初二数学竞赛初赛试题

合集下载

第二届数学竞赛八年级初赛试题

第二届数学竞赛八年级初赛试题

第二届“学用杯”全国数学知识应用竞赛 八年级初赛试题(B 卷)一、填空题(每小题5分,共40分)1.宁先生准备装修新房,新房的使用面积为105m 2,卫生间和厨房共15m 2,厨房和卫生间装修工料费为每平方米100元,为卫生间和厨房配套卫生洁具和厨房厨具还要用去500元,若装修费用不超过20000元,则居室和客厅装修工料费每平方米至多为 元.2.兄弟俩举行百米赛跑,当哥哥到达终点时,弟弟才跑到95米处,如果终点位置不变,弟弟在原起跑点起跑,哥哥后退5米,兄弟俩的速度仍和原来一样,则 赢得胜利.3.在一面平面镜中看到一辆汽车的车牌是 ,则该汽车的车牌号码是.4.99名学生去划船,大船每只可乘坐12人,小船每只可乘坐5人,如果这些学生把租来的船都坐满,那么大船和小船应分别租 只.5.在一次“自主探索”活动课上,张老师把一个正方体的六个面分别涂上六种不同颜色,体,如图1所示,那么长方体的下底面共有 朵花.6.在密码学中,称直接可以看到的内容为明码,对明码进行处理后得到的内容为密码.对于英文,人们将26个字母按顺序分别对应整数0到25,现有4个字母构成的密码单词,记4个字母分别为x 1,x 2,x 3,x 4,已知整数x 1+2 x 2,3 x 2,x 3+2 x 4,3 x 4除以26的余数分别为9,16,23,12,则密码单词是 .7.如图2,是一块玻璃纸的一部分,它由11个边长为们各自有一条边依次在同一条直线上,而且沿着这条直线,每个三角形底边的中点恰为下一)区域的面积是 (答案8.某公司规定一个退休职工每年可获得一份退休金,金额与他工作的年数的算术平方根成正比.如果他多工作a 年,他的退休金比原有的多p 元;如果他多工作b 年(b ≠a ),他的退休金比原有的多q 元.则此退休工人每年的退休金为 元(用a 、b 、p 、q 表示).图1 … 1 2 3 9 10 11 图2二、选择题(每小题5分,共50分)9.校园里有一块三角形土地ABC ,D 、E 、F 分别是AB 、BC 、AC 的中点,G 、H 分别是线段BD 和AD 的中点,现计划在这块三角形土地上栽种四种花草,要求将这块土地分成面积相等的四块,下面有四种分法(如图3),其中正确的有 ( ).(A )4种(B )3种(C )2种(D )1种10.公司职员小王和小陈在同一办事处工作,某天下午2点整要参加公司总部的西部大开发研讨会.下午小陈1点整从办事处出发,乘出租车于1点50分提前到达公司总部;小王因忙于搜集资料,1点25分才出发,为了赶时间,他让出租车从小路走,虽然路程比小陈走的路程缩短了10千米,但由于路况问题,出租车的平均速度比小陈乘坐的出租车的平均速度每小时慢6千米,所以小王还是迟到了5分钟.设小陈乘坐的出租车的平均速度为x 千米/时,从办事处到公司总部的距离为y 千米,那么 ( ).(A )x =30,y =36(B )x =3,y =36(C )x =36,y =30(D )x =3.6,y =3011.下列各图是纸箱厂剩下的废纸片,全是由全等正方形组成的图形,为了充分利用这些废纸片,不用剪割,能围成正方体盒子的图形是 ( ).12.用计算机打一份稿子,甲打30分后由乙继续打25分可以完成;如果乙先打,打30分后由甲继续打24分就可以完成.则甲、乙二人单独打完这份稿子各需的时间为 ( ).(A )50分,60分(B )60分,50分 (C )60分,45分 (D )62分,50分13.如图4所示,有一直立标杆AB ,它的上部被风从M 处吹折,杆顶B 着地,落在距杆脚A 2米的B 1处,修好后,又被风吹折,因新折断N 比前一次折断处M 低0.5米,故这次杆顶B 着地处B 2比前一次着地处B 1远1米,则原标杆AB 的高为 ( ).(A ) 4米 (B )4.5米(C )5米(D )6.5米14.如图5所示,正△ABC 为某一住宅区的所占区域,其周长为800m ,为了美化环境,计A B M N B 2 B 1图4图5 (A )(B )(C )(D ) A B D E F A B D F A B D G F A B D GH 图3划将住宅区边缘5m内(虚线以内,△ABC之外)作为绿化带,则绿化面积约为().(A)4130m2(B)4150m2(C)4170m2(D)4200m215.批发部经营某种商品,批发价(销售价)每只500元,毛利率为4%,该库存商品资金有80%向银行借贷,月利率为4.2‟,商品的保管经营费每只每天0.30元,则不发生亏本时商品的平均储存期最多为(). (A)53天(B)54天(C)55天(D)56天16.某专卖店根据市场信息,对店中现有的两款不同品牌的手机进行调价销售,其中一款手机调价后售出可获利10%(相对于进价),另一款手机调价后则要亏本10%(相对于进价),而这两款手机调价后的售价恰好相同,那么专卖店把这两款调价手机各售出一部后(). (A)既不获利也不亏本(B)可获利1%(C)要亏本2% (D)要亏本1%17.某企业为了适应市场经济的需要,决定进行人员结构调整,该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业,假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业的全年总产值的一半,则分流后从事服务性行业的人数为(). (A)13或14(B)14或15(C)15或16(D)16或1718.现有名片若干张,已知名片的长边为9cm,规定不能用尺子量,而且不能折叠或切断名片,你能否算出名片的短边的长度(). (A)能(B)不能三、解答题(每小题20分,共40分)19.在边防沙漠地带,边防军巡逻车每天行驶200千米,每辆巡逻车可装载供行驶14天的汽油.现有5辆巡逻车同时从驻地A出发,完成任务后再沿原路返回驻地,为了使其中3辆尽可能到更远的地方巡逻,然后一起返回,另外两车行至途中B处后,仅留足自己返回驻地所必需的汽油,将多余的汽油留给另外3辆使用,问其他3辆车可行进的最远距离是多少千米?20.某班同学出去野营,其中n个人围成一圈,其余的人做观众.这几个人按顺时针方向依次编为1至n号,从1号开始表演节目,以后每隔1个人表演,某人表演完后就退出圈子作观众,当n为下列各值时,求最后一个表演节目的人是几号?(1)n=32;(2)n=39.四、开放题(本大题20分)21.现有4个全等的直角三角形纸板,你能用它们来拼证勾股定理吗?若能,说明你的思路和方法,方法越多越好(至少要写出四种方法).。

八年级(上)数学竞赛试题及答案(新人教版)

八年级(上)数学竞赛试题及答案(新人教版)

八年级(上)数学竞赛试卷考试时间:100分钟 总分:100分一、精心填一填(本题共10题,每题3分,共30分)1.函数a 的取值范围是_____________、2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________图1 图24、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )2005的值为 .6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。

9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有y x y x y x -+=* 则()()31*191211**=10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.FEDACB图 5图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )(A )x >0 (B )x <0 (C )x <1 (D )x >1A B C D12 AEBO F C图3图6 图713.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ). A .2 B .-4 C .-2或-4 D .2或-416.设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2。

原题目:数学竞赛初赛试题及答案

原题目:数学竞赛初赛试题及答案

原题目:数学竞赛初赛试题及答案
本文档旨在提供数学竞赛初赛试题及其答案,以帮助参赛者更好地备战。

以下为试题及答案的内容:
1. 第一题
试题:求解方程 2x + 3 = 7x - 5。

答案:解得 x = 2。

2. 第二题
试题:计算三角形的面积,已知底边长为 6cm,高为 4cm。

答案:三角形的面积为 (6cm * 4cm) / 2 = 12cm²。

3. 第三题
试题:已知正方形的一个边长为 8cm,求其周长。

答案:正方形的周长为 4 * 8cm = 32cm。

4. 第四题
试题:计算以下等差数列的前 n 项和:2, 5, 8, 11, ...
答案:等差数列的公差为 3,首项为 2。

根据求和公式 S =
n/2*(a1 + an),其中 S 为前 n 项和,n 为项数,a1 为首项,an 为第
n 项。

所以,根据公式计算得到前 n 项和为 S = n/2*(2 + (2 + (n-
1)*3))。

5. 第五题
试题:已知一个等比数列的首项为3,公比为2,求前n 项和。

答案:等比数列的公比为 2,首项为 3。

根据求和公式 S =
a1*(1 - r^n) / (1 - r),其中 S 为前 n 项和,a1 为首项,r 为公比,n
为项数。

所以,根据公式计算得到前 n 项和为 S = 3 * (1 - 2^n) / (1 - 2)。

本文档提供了数学竞赛初赛试题及其答案的简要内容。

参赛者
可运用这些试题及答案进行练和复,以提升数学竞赛能力。

2019-2020年初二数学竞赛初赛试题及答案

2019-2020年初二数学竞赛初赛试题及答案

2019-2020年初二数学竞赛初赛试题及答案一、选择题(每小题4分,共40分。

)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英文字母写在下面的表格内。

1、 将a 千克含盐10﹪的盐水配制成含盐15﹪的盐水,需加盐x 千克,则由此可列出方程( )(A )()()().001510101-+=-x a a (B )().00150010•+=•x a a(C ).00150010•=+•a x a (D )()().0015100101-=-x a2、一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加a ﹪,则所用的时间减少b ﹪,则a 、b 的关系是( ) (A )001100a a b +=(B )001100a b += (C )a a b +=1 (D )a a b +=100100 3、当1≥x 时,不等式211--≥-++x m x x 恒成立,那么实数m 的最大值是( ) (A )1. (B )2。

(C )3。

(D )4。

4、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数12-=x y 与k kx y +=的图象的交点是整点,则k 的值有( )个(A )2. (B )3。

(C )4。

(D )5。

5、(英语意译)已知整数x 满足不等式6122≤-≤x ,则x 的值是( ) (A )8. (B )5。

(C )2。

(D )0。

6、若三角形的三条边的长分别为a 、b 、c ,且.03222=-+-b c b c a b a 则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )等腰直角三角形7、如图1,点C 在线段BG 上,四边形ABCD 是一个正方形,AG 与BD 、CD 分别相交于点E 和F ,如果AE=5,EF=3,则FG=( ) (A )316。

(B )38。

(C )4。

(D )5。

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

2009年初中数学(初二组)初赛试卷 01一、选择题(本大题满分42分,每小题7分)1、下列名人中:①比尔·盖茨 ②高斯 ③袁隆平 ④诺贝尔 ⑤陈景润 ⑥华罗庚 ⑦高尔基⑧爱因斯坦,其中是数学家的是( )A .①④⑦ B.③④⑧ C.②⑥⑧ D.②⑤⑥ 2、已知111,,bc a a b c a b c +=+=+≠≠则a 2b 2c 2=( )A.5B.3.5C.1D.0.53、在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点。

设k 为整数,当直线2y x =-与y kx k =+的交点为整点时,k 的值可以取( )A .4个 B.5个 C.6个 D.7个4、如图,边长为1的正方形ABCD 绕A 逆时针旋转300到正方形AB ‘C ’D ‘,图中阴影部分的面积为( )A.11 D.125、已知()421M p p q =+,其中,p q 为质数,且满足29q p -=,则M =( ) A.2009 B.2005 C.2003 D.2000(第6题图)6、四边形ABCD 中0060,90,DAB B D ∠=∠=∠=1,2BC CD ==,则对角线AC 的长为( )二、填空题(本大题满分28分,每小题7分)1、 如果有2009名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、 1的规律报数,那么第2009名学生所报的数是 。

2、已知,,a b c 满足2224222a b a c ac -+++=+,则a b c -+的值为______3、已知如图,在矩形ABCD 中,AE BD ⊥,垂足为E ,030ADB ∠=且BC =,则ECD 的面积为_____(第3题图) (第4题图)4、有一等腰钝角三角形纸片,若能从一个顶点出发,将其剪成两个等腰三角形纸片,则等腰三角形纸片的顶角为_______度。

三、简答题(本大题满分20分)1.如图,直线OB 是一次函数2y x =-的图象,点A 的坐标为,在直线上找点, 使得ACO 为等腰三角形,点C 坐标。

初中数学竞赛初赛(市级选拔)试题(含解答)-

初中数学竞赛初赛(市级选拔)试题(含解答)-

初中数学竞赛初赛(市级选拔)试题一、选择题(共8小题,每小题5分,共40分)1.要使方程组⎩⎨⎧=+=+23223y x a y x 的解是一对异号的数,则a 的取值范围是( )(A )334<<a (B )34<a (C )3>a (D )343<>a a 或 2.一块含有︒30角的直角三角形(如图),它的斜边AB =8cm, 里面空 心DEF ∆的各边与ABC ∆的对应边平行,且各对应边的距离都是1cm,那么DEF ∆的周长是( )(A)5cm (B)6cm (C) cm )(36- (D) cm )(33+3.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A)5种 (B) 6种 (C)7种 (D)8种4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1122-+=)x (y ,则抛物线A 所对应的函数表达式是 ( )(A)2322-+-=)x (y (B) 2322++-=)x (y(C) 2122---=)x (y (D) 2322++-=)x (y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )(A)32 (B) 31 (C) 21 (D) 61 6.如图,一枚棋子放在七边形ABCDEFG 的顶点处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点。

如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 。

依这样的规则,在这10次移动的过程中,棋子不可能分为两停到的顶点是( )(A)C,E,F (B)C,E,G (C)C,E (D)E,F.7.一元二次方程)a (c bx ax 002≠=++中,若b ,a 都是偶数,C 是奇数,则这个方程( )(A)有整数根 (B)没有整数根 (C)没有有理数根 (D)没有实数根8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由54⨯ 个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A)16 (B) 32 (C) 48 (D) 64二、填空题:(共有6个小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3cm,4cm ,那么以两直角边为直径的两圆公共弦的长为 cm.10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数,现有一组数据共100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是11.ABC ∆中,c ,b ,a 分别是C ,B ,A ∠∠∠的对边,已知232310-=+==C ,b ,a ,则C sin c B sin b +的值是等于 。

中学数学竞赛初赛试题及答案

中学数学竞赛初赛试题及答案

中学数学竞赛初赛试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(-1) \)的值。

A. 0B. 4C. 6D. 82. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π3. 一个直角三角形的两条直角边分别是3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -8二、填空题(每题4分,共16分)1. 一个长方体的长、宽、高分别是2cm、3cm、4cm,它的体积是________cm³。

2. 一个数列的前三项是2, 4, 6,如果这是一个等差数列,那么第四项是________。

3. 一个正六边形的内角是________度。

4. 一个分数的分子是7,分母是14,化简后是________。

三、解答题(每题12分,共48分)1. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + 3^3 + ... +n^3 = (1 + 2 + 3 + ... + n)^2 \)。

2. 一个圆的直径是14cm,求它的周长和面积。

3. 解方程:\( 2x^2 - 5x + 2 = 0 \)。

4. 一个直角三角形的斜边长是13cm,一条直角边是5cm,求另一条直角边的长度。

四、证明题(每题16分,共16分)1. 证明:在一个直角三角形中,如果斜边的中点与一个顶点相连,那么这条线段的长度等于斜边长度的一半。

答案一、选择题1. B. 4(将-1代入\( f(x) \)得到\( 3(-1)^2 - 2(-1) + 1 = 3 + 2 + 1 = 6 \),但题目要求\( f(-1) \),所以是4。

)2. B. 50π(面积公式为\( πr^2 \),代入\( r=5 \)得到\( 25π \),但题目要求的是圆的面积,所以是\( 50π \)。

数学竞赛初赛试题及答案详解

数学竞赛初赛试题及答案详解

数学竞赛初赛试题及答案详解试题一:代数基础题题目:若\( a \),\( b \),\( c \)是实数,且满足\( a^2 + b^2 + c^2 = 1 \),求证:\( a^4 + b^4 + c^4 \leq 1 \)。

解答:首先,我们可以利用平方和不等式,即对于任意实数\( x \)和\( y \),有\( (x+y)^2 \geq 4xy \)。

将\( x = a^2 \)和\( y = b^2 \)代入,得到:\[ (a^2 + b^2)^2 \geq 4a^2b^2 \]\[ 1 - c^2 \geq 4a^2b^2 \]\[ 1 \geq c^2 + 4a^2b^2 \]由于\( a^2 + b^2 + c^2 = 1 \),我们可以得出:\[ a^4 + b^4 \leq 1 - c^2 \]类似地,我们可以证明:\[ a^4 + c^4 \leq 1 - b^2 \]\[ b^4 + c^4 \leq 1 - a^2 \]将这三个不等式相加,我们得到:\[ 2(a^4 + b^4 + c^4) \leq 3 - (a^2 + b^2 + c^2) \]\[ 2(a^4 + b^4 + c^4) \leq 2 \]\[ a^4 + b^4 + c^4 \leq 1 \]证明完毕。

试题二:几何问题题目:在直角三角形ABC中,∠C是直角,若AB=5,AC=3,求BC的长度。

解答:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

设BC的长度为\( x \),则有:\[ AB^2 = AC^2 + BC^2 \]\[ 5^2 = 3^2 + x^2 \]\[ 25 = 9 + x^2 \]\[ x^2 = 16 \]\[ x = 4 \]所以,BC的长度为4。

试题三:组合问题题目:有5个不同的球和3个不同的盒子,将这些球放入盒子中,每个盒子至少放一个球,有多少种不同的放法?解答:首先,我们需要将5个球分成3组,每组至少一个球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验中学八年级数学竞赛初赛试题
一、选择(每个2分,共20分) 1、下列运算中,正确的是( )
A .x 3•x 3=x 6
B .3x 2+2x 3=5x 5
C .(x 2)3=x 5
D .(ab )3=a 3
b
2.如图所示,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件不能..
是( )
A .∠
B =∠
C B. DC = BE C .∠ADC =∠AEB D. A
D = A
E 3、把14cm 长的铁丝截成三段,围成不是等边三角形的三角形,并且使三边均为整数,那么( )
A .有1种截法
B .有2种截法
C .有3种截法
D .有4种截法
4.如图所示,将一张正方形纸片经过两次对折,并剪出一个小洞后展开铺平,得到的图形( )
5、如图,OP 平分∠MON,PA⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( )A .1 B .2 C .3 D .4
6、 如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是(
A. 只有乙
B. 只有丙
C. 甲和乙
D. 乙和丙 7、下列各式中:其中正确的有( )
① (a
-2b)(3a +b)=3a 2-5ab -2b 2; ②(2x+1)(2x -1)=4x 2
-x -1;
③(x-y)(x +y)=x 2-y 2; ④(x+2)(3x +6)=3x 2
+6x +12.
A .4个
B .3个
C .2个
D .1个
8、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可
作的对角线共有( )A .8条 B .9条 C .10条 D .11条
9.如图,正方形ABCD 的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角板的两条直角边与CD 交于点F ,与CB 延长线交于点E .四边形AECF 的面积是( ).
A .16
B .12
C .8
D .4
10.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若
60A ∠=︒,195∠=︒,则∠2的度数为
A .24°
B .25°
C .30°
D .35°
A
B
C
B'C'
E F 12D
C B A B a 4165 a 4174A O
二、填空(每个2分,共20分)
1、已知点P (2a+b,b )与P 1(8,-2)关于Y 轴对称,则a+b= 。

2、如图,△ABC 中,∠A=30°,∠B=70°,CE 平分∠ACB,CD ⊥AB 于D, DF ⊥CE,则∠CDF= 。

3、如图,一艘海轮位于灯塔P 的南偏东方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东的N 处,则N 处与灯塔P 的距离为 。

4. 等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数是 ° 5、如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图:
以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3; ……
这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =__ _.
6、如图,在中,,以顶点A 为圆心,适当长为半
径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于
的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若

,则
的面积是 。

7、多项式4x 2+1加上一个单项式后能成为一个整式的完全平方,•请你写出符合条件的这个单项
式是___________.
8.“已知点P 在直线 l 上,利用尺规作图过点P 作直线 PQ ⊥l”的作图方法如下: ①以点P 为圆心,以任意长为半径画弧,交直线l 于A 、B 两点;
②分别以A 、B 两点为圆心,以大于AB 的长为半径画弧,两弧交于点Q ;
③连接PQ .则直线 PQ ⊥l .请说明此方法依据的数学原理是 . 9. 已知m
6=x ,3=n x ,则2-m n x 的值为( )
10.当x 分别取2014-、2013-、2012-、….、2-、1-、0、1、12、13、…、12012、12013、
1
2014
时,计算分式221
1
x x -+的值,再将所得结果相加,其和等于( )
实验中学八年级数学竞赛初赛试题答题卡
1、 2、 3、 4、 5、
6、 7、 8、 9、 10、 三、解答题
1、计算(每个3分,共24分)
①(3)(3)x y x y +- ②(2)(21)a b a b -++ ③ (3)(6)x x -+
④2
(2)x y +;
⑤()()a b c a b c -+++ ⑥ ⑦ 202×198 ⑧ 9.82
1、计算(每个4分,共16分)
423322223(3)(2)(2)4a b ab a b a b a b --⋅---÷ 322()(2)(48)(4)a b a b a b a b a
b +-+-÷-
2(32)(32)5()(2)x y x y x x y x y +----- 2
(3)(3)(3)23
a b a b a b a b ⎡⎤----++÷
-⎣⎦
A
B
C
F E
3、(8分)如图,△ABC 中,AB=AC ,∠A=120°,AB 的垂直平分线EF 交AB 于E ,交BC 于F 。

求证:CF=2BF 。

4、(8分)如图所示,△ABC 中,AD 平分∠BAC ,D 为BC 的中点,过D 作DE ⊥AB ,DF ⊥AC ,E ,F 分别为垂足,猜想∠B 和∠C 的关系,说明理由.
5、(12分)已知:△ABC是等边三角形.
(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF 的数量关系,并加以证明;
(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.
6、(12分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD 与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.
(1)求证:∠BAD=∠CAE;
(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;
(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.
7.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.
8、如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG ⊥AC交AC延长线于G.求证:BF=CG.
9、(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b. 填空:当点A位于________时,线段AC的长取得最大值,且最大值为________. (用含a,b的式子表示)
(2)应用:点A为线段BC外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
(3)拓展
如图3,在平面直角坐标系中,点A的坐标为(2 , 0),点B的坐标为(5 , 0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.。

相关文档
最新文档