北京市西城区重点中学2017年9月初二数学 人教版八年级上册第12章 全等三角形 单元测试 含答案

合集下载

北京市西城区重点中学2017年9月初二数学 人教版八年级上册第12章 全等三角形 单元测试 含答案

北京市西城区重点中学2017年9月初二数学 人教版八年级上册第12章 全等三角形 单元测试 含答案

全等三角形 单元测试(考试时间: 40分钟, 总分: 100分)班级_________ 学号______ 姓名____________一、选择题 (每题4分, 共32分)1. 若△MNP ≌△NMQ 且MN = 8 cm, NP = 7 cm, PM = 6 cm, 则MQ 的长是( )A. 8 cmB. 7 cmC. 6 cmD. 5 cm2. 下列四组条件中, 能使△ABC ≌△DEF 的条件有( )①AB = DE , BC = EF , AC = DF ; ②AB = DE , ∠B = ∠E , BC = EF ;③∠B = ∠E , BC = EF , ∠C = ∠F ; ④AB = DE , AC = DF , ∠B = ∠E .A. 1组B. 2组C. 3组D. 4组3. 请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图, 根据图形全等的知识, 说明画出∠A ′O ′B ′ = ∠AOB 的依据是 ( ).A. SSSB. ASAC. AASD. SAS4.如图, AD 是△ABC 的角平分线,从点D 向AB 、AC 两边作垂线段, 垂足分别为E 、F , 那么下列结论中错误..的是( ) A. DE = DF B. AE = AF C. BD = CD D. ∠ADE = ∠ADF5. 已知图中的两个三角形全等, 则∠1等于( ) .A. 72°B. 60°C. 50°D. 58°6.如图, 正方形ABCD 的边长为4, 将一个足够大的直角三角板的直角顶点放于点A 处, 该三角板的两条直角边与CD 交于点F , 与CB 延长线交于点E . 四边形AECF 的面积是( ) .A. 16B. 12C. 8D. 47. 如图, △ABC 中, AB = AC , E 在BC 上, D 在AE 上. 则下列说法中正确的有( ) ①若E 为BC 中点, 则有BD = CD ;②若BD = CD , 则E 为BC 中点; ③若AE ⊥BC , 则有BD = CD ;④若BD = CD , 则AE ⊥B C. A. ①③④B. ②③④C. ①②③D. ①②③④第5题图 第4题图 第3题图第12题图 8. 如图, 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个角的平分线. 如图: 一把直尺压住射线OB , 另一把直尺压住射线OA 并且与第一把直尺交于点P , 小明说: “射线OP 就是∠BOA 的角平分线”. 他这样做的依据是( ) .A. 角平分线上的点到这个角两边的距离相等B. 角的内部到角的两边的距离相等的点在角的平分线上C. 三角形三条角平分线的交点到三条边的距离相等D. 以上均不正确二、填空题 (每空4分, 共36分)9. 如图, 已知AB ⊥BD , AB ∥ED , AB = ED , 要说明△ABC ≌△EDC , 若以“SAS”为依据, 还要添加的条件为 ; 若添加条件AC = EC , 则依据 判定全等.10. 如图, 已知△ABC 中, AB = 5, AC = 3, 则中线AD 的取值范围是______________.11. 如图, 在△ABC 中, ∠C = 90°, AB = 10, AD 是△ABC 的一条角平分线. 若CD = 3, 则 △ABD 的面积为__________________.12. 如图, 已知BD 是△ABC 的中线, CF 是△BCD 的中线, AE ∥CF 交BD 的延长线于点E , 若△ADE 的面积为3, 则△ABC 的面积是____________.13. 如图, AD 是△ABC 的角平分线, 若AB : AC = 4 : 3, 则S △ABD : S △ACD =_________, 进而BC : CD = _____________.ECA B D 第9题图 第8题图第7题图 第6题图 第10题图 第11题图 A B C D。

人教版八年级数学上册第十二章全等三角形知识点总结及复习

人教版八年级数学上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

全等三角形定义 :能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

人教版数学八年级上册第12章第1课-12.1全等三角形(教案)

人教版数学八年级上册第12章第1课-12.1全等三角形(教案)
在小组讨论环节,学生们对于全等三角形在实际生活中的应用提出了许多有趣的见解,这让我感到很欣慰。但同时,我也意识到需要更多关注那些不太主动参与讨论的学生,鼓励他们大胆表达自己的观点,增强他们的自信心。
反思今天的整个教学过程,我认为在以下几个方面可以做出改进:
1.对于全等三角形的判定方法,我可以设计更多的例题和练习,让学生们在课堂上即时巩固所学知识,提高解题技巧。
-应用全等三角形的性质与判定方法解决实际问题:培养学生将理论知识应用于实际问题的能力。
-举例:设计一些实际问题的题目,如测量不规则图形的面积,要求学生运用全等三角形的性质与判定方法来解决。
2.教学难点
-理解全等三角形的判定方法的应用:学生在理解判定方法的基础上,需要能够将方法灵活应用于不同的问题场景中。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的定义和四种判定方法(SSS、SAS、ASA、AAS)这两个重点。对于难点部分,我会通过具体图形和实际例题来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用纸片制作全等三角形,并验证它们之间的全等关系。
3.判定全等三角形的实际应用:通过实际案例分析,运用全等三角形的判定方法解决实际问题。
4.全等三角形的性质与判定方法的综合运用:结合实际题目,让学生学会运用全等三角形的性质和判定方法进行解题。
5.全等三角形在实际生活中的应用:举例说明全等三角形在建筑、艺术、工程等领域中的应用,增强学生的实际应用意识。
在实践活动中,分组讨论和实验操作让学生们积极参与,主动探索全等三角形的性质。我发现这种互动式的学习方式能够有效提高学生的几何直观和动手能力。然而,我也观察到部分小组在讨论过程中,学生们对于如何将理论知识应用到实际问题中的思考还不够深入,这可能需要我在引导讨论时,提供更多具体的案例和问题来激发他们的思考。

人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、已知图中的两个三角形全等,AD与CE是对应边,则A的对应角是()A. B. C. D.2、如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠DB.AC=DFC.AB=EDD.BF=EC3、已知∠BOP与OP上点C,点A(在点C的右边),李玲现进行如下操作:①以点O为圆心,OC长为半径画弧,交OB于点D,连接CD;②以点A为圆心,OC长为半径画弧MN,交OA于点M;③以点M为圆心,CD长为半径画弧,交弧MN于点E,连接ME,操作结果如图所示,下列结论不能由上述操作结果得出的是()A.CD∥MEB.OB∥AEC.∠ODC=∠AEMD.∠ACD=∠EAP4、如图,在中,AB=AC,AD是BC边的中线,以AC为边作等边△ACE,BE与AD相交于点P,点F在BE上,且PF=PA,连接AF下列四个结论:①AD⊥BC;②∠ABE=∠AEB;③∠APE=60°;④△AEF≌△ABP,其中正确结论的个数是()A. B. C. D.5、如图,已知 BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( )A.AB=DEB.AC∥DFC.∠A=∠DD.AC=DF6、在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S 1+2S2+2S3+S4=()A.5B.4C.6D.107、如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.48、如图,A,B,C表示三个小城,相互之间有公路相连,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址可以是()A.三边中线的交点处B.三条角平分线的交点处C.三边上高的交点处D.三边的中垂线的交点处9、如图,已知,添加下列条件还不能判定≌ 的是()A. B. C. D.10、如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.66°B.60°C.56°D.54°11、如图,在△ABC中,AB=AC,BE、CF是中线,则由()可得△AFC≌△AEB.A.SSSB.SASC.AASD.ASA12、小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.②,③C.③,④D.①,④13、如图,在中,,平分.若则的长为()A. B. C. D.14、如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的角平分线交AC于点D,DE⊥AB于E点,下列四个结论中正确的有()①DE=DC;②BE=BC;③AD=DC;④△BDE≌△BDC.A.1个B.2个C.3个D.4个15、如图,△ABC的角平分线BE与外角∠ACD的平分线CE相交于点E,若∠A=60°,则∠E的度数是( )A.30°B.35°C.40°D.60°二、填空题(共10题,共计30分)16、如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为________cm.17、如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD =DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为________.18、如图,正方形ABCD的对角线AC、BD相交于点O,点E、F分别在边AB、BC上,且∠EOF=90°,则S四边形OEBF ∶S正方形ABCD=________.19、如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC。

人教版八年级上册第12章全等三角形经典题型讲解(有答案)

人教版八年级上册第12章全等三角形经典题型讲解(有答案)

1.在△ABC中,∠ACB=90°,AC=BC,AB=8,CD⊥AB,垂足为D,M为边AB上任意一点,点N在射线CB上(点N与点C不重合),且MC=MN,NE⊥AB,垂足为E.(1)如图1,直接求出 CD 的长;(2)如图1,当∠MCD=30°时,直接求出 ME 的长;(3)如图2,当点 M 在边AB 上运动时,试探索 ME 的长是否会改变?说明你的理由?分析:(1)先根据△ACD 是等腰直角三角形得出CD=AD=BD= AB=4;(2)先根据等腰直角三角形的性质得出CD=BD=4,再根据MN=MN 可知∠MCN=∠MNC,由三角形外角的性质得出∠MCN=∠MCD+∠BCD,∠MNC=∠B+∠BMN,故∠MCD=∠NME.根据AAS 定理可得△MCD≌△NME,由此可得出结论;(3)①当点N 在BC 上时,证明过程同(2);②当点N 与点B 重合时可直接得出结论;③当点N在CB 的延长线上时,先根据AAS 定理得出△MCD≌△NME,由全等三角形的性质可得出结论.解答:解:(1)∵在△ABC 中,∠ACB=90°,AC=BC,AB=8,CD⊥AB,∴CD=AD=BD= AB=4.故答案为:4;(2)∵AC=BC,∴∠ACB=90°,∴∠A=∠B=45°.∵AC=BC,CD⊥AB,AB=8,∴CD=BD=4,即∠BCD=45°.∵MN=MN,∴∠MCN=∠MNC.∵∠MCN=∠MCD+∠BCD,∠MNC=∠B+∠BMN,∴∠MCD=∠NME.在△MCD 与△NME 中,∴△MCD≌△NME(AAS),∴ME=CD=4.(3)ME 的长度不会改变.理由:①如图2 所示,若点N 在BC 上(与B 不重合),∵AC=BC,∴∠ACB=90°,∴∠A=∠B=45°.∵AC=BC,CD⊥AB,AB=8,∴CD=BD=4,即∠BCD=45°.∵MN=MN,∴∠MCN=∠MNC.∵∠MCN=∠MCD+∠BCD,∠MNC=∠B+∠BMN,∴∠MCD=∠NME.在△MCD 与△NME 中,∴△MCD≌△NME(AAS),∴ME=CD=4.②当点N 与点B 重合时,点M 与点D 重合,此时,ME=MN=4.③如图3 所示,若点N 在边CB 上,可知点M 在线段BD 上,且点E 在边AB 的延长线上.∵∠ABC=∠MNC+∠BMN=45°,∠BCD=∠MCD+∠MNC=45°,MC=MN,∴∠MCN=∠MNC,∴∠MCD=∠BMN.在△MCD 与△NME 中,,∴△MCD≌△NME(AAS),∴ME=CD=4.综上所述:由①②③可知,当点M 在边AB 上移动时,线段ME 的长不变,ME=4.点评:本题考查的是全等三角形的判定与性质,在解答(3)时要注意进行分类讨论,2.△ABC 为等腰直角三角形,∠ABC=90°,点D 在AB 边上(不与点 A、B 重合),以CD 为腰作等腰直角△CDE,∠DCE=90°.(1)如图1,作 EF⊥BC 于F,求证:△DBC≌△CFE;(2)在图1 中,连接AE 交BC 于M,求的值;(3)如图2,过点 E 作EH⊥CE 交CB 的延长线于点 H,过点 D 作DG⊥DC,交AC 于点G,连接GH.当点D在边AB 上运动时,式子的值会发生变化吗?若不变,求出该值;若变化请说明理【分析】(1)根据等腰直角三角形的性质得到CD=CE,再利用等角的余角相等得到∠DCB=∠CEF,然后根据“AAS”可证明△DBC≌△CFE;(2)由△DBC≌△CFE 得到BD=CF,BC=EF,再利用△ABC 为等腰直角三角形得到AB=BC,所以AB=EF ,AD=BF ,接着证明△ABM ≌△EFM ,得到 BM=FM ,所以=2;(3)在 EH 上截取 EQ=DG ,如图 2,先证明△CDG ≌△CEQ 得到 CG=CQ ,∠DCG=∠ECQ ,由于∠DCG+∠DCB=45°,则∠ECQ+∠DCB=45°,所以∠HCQ=45°,再证明△HCG ≌△HCQ ,则得到HG=HQ ,然后可计算出=1.3. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

人教版初中数学八年级上册第12章全等三角形综合应用题解析

人教版初中数学八年级上册第12章全等三角形综合应用题解析

原创百度文库VIP 专属文档,侵权必究!GEAC FB A BD C 全等三角形综合应用经典题解析1、已知:如图,四边形ABCD 中,AB=CD ,∠A=∠D ,求证:∠B=∠C.2、如图,AP 平分∠EAF ,PC ⊥AE 于点C ,PB ⊥AF 于点B ,AP 交BC 于点H . 求证:AP·BC=2AB·PB.3、已知:如图,DC ∥AB ,且DC=AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC . (2)除△EBC 外,请再写出两个与△AED 的面积相等的三角形.4、如图,在△ABC 中,BG=CG ,∠ACG=∠ABG ,求证:AG ⊥BC .5、如图,已知AB =DC ,AC =DB ,BP =CP ,求证:AP =DP.6、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

求证:(1)EC=BF ;(2)EC ⊥BF.7、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB. 求证:(1)AM=AN ;(2)AM ⊥AN.8、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.9、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠BAF=∠EAF.10、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C.AB CD AEC O B P C AD FA NEM BA BCPE H CF DABE ABC G原创百度文库VIP 专属文档,侵权必究!CA EB D F11、已知:AD 平分∠BAC ,CD=DE ,EF//AB ,求证:EF=AC.12、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE.13、如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上,求证:BC=AB+DC.14、已知△ABC 中,AB=AC ,∠A=100°,∠B 的平分线交AC 于D ,求证:AD+BD=BC.15、如图所示,AB ∥CD ,在AB 、CD 、BC 上各有一点E 、F 、P ,且BE =CF ,P 是BC的中点,试说明三点E 、F 、P 恰好在一条直线上.16、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC -AB=2BE.18、如图,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .19、已知:如图,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证:AE =AF.20、如图,在四边形ABCD 中,∠A=60º,AD+BC=AB=CD=2,求该四边形的面积.C AB D E B DC C B A DE DABCA FB E D C1 2 AB EC C F DP•A EB ••C原创百度文库VIP 专属文档,侵权必究!P DA CB21、如图,在四边形ABCD 中,AB=AC ,∠ABD=60°,∠ADB=75°,∠BDC=30°,求∠DBC的度数.22、P 是∠BAC 平分线AD 上一点,AC >AB ,求证:PC -PB <AC -AB.23、如图,P 是∠MAN 平分线上一点,PB ⊥AM 于点B ,点C 、D 分别在AM 、AN 上,∠ACP+∠ADP=180°,若AB=3cm ,求AC+AD 的长.24、如图在正方形ABCD 中,M 是AB 的中点,MN ⊥MD ,BN 平分∠CBE ,求证:MD=MN.25、如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F. 求证:(1)AE=BD ;(2)GF ∥BE.26、如图,△ABC 中,AB=AC ,点E 在AB 上,点F 在AC 延长线上,BE=CF ,连接EF ,交BC 于点D ,求证:DE=DF.27、如图,∠AOB=30°,OA=1,OB=3,点M 、N 分别为∠AOB 两边上的动点,求AN+NM+MB 的最小值.28、已知等边△ABC 内一点M ,AM=1,BM=3,CM=2,求∠AMC.29、如图,四边形ABCD 中AB ∥CD ,AB≠CD ,BD=AC ,求证:AD=BC.30、如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE .求证:(1)△AEF ≌△CEB ;(2)AF =2CD .A B D C AD ACMB AD BCEA M EAFA D EB CN A C MP B原创百度文库VIP 专属文档,侵权必究!M DC ENE A BM D CN31、在△ABC 中,∠ACB=90°,BC=AC,直线MN 经过点C,且AD ⊥MN 于D,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD+BE. (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请证明; 若不成立,说明理由.32、求证:等腰三角形底边上任意一点到两腰的距离之和等于腰上的高.33、如图,在△ABC 中,CA=CB ,∠ACB=90°,E 、F 分别是CA 、CB 边上的点且AE=2CE ,将BF=2CF ,△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN ,连接AM ,BN .(1)求证:AM=BN ;(2)当MA ∥CN 时,若AC=3,求AM 的长.34、如图,在长方形ABCD 中,AB=5,BC=7,点E 是AD 上一个动点,把△BAE 沿BE 向长方内部折叠,当点A 的对应点A1恰落在∠BCD 的平分线上时,求CA1的长.【提示:若a·b =0,则a =0或b =0】35、如图,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点 E ,与CD 相交于点F ,点H 是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF=AC ; (2)求证:CE=0.5BF ;(3)CE 与BG 存在怎样的数量关系?试证明你的结论.36、如右图,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C′的位置上,(1)若AB=4,BC=8, 求重合部分△EBD 的面积;(2)若CD=2,∠ADB=30°,求DE 的长.37、正方形ABCD 和正方形AEFG 有公共顶点A ,将正方形AEFG 绕点A 按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF ,BF ,如图。

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形 单元测试
(考试时间: 40分钟, 总分: 100分)
班级_________ 学号______ 姓名____________
一、选择题 (每题4分, 共32分)
1. 若△MNP ≌△NMQ 且MN = 8 cm, NP = 7 cm, PM = 6 cm, 则MQ 的长是( ) A. 8 cm
B. 7 cm
C. 6 cm
D. 5 cm
2. 下列四组条件中, 能使△ABC ≌△DEF 的条件有( )
①AB = DE , BC = EF , AC = DF ; ②AB = DE , ∠B = ∠E , BC = EF ; ③∠B = ∠E , BC = EF , ∠C = ∠F ; ④AB = DE , AC = DF , ∠B = ∠E . A. 1组 B. 2组 C. 3组 D. 4组
3. 请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图, 根据图形全等的知识, 说明画出∠A ′O ′B ′ = ∠AOB 的依据是 ( ). A. SSS
B. ASA
C. AAS
D. SAS
4.如图, AD 是△ABC 的角平分线,从点D 向AB 、AC 两边作垂线段, 垂足分别为E 、F , 那么下列结论中错误..
的是( ) A. DE = DF
B. AE = AF
C. BD = CD
D. ∠ADE = ∠ADF
5. 已知图中的两个三角形全等, 则∠1等于( ) .
A. 72°
B. 60°
C. 50°
D. 58°
6.如图, 正方形ABCD 的边长为4, 将一个足够大的直角三角板的直角顶点放于点A 处, 该三角板的两条直角边与CD 交于点F , 与CB 延长线交于点E . 四边形AECF 的面积是( ) . A. 16
B. 12
C. 8
D. 4
7. 如图, △ABC 中, AB = AC , E 在BC 上, D 在AE 上. 则下列说法中正确的有( ) ①若E 为BC 中点, 则有BD = CD ;
②若BD = CD , 则E 为BC 中点; ③若AE ⊥BC , 则有BD = CD ; ④若BD = CD , 则AE ⊥B C. A. ①③④ B. ②③④
C. ①②③
D. ①②③④
第5题图
第4题图
第3题图
第12题图
8. 如图, 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个角的平分线. 如图: 一把直尺压住射线OB , 另一把直尺压住射线OA 并且与第一把直尺交于点P , 小明说: “射线OP 就是∠BOA 的角平分线”. 他这样做的依据是( ) . A. 角平分线上的点到这个角两边的距离相等
B. 角的内部到角的两边的距离相等的点在角的平分线上
C. 三角形三条角平分线的交点到三条边的距离相等
D. 以上均不正确
二、填空题 (每空4分, 共36分)
9. 如图, 已知AB ⊥BD , AB ∥ED , AB = ED , 要说明△ABC ≌△EDC , 若以“SAS”为依据, 还要添加的条件为 ; 若添加条件AC = EC , 则依据 判定全等. 10. 如图, 已知△ABC 中, AB = 5, AC = 3, 则中线AD 的取值范围是______________. 11. 如图, 在△ABC 中, ∠C = 90°, AB = 10, AD 是△ABC 的一条角平分线. 若CD = 3, 则 △ABD 的面积为__________________.
12. 如图, 已知BD 是△ABC 的中线, CF 是△BCD 的中线, AE ∥CF 交BD 的延长线于点E , 若△ADE 的面积为3, 则△ABC 的面积是____________.
13. 如图, AD 是△ABC 的角平分线, 若AB : AC = 4 : 3, 则 S △ABD : S △ACD =_________, 进而BC : CD = _____________.
第9题图

8题图
第7题图
第6题图
第10题图
第11题图
A
B
C
D
D
E
14. 如图所示: 要测量河岸相对的两点A 、B 之间的距离, 先从B 处出发与AB 成90°角方向, 向前走50米到C 处立一根标杆, 然后方向不变继续朝前走50米到D 处, 在D 处转90°沿DE 方向再走17米, 到达E 处, 使A 、C 与E 在同一直线上, 那么测得A 、B 的距离为__________米.
15. 在△ABC 中, 高AD 、BE 所在直线交于H 点, 若BH = AC , 则∠ABC 的值为_________.
三、解答题 (每题8分, 共32分) 16. 已知: 如图△ABC ,
求作: 一点P , 使P 在BC 上, 且点P 到∠BAC 的两边的距离相等. (要求尺规..作图, 并保留作图痕迹, 不要求写作法)
17. 已知: 如图, 点B , F , C , E 在一条直线上, BF = CE , AC = DF
, 且AC ∥DF . 求证: ∠B = ∠E .
F
D
E
C
B
A
18. 已知: 如图, 点O是直线l上一点, 点A、B位于直线l的两侧, 且∠AOB = 90°, OA = OB,分别过A、B两点作AC⊥l, 交直线l于点C, BD⊥l, 交直线l于点D.
求证: AC = OD.
19.【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”) 和直角三角形全等的判定方法(即“HL”) 后, 我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
不妨将问题用符号语言表示为: 在△ABC和△DEF中, AC = DF, BC = EF, ∠B =∠E,
然后, 对∠B进行分类, 可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况: 当∠B是直角时, △ABC≌△DEF.
(1) 如图①, 在△ABC和△DEF, AC = DF, BC = EF, ∠B =∠E = 90°, 根据_____________, 可以知道Rt△ABC≌Rt△DEF.
第二种情况: 当∠B是钝角时, △ABC≌△DEF.
(2) 如图②, 在△ABC和△DEF, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是钝角.
求证: △ABC≌△DEF.
第三种情况: 当∠B是锐角时, △ABC和△DEF不一定全等.
(3) 在△ABC和△DEF, AC = DF, BC = EF, ∠B = ∠E, 且∠B、∠E都是锐角, 请你用尺规在图③中作出△DEF, 使△DEF和△ABC不全等. (不写作法, 保留作图痕迹)
(4) ∠B还要满足什么条件, 就可以使△ABC≌△DEF ? 请直接写出结论: 在△ABC和△DEF 中, AC = DF, BC = EF, ∠B =∠E, 且∠B、∠E都是锐角, 若__________, 则△ABC≌△DEF.
参考答案
1至8题B C A C D A D B
9. BC = CD, HL;
10. 1 < AD < 4;
11. 15 ;
12. 12 ;
13. 4:3, 7:3 ;
14. 17;
15. 45°或135°
16. 略;
17.证△ABC≌△DEF
18.证△ACO≌△OBD;
19. (1) HL
(2)证明:过点C作CG⊥AB交AB的延长线于G, 过点F作FH⊥DE交DE的延长线于H,
先证△CBG≌△FEH(AAS) ,
再证Rt△ACG≌Rt△DFH(HL) ,
最后可证△ABC≌△DEF(AAS) ;
(3) △DEF和△ABC不全等;
(4) 若∠B≥∠A, 则△ABC≌△DEF.。

相关文档
最新文档