次调查的居民人数=56÷70%=80人;(2)为“C”的人数为:80﹣56﹣12﹣4=8人,“C”所对扇形的圆心角的度数为:×360°=36°补全统计图如图;(3)该区从不闯红灯的人数=1600×70%=1120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【考点】作图-旋转变换.【分析】(1)点B关于点A对称的点的坐标为(2,6);(2)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;(3)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.【解答】解:(1)点B关于点A对称的点的坐标为(2,6);(2)所作图形如图所示:,点B'的坐标为:(0,﹣6);(3)当以AB为对角线时,点D坐标为(﹣7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(﹣5,﹣3).【点评】本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE 分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.【考点】平行四边形的判定与性质;直角三角形斜边上的中线;菱形的判定.【专题】证明题.【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形,即得AD=CE;(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;【解答】证明:(1)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE∥BD,且AE=BD又∵AD是BC边的中线,∴BD=CD,∴AE=CD,∵AE∥CD,∴四边形ADCE是平行四边形,∴AD=EC;(2)∵∠BAC=90°,AD是斜边BC上的中线,∴AD=BD=CD,又∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点评】本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.25.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求一次函数和反比例函数的表达式及点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数.【考点】反比例函数与一次函数的交点问题.【分析】(1)设反比例函数的解析式为y=(k≠0),把A点坐标代入即可得出k的值,进而得出反比例函数的解析式,再把B点坐标代入即可得出a的值,利用待定系数法即可得出一次函数的解析式;(2)直接根据两函数的交点即可得出结论.【解答】解:(1)设反比例函数的解析式为y=(k≠0),∵反比例函数图象经过点A(﹣4,﹣2),∴﹣2=,解得k=8,∴反比例函数的解析式为y=.∵B(a,4)在y=的图象上,∴4=,∴a=2,∴点B的坐标为B(2,4);设一次函数表达式为y=mx+n,将点A,点B代入得,,解得,∴一次函数表达式为y=x+2;(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.【点评】本题考查的是反比例函数与一次函数的交点问题,能直接利用函数图象求出不等式的解集是解答此题的关键.26.某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.【考点】分式方程的应用.【分析】首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【解答】解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.27.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【解答】解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;第21页(共23页)(2)∵a=,b=5,c=4, ∴a +b=+5>4, ∴以a 、b 、c 为边能构成三角形,∵a 2+b 2=()2+52=32=(4)2=c 2,∴此三角形是直角三角形,∴S △==.【点评】本题考查了勾股定理的逆定理,非负数的性质,求三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.28.如图,直线y=x ﹣1与反比例函数y=的图象交于A 、B 两点,与x 轴交于点C ,已知点A 的坐标为(﹣1,m ).(1)求反比例函数的解析式;(2)若点P (n ,﹣1)是反比例函数图象上一点,过点P 作PE ⊥x 轴于点E ,延长EP 交直线AB 于点F ,求△CEF 的面积.(3)在x 轴上是否存在点Q ,使得△QBC 是等腰三角形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将点A 的坐标代入直线AB 的解析式中即可求出m 的值,根据点A 的坐标利用反比例函数图象上点的坐标特征即可求出k 值,从而得出反比例函数解析式;(2)由直线AB 的解析式可求出点C 的坐标,将点P 的坐标代入反比例函数解析式中可求出n 值,从而可得出点E 、F 的坐标,由此可得出线段EF 、CE 的长度,再根据三角形的面积公式即可得出结论;第22页(共23页)(3)假设存在,设点Q 的坐标为(a ,0).联立直线AB 与反比例函数解析式可求出点B 的坐标,由此即可得出线段BC 、BQ 、CQ 的长,根据等腰三角形的性质分BC=BQ 、BC=CQ 以及BQ=CQ 三种情况考虑,由此可得出关于a 的方程,解方程即可求出点Q 的坐标,此题得解.【解答】解:(1)把A (﹣1,m )代入y=x ﹣1,∴m=﹣2,∴A (﹣1,﹣2).∵点A 在反比例函数图象上,∴k=﹣1×(﹣2)=2,∴反比例函数的表达式为:y=.(2)令y=x ﹣1中y=0,则0=x ﹣1,解得:x=1,∴C (1,0).把P (n ,﹣1)代入y=中,得:﹣1=,解得:n=﹣2,∴P (﹣2,﹣1).∵PE ⊥x 轴,∴E (﹣2,0).令y=x ﹣1中x=﹣2,则y=﹣2﹣1=﹣3,∴F (﹣2,﹣3).∴CE=3,EF=3,∴S △CEF =CE •EF=.(3)假设存在,设点Q 的坐标为(a ,0).联立直线AB 和反比例函数解析式得:,解得:或,∴B (2,1).∴BC==,CQ=|a ﹣1|,BQ=.△QBC 是等腰三角形分三种情况:①当BC=CQ 时,有=|a ﹣1|,第23页(共23页)解得:a 1=1+,a 2=1﹣,此时点Q 的坐标为(1+,0)或(1﹣,0);②当CQ=BQ 时,有|a ﹣1|=, 解得:a 3=2,此时点Q 的坐标为(2,0);③当BC=BQ 时,有=,解得:a 4=3,a 5=1,此时点Q 的坐标为(3,0)或(1,0)(舍去). 综上可知:在x 轴上存在点Q ,使得△QBC 是等腰三角形,Q 点坐标为(1+,0)、(1﹣,0)、(2,0)或(3,0).【点评】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、三角形的面积公式、两点间的距离公式以及等腰三角形的性质,解题的关键是:(1)求出点A 的坐标;(2)求出点C 、E 、F 的坐标;(3)分三种情况找出关于a 的方程.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,根据点的坐标利用反比例函数图象上点的坐标特征求出反比例函数解析式是关键.。

最新2018年苏教版八年级下册 数学期末试卷(参考答案)

最新2018年苏教版八年级下册 数学期末试卷(参考答案)

.
x
三、解答题 本大题共 10 小题,共 76 分.把解答过程写在答题卷相应的位置上,解答时应写出
必要的计算过程、排演步骤或文字说明.
19.(本题满分 5 分)计算: ( 5)2 16 (2)2 .
20.(本题满分 5 分)计算: ( 13 2)( 13 2) ( 3 2 2)2 .
16
9.如图,点 A 在反比例函数 y 2 的图像上,点 B 在反比例函数 y k 的图像上. AB // x
x
x
轴,连接 OB ,过点 A 作 AC x 轴于点C ,交 OB 于点 D ,若 AC 3DC ,则 k 的值为
A. 4
B. 6
C. 8
D. 9
10.如图,点 P 是正方形 ABCD 内一点,连接 AP 并延长,交 BC 于点 Q .连接 DP .将 ADP
11.若二次根式 2 x 有意义,则 x 的取值范围是
.
12.已知 2a 3b ,那么 3a 2b
.
3a 2b
13.一个不透明的盒子内装有大小、形状相同的六个球.其中红球 1 个、绿球 2 个、白球 3 个,
小明摸出一个球是绿球的概率是
.
14.已知反比例函数 y k 2 ,若 x 0 , y 随 x 的增大而增大,那么 k 的取值范围是
3.如果 12 与最简二次根式了 5 a 是同类二次根式,则 a 的值是
A. a 7
B. a 2
C. a 1
4.下列事件中,是不可能事件的是
A.任意画一个四边形,它的内角和是 360°
D. a 1
B.若 a b ,则 a2 b2
C.一只不透明的袋子共装有 3 个小球,它们的标号分别为 l、2、3,从中摸出一个小球, 标号是“5”

江苏无锡市2017-2018学年八年级(下)期末数学试题

江苏无锡市2017-2018学年八年级(下)期末数学试题
(3)在(2)中的直线l与x轴、y轴分别交于C、D,求四边形OABC的面积.
27.如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).
(1)求证:AF∥CE;
22.在“3.15”植树节活动后,对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分:
栽下的各品种树苗棵数统计表
植树品种
甲种
乙种
丙种
丁种
植树棵数
150
125
125
若经观测计算得出丙种树苗的成活率为89.6%,请你根据以上信息解答下列问题:
(1)这次栽下的四个品种的树苗共棵,乙品种树苗棵;
(1)当每吨售价是240元时,此时的月销售量是多少吨.
(2)该经销店计划月利润为9000元而且尽可能地扩大பைடு நூலகம்售量,则售价应定为每吨多少元?
26.已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后得到直线l,与反比例函数的图象交于点B(6,m),求m的值和直线l的解 析式;
江苏无锡市2017-2018学年八年级(下)期末数学试题
学校:___________姓名:___________班级:___________考号:___________
1.下列各式: 中,分式的有( )
A.1个B.2个C.3个D.4个
2.下列二次根式中,最简二次根式是( )
A. B. C. D.
3.若分式 的值为0,则x的取值为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江苏省无锡市宜兴市八年级(下)期末数学试卷一、选择题(本大题共10小题,每题3分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确现象前的字母代号填涂在答题卷相应位置)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个3.(3分)下列式子从左到右变形一定正确的是()A.=B.=C.=D.=4.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≤B.x≥C.x<D.x>﹣5.(3分)下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1B.2C.3D.46.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球7.(3分)已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函数y=的图象上三点,且y1<y2<0<y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x3<x2<x1C.x2<x1<x3D.x2<x3<x1 8.(3分)关于x的分式方程+5=有增根,则m的值为()A.5B.4C.3D.19.(3分)如图,在菱形ABCD中,∠BCD=110°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF等于()A.15°B.25°C.45°D.55°10.(3分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k 的值为()A.﹣4B.﹣2C.﹣2D.﹣3二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.(2分)若分式的值为0,则x的值等于.12.(2分)若最简二次根式与是同类二次根式,则a的值为.13.(2分)若反比例函数y=的图象在第二、四象限内,则k的取值范围为.14.(2分)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.15.(2分)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=2,BC=6,则OB的长为.16.(2分)如图,正方形ABCD的边长为,点G在对角线BD上(不与点B、D重合),GF⊥BC于点F,连接AG,若∠AGF=105°,则线段BG=.17.(2分)如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限.将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为.18.(2分)如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B、C,若△OAB的面积为5,则△ABC的面积是.三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.)19.(16分)计算:(1)×﹣()﹣2+|1﹣|;(2)(3﹣2+)÷;(3)﹣;(4)解方程:﹣=﹣3.20.(4分)先化简,再求值:÷(x﹣),其中x=﹣1.21.(8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.22.(8分)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BF=DE.23.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度.Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出的图形△A1B1C.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2.(3)请用无刻度的直尺在第一、四象限内画出一个以A1B1为边,面积是7的矩形A1B1EF.(保留作图痕迹,不写作法)(4)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.24.(8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款 1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)25.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y 轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(2,),设AB所在直线解析式为y=ax+b(a≠0),(1)求k的值,并根据图象直接写出不等式ax+b>的解集;(2)若将菱形ABCD沿x轴正方向平移m个单位,①当菱形的顶点B落在反比例函数的图象上时,求m的值;②在平移中,若反比例函数图象与菱形的边AD始终有交点,求m的取值范围.26.(12分)在矩形ABCD中,AB=4,AD=3,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图1).①当点P与点A重合时,∠DEF=°,当点E与点A重合时,∠DEF=°.②当点E在AB上时,点F在DC上时(如图2),若AP=,求四边形EPFD的周长.(2)若点F与点C重合,点E在AD上,线段BA与线段FP交于点M(如图3),当AM=DE时,请求出线段AE的长度.(3)若点P落在矩形的内部(如图4),且点E、F分别在AD、DC边上,请直接写出AP的最小值.2017-2018学年江苏省无锡市宜兴市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确现象前的字母代号填涂在答题卷相应位置)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是不轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,(x﹣y)中分母中含有字母,因此是分式.,的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个.故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.3.(3分)下列式子从左到右变形一定正确的是()A.=B.=C.=D.=【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A 错误;B、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C错误;D、分子分母都除以a,分式的值不变,故D正确;故选:D.【点评】本题考查了分式的基本性质,利用了分式的基本性质.4.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≤B.x≥C.x<D.x>﹣【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:2x﹣1≥0,∴x≥故选:B.【点评】本题考查二次根式的有意义条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1B.2C.3D.4【分析】根据二次根式的性质对(1)、(2)、(3)进行判断;根据平方差公式对(4)进行判断.【解答】解:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=2﹣3=﹣1.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.6.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选:A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,7.(3分)已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函数y=的图象上三点,且y1<y2<0<y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x3<x2<x1C.x2<x1<x3D.x2<x3<x1【分析】先根据反比例函数y=的系数6>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据y1<y2<0<y3,判断出x1,x2,x3的大小.【解答】解:∵k=6>0,∴函数图象如图,则图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵y1<y2<0<y3,∴点P1(x1,y1),P2(x2,y2)在第三象限,点P3(x3,y3)在第一象限,∴x2<x1<x3.故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.(3分)关于x的分式方程+5=有增根,则m的值为()A.5B.4C.3D.1【分析】根据分式方程的解法即可求出答案.【解答】解:7x+5(x﹣1)=2m﹣1x=由题意可知:x=代入x﹣1=0,﹣1=0解得:m=4故选:B.【点评】本题考查分式的运算,解题的关键是熟练运用分式方程的解法,本题属于基础题型.9.(3分)如图,在菱形ABCD中,∠BCD=110°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF等于()A.15°B.25°C.45°D.55°【分析】利用菱形是轴对称图形,可得∠ADF=∠ABF,求出∠ABF,∠ADC即可解决问题;【解答】解:如图,连接BF.∵四边形是菱形,∴∠BCD=∠BAD=110°,∴∠CAB=∠CAD=55°,∠ADC=∠ABC=70°,∵EF垂直平分线段AB,∴FB=FA,∴∠FBA=∠FAB=55°,∵B、D关于直线AC对称,∴∠ADF=∠ABF=55°,∴∠CDF=∠CDA﹣∠ADF=70°﹣55°=15°,故选:A.【点评】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是理解菱形是轴对称图形,属于中考常考题型.10.(3分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k 的值为()A.﹣4B.﹣2C.﹣2D.﹣3【分析】直线y=x+2与x轴交于点A,与y轴交于点B,可求AO,BO的长度,可得∠BAO=30°,由翻折可得△ACO为等边三角形,作CD⊥AO,根据等腰三角形的性质和勾股定理可得CD,DO,即可求k的值.【解答】解:如图,作CD⊥AO垂足为D,连接CO,∵直线y=x+2与x轴交于点A,与y轴交于点B∴A(﹣2,0),B(0,2)∴tan∠BAO=∴∠BAO=30°∵△ABO沿直线AB翻折∴AO=CA,∠CAB=∠BAO=30°∴∠CAO=60°∴△ACO为等边三角形∴CO=AC=AO=2,∠COA=60°∵CD⊥AO,AC=CO∴DO=AD=∴在Rt△CDO中,CD=3∴C(﹣,3)∵点C恰好落在双曲线y=∴k=﹣3故选:D.【点评】本题主要考查了翻折的性质,等腰三角形的性质,反比例函数的解析式,理解翻折的性质,求点C的坐标是解答此题的关键二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.(2分)若分式的值为0,则x的值等于3.【分析】根据分式值为零的条件可得x﹣3=0,且x≠0,再解即可.【解答】解:由题意得:x﹣3=0,且x≠0,解得:x=3,故答案为:3.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(2分)若最简二次根式与是同类二次根式,则a的值为4.【分析】根据最简二次根式及同类二次根式的定义列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴2a﹣3=5,解得:a=4.故答案为:4.【点评】此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.13.(2分)若反比例函数y=的图象在第二、四象限内,则k的取值范围为k<2.【分析】由于反比例函数y=的图象在二、四象限内,则k﹣2<0,解得k的取值范围即可.【解答】解:由题意得,反比例函数y=的图象在二、四象限内,则k﹣2<0,解得k<2故答案为k<2.【点评】本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k >0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.14.(2分)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m <6且m≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.15.(2分)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=2,BC=6,则OB的长为.【分析】已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=2,∴DC=4,∵AD=BC=6,∴AC==2,∴BO=AC=,故答案为:【点评】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.16.(2分)如图,正方形ABCD的边长为,点G在对角线BD上(不与点B、D重合),GF⊥BC于点F,连接AG,若∠AGF=105°,则线段BG=+1.【分析】过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】解:如图所示:过点A作AH⊥BG.∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=1,∴BG=BH+HG=+1.故答案为:+1.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.17.(2分)如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限.将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为.【分析】依据旋转的性质,即可得到∠OAE=60°,再根据OA=1,∠EOA=90°,∠OAE=60°,即可得出AE=2,AC=2.最后在Rt△ABC中,可得到.【解答】解:依题可知,∠BAC=45°,∠CAE=75°,AC=AE,∠OAE=60°,在Rt△AOE中,OA=1,∠EOA=90°,∠OAE=60°,∴AE=2,∴AC=2.∴在Rt△ABC中,.故答案为:.【点评】本题主要考查了坐标与图形变化,等腰直角三角形的性质的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.18.(2分)如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B、C,若△OAB的面积为5,则△ABC的面积是.【分析】过C作CD⊥y轴于D,交AB于E,设AB=2a,根据直角三角形斜边中线是斜边一半得:BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),因为B、C都在反比例函数的图象上,列方程可得结论.【解答】解:如图,过C作CD⊥y轴于D,交AB于E.∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),∵B,C在反比例函数的图象上,∴x(x+2a)=(x+a)(x+a),解得x=3a,∵S=AB•DE=•2a•x=5,△OAB∴ax=5,∴3a2=5,∴a2=,=AB•CE=•2a•a=a2=.∵S△ABC故答案为.【点评】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.)19.(16分)计算:(1)×﹣()﹣2+|1﹣|;(2)(3﹣2+)÷;(3)﹣;(4)解方程:﹣=﹣3.【分析】(1)先进行二次根式的乘法法则和负整数指数幂的意义运算,然后去绝对值后合并即可;(2)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(3)先通分,再进行同分母的减法运算,然后约分即可;(4)先把分式方程化为整式方程,解整式方程得x=2,然后进行检验确定原方程的解.【解答】解:(1)原式=﹣4+﹣1=﹣4+﹣1=2﹣5;(2)原式=(6﹣+4)÷=÷=;(3)原式=﹣==;(4)去分母得1+(1﹣x)=﹣3(x﹣2),解得x=2,经检验是原方程的增根,所以原方程无解.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式方程.20.(4分)先化简,再求值:÷(x﹣),其中x=﹣1.【分析】先计算括号内异分母分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x的值代入计算可得.【解答】解:原式===,当时,原式===.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.(8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.【分析】(1)根据统计图中的数据可以求得样本容量;(2)根据(1)中的结果可以求得阅读时间在0.5~1小时的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得日人均阅读时间在1~1.5小时对应的圆心角度数;(4)根据统计图中的数据可以估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.【解答】解:(1)30÷20%=150,即样本容量是150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人),补全的条形统计图如右图所示;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人),答:我市12000名初二学生中日均阅读时间在0.5~1.5小时的有9600人.【点评】本题考查条形统计图、扇形统计图、样本容量、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(8分)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BF=DE.【分析】欲证明BF=DE,只要证明△ABE≌△DCF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△DCF中,∴△ABE≌△DCF(ASA),∴BE=DF,∴BE+EF=DF+EF,即BF=DE.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.23.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度.Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出的图形△A1B1C.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2.(3)请用无刻度的直尺在第一、四象限内画出一个以A1B1为边,面积是7的矩形A1B1EF.(保留作图痕迹,不写作法)(4)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【分析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)画出一个以A1B1为边,面积是7的矩形A1B1EF即可;(4)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,矩形A1B1EF即为所求;(4)旋转中心坐标(0,﹣2).【点评】此题主要考查了旋转的性质以及图形的平移等知识,根据题意得出对应点坐标是解题关键.24.(8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款 1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天,然后依据甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工列方程求解即可;(2)设甲队施工a天,乙队施工b天,需支付工程费w万元则,+≥1,然后利用试值法可求得a、b的所有情况,然后再求得w的值,从而可得到问题的答案.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.由题意,得:(+)×4+=1,解得:x=20.经检验:x=20是原分式方程的解.∴(x+5)=25.答:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天;(2)设甲队施工a天,乙队施工b天,需支付工程费w万元由题意,得:+≥1.当a=13,b=9时,w=29.4;当a=12,b=10时,w=29;当a=11,b=12时,w=29.7;当a=10,b=13时,w=29.3∴当甲施工12天,乙施工10天,即在要求的13天内甲队施工12天,乙队施工10天,支付工程费最少为29万元.(8分)【点评】本题主要考查的是分式方程的应用,依据题意列出方程或不等式是解题的关键.25.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y 轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(2,),设AB所在直线解析式为y=ax+b(a≠0),(1)求k的值,并根据图象直接写出不等式ax+b>的解集;(2)若将菱形ABCD沿x轴正方向平移m个单位,①当菱形的顶点B落在反比例函数的图象上时,求m的值;②在平移中,若反比例函数图象与菱形的边AD始终有交点,求m的取值范围.【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)①点B平移后对应点B′坐标为(m,),将其代入函数解析式求得m的值;②A和D可能落在反比例函数的图象上,根据平移求出即可.【解答】解:(1)延长AD交x轴于F,由题意得AF⊥x轴∵点D的坐标为(2,),∴OF=2,DF=,∴OD=,∴AD=∴点A坐标为(2,4),∴k=xy=2×4=8,由图象得解集:x>2;(2)①将菱形ABCD沿x轴正方向平移m个单位,则平移后B′坐标为(m,),因B′落在函数(x>0)的图象上,则;②将菱形ABCD沿x轴正方向平移m个单位,使得点D落在函数(x>0)的图象D′点处,∴点D′的坐标为,∵点D′在的图象上,∴,解得:,∴.【点评】本题考查了一次函数综合题,需要掌握菱形的性质,反比例函数图形上点的坐标特点,坐标与图形性质和平移等知识点,能灵活运用知识点进行计算是解此题的关键.26.(12分)在矩形ABCD中,AB=4,AD=3,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图1).①当点P与点A重合时,∠DEF=90°,当点E与点A重合时,∠DEF=45°.②当点E在AB上时,点F在DC上时(如图2),若AP=,求四边形EPFD的周长.(2)若点F与点C重合,点E在AD上,线段BA与线段FP交于点M(如图3),当AM=DE时,请求出线段AE的长度.(3)若点P落在矩形的内部(如图4),且点E、F分别在AD、DC边上,请直接写出AP的最小值.【分析】(1)①当点P与点A重合时,EF是AD的中垂线,可得结论;当点E与点A 重合时,如图2,则EF平分∠DAB;②如图3中,证明△DOF≌△POE(ASA)得DF=PE,根据一组对边平行且相等得:四边形DEPF是平行四边形,加上对角线互相垂直可得▱DEPF为菱形,当AP=时,设菱形的边长为x,根据勾股定理列方程得:32+(﹣x)2=x2,求出x的值即可;(2)如图4,当F与C重合,点P在对角线AC上时,AP有最小值,根据折叠的性质求CD=PC=4,由勾股定理求AC=5,所以AP=5﹣4=1.【解答】解:(1)①当点P与点A重合时,∴EF是AD的中垂线,∴∠DEF=90°,当点E与点A重合时,此时∠DEF=∠DAB=45°,故答案为90,45.②如图2中,设EF与PD交于点O,由折叠知EF垂直平分PD.∴DO=PO,EF⊥PD,∵矩形ABCD,∴DC∥AB,∴∠FDO=∠EPO,∵∠DOF=∠EOP,∴△DOF≌△POE,∴DF=PE,∵DF∥PE,∴四边形DEPF是平行四边形,∵EF⊥PD∴四边形DEPF是菱形,当AP=时,设菱形边长为x,则,DE=x在Rt△ADE中,AD2+AE2=DE2∴,∴,∴菱形的周长=.(2)如图3中,连接EM,设AE=x.由折叠知PE=DE,∠CDB=∠EPM=90°,CD=CP=4,∵AM=DE∠A=90°EM=EM,∴Rt△AEM≌Rt△PME(HL),∴AE=PM=x,∴CM=4﹣x,BM=AB﹣AM=AB﹣DE=4﹣(3﹣x)=1+x,在Rt△BCM中,BM2+BC2=CM2∴32+(1+x)2=(4﹣x)2解得x=0.6.∴AE=0.6.(3)若点P落在矩形ABCD的内部,且点E、F分别在AD、DC边上,如图5,当E固定时,在F的运动过程中,因为D、P对称,所以EF是PD的垂直平分线,则ED=EP,P在以E为圆心,DE为半径的圆弧上,此时当P在AB边上AP有最小值;如图6,当F固定时,在E的运动过程中,P在以F为圆心,以FD为半径的圆上,此时连接AF,当P在AF上时,AP的值最小;所以如图4,当F与C重合,点P在对角线AC上时,AP有最小值,由折叠得:CD=PC=8,由勾股定理得:AC==5,∴AP=5﹣4=1,则AP的最小值是1.【点评】本题是四边形的综合题,考查了矩形的性质、菱形的性质和判定、勾股定理、折叠的性质,熟练掌握折叠的性质是关键,本题难度适中,注意运用数形结合的思想.。

相关文档
最新文档