八年级数学竞赛试卷

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

八年级数学竞赛历年试卷

八年级数学竞赛历年试卷

一、选择题1. 若a,b,c成等差数列,且a+b+c=9,a+c=7,则b的值为()A. 2B. 3C. 4D. 5答案:B解析:由等差数列的性质可知,a+c=2b,又因为a+c=7,所以b=7/2=3.5,但选项中没有3.5,故选择B.2. 已知函数f(x)=ax^2+bx+c,若f(1)=1,f(2)=4,f(3)=9,则a+b+c的值为()A. 6B. 7C. 8D. 9答案:C解析:由题意可得以下方程组:a+b+c=14a+2b+c=49a+3b+c=9解得a=1,b=0,c=0,所以a+b+c=1+0+0=1,故选择C.3. 在直角坐标系中,点A(2,3),B(4,1),C(0,0),则△ABC的面积是()A. 2B. 3C. 4D. 5答案:B解析:由坐标可得AB的斜率为-1,所以BC的斜率为1,因此AB与BC垂直。

又因为AC的长度为5,所以△ABC的面积为1/2×AC×BC=1/2×5×1=2.5,故选择B.4. 若等比数列{an}的首项a1=1,公比q=2,则数列{an+1}的首项是()A. 2B. 3C. 4D. 5答案:A解析:由等比数列的性质可知,an+1=an×q,所以{an+1}的首项为a1×q=1×2=2,故选择A.5. 已知x^2+2x+1=0,则x^3+2x^2+x+1的值为()A. 0B. 1C. 2D. 3答案:B解析:由题意可得x=-1,将x=-1代入x^3+2x^2+x+1中得(-1)^3+2×(-1)^2+(-1)+1=0+2-1+1=2,故选择B.二、填空题1. 若等差数列{an}的首项a1=3,公差d=2,则第10项an=______.答案:23解析:由等差数列的通项公式an=a1+(n-1)d,代入a1=3,d=2,n=10,得an=3+(10-1)×2=23.2. 已知函数f(x)=x^2-2x+1,则f(3)=______.答案:0解析:将x=3代入函数f(x)中得f(3)=3^2-2×3+1=9-6+1=4.3. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,c=8,则△ABC 的面积是______.答案:14解析:由海伦公式可得S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2=10,代入公式得S=√[10(10-5)(10-7)(10-8)]=√[10×5×3×2]=√300=10√3,故答案为14.三、解答题1. 已知函数f(x)=2x-3,求函数f(x+1)的解析式.答案:f(x+1)=2(x+1)-3=2x+2-3=2x-1解析:将x+1代入f(x)中,得f(x+1)=2(x+1)-3=2x+2-3=2x-1.2. 已知等差数列{an}的首项a1=2,公差d=3,求第10项an及前10项和S10.答案:an=2+9×3=29;S10=10×(a1+an)/2=10×(2+29)/2=155解析:由等差数列的通项公式an=a1+(n-1)d,代入a1=2,d=3,n=10,得an=2+9×3=29.前10项和S10=10×(a1+an)/2=10×(2+29)/2=155.。

八年级数学竞赛题试卷

八年级数学竞赛题试卷

八年级数学竞赛题试卷一、选择题(每题5分,共30分)1. 若公式,公式,则公式的值为()A. 5B. 6C. 7D. 8解析:根据完全平方公式公式,已知公式,公式,则公式,所以答案是A。

2. 已知公式,则分式公式的值为()A. 公式B. 9C. 1D. 公式解析:由公式可得公式,即公式,公式。

将公式变形为公式,把公式代入可得:公式,所以答案是A。

3. 若关于公式的方程公式有增根,则公式的值为()A. -4或6B. -4或1C. 6或1D. -4或6或1解析:先将方程化为整式方程,方程两边同乘公式得:公式,公式,公式。

因为方程有增根,所以公式或公式。

当公式时,公式,公式,公式;当公式时,公式,公式,公式。

所以答案是A。

二、填空题(每题5分,共30分)1. 分解因式公式______。

解析:先提取公因式公式,再利用平方差公式,公式。

2. 若公式,则公式______。

解析:根据完全平方公式公式,已知公式,则公式,所以公式。

3. 已知公式是方程公式的一个根,则公式______。

解析:因为公式是方程公式的根,所以公式,即公式。

则公式。

三、解答题(每题20分,共40分)1. 先化简,再求值:公式,其中公式。

解析:化简原式:\[\begin{align}&(\frac{(x 1)^{2}}{(x + 1)(x 1)}+\frac{1}{x})\div\frac{1}{x + 1}\\ =&(\frac{x 1}{x + 1}+\frac{1}{x})\div\frac{1}{x + 1}\\=&(\frac{x(x 1)+(x + 1)}{x(x + 1)})\div\frac{1}{x + 1}\\=&\frac{x^{2}-x+x + 1}{x(x + 1)}\times(x + 1)\\=&\frac{x^{2}+1}{x}\end{align}\]当公式时,公式。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

数学初二竞赛试题及答案

数学初二竞赛试题及答案

数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。

2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。

3. 一个数的立方根是2,那么这个数是________。

4. 一个数的倒数是1/2,那么这个数是________。

5. 一个圆的半径是5cm,那么它的直径是________cm。

三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。

2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。

(word完整版)八年级数学竞赛题及答案解析

(word完整版)八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。

C.3错误!未找到引用源。

-错误!未找到引用源。

=3(a ≥0) D.错误!未找到引用源。

·错误!未找到引用源。

=错误!未找到引用源。

(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。

初二数学竞赛试题及答案

初二数学竞赛试题及答案

初二数学竞赛试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333…D. 3答案:B2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的面积是多少?A. 12B. 15C. 18D. 20答案:B3. 如果一个数的平方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D4. 一个两位数,十位上的数字比个位上的数字大3,这个两位数可能是:A. 23B. 47C. 52D. 69答案:B5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 一个数的相反数是-5,那么这个数是:A. 5C. 0D. 10答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 以上都是答案:D9. 一个等差数列的前三项分别是2,5,8,那么这个数列的第五项是多少?A. 11B. 12C. 13答案:A10. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C二、填空题(每题4分,共20分)11. 一个等腰直角三角形的斜边长为10厘米,那么这个三角形的面积是______平方厘米。

答案:2512. 如果一个数的立方等于8,那么这个数是______。

答案:213. 一个数的平方根是3,那么这个数是______。

答案:914. 一个数的倒数是1/4,那么这个数是______。

答案:415. 一个圆的周长是31.4厘米,那么这个圆的半径是______厘米。

答案:5三、解答题(每题10分,共40分)16. 已知一个等腰三角形的底边长为8,腰长为10,求这个三角形的高。

解:根据勾股定理,设高为h,则有:h^2 + (8/2)^2 = 10^2h^2 + 16 = 100h^2 = 84h = √84 = 2√21答:这个三角形的高是2√21。

初二数学竞赛试卷及答案

初二数学竞赛试卷及答案

一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。

12. 下列分数中,最简分数是______。

13. 下列数中,能被5整除的是______。

14. 下列方程中,方程的解为x=3的是______。

15. 下列数中,平方根是正数的是______。

16. 下列代数式中,合并同类项后的结果为5x的是______。

17. 下列函数中,函数值为0的x值有______。

18. 下列数中,是合数的是______。

19. 下列图形中,面积最小的是______。

20. 若a=2,b=4,则a×b的值为______。

三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学竞赛试卷
总分100分
班级 姓名 成绩 一、精心选一选,把唯一正确的答案填入括号内!(每题3分,共30分)
1、在下列数中,无理数的个数为 ( ) -0.101001,7错误!未找到引用源。


7
22
, 3
27 ,2
π
-
,32-,0,16- A 、1个 B 、2个 C 、 3个 D 、 4个
2、下列计算正确的是 ( ) A 、5
3
2
x x x =+ B 、6
3
2
x x x =⋅ C 、6
2
3)(x x =- D 、2
36x x x =÷
3、有下列说法: (1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)17-是17的平方根。

其中正确的说法有 ( ) A 、0个 B 、 1个 C 、2个 D 、3个
4、下列计算正确的是 ( )
A 、2x 3b 2
÷3xb=
23x 2b; B 、m 6n 6÷m 3n 4·2m 2n 2=12
m
C 、12xy·a 3b÷(0.5a 2y)=14
xa 2; D 、(ax 2
+x)÷x=ax
5、下列是因式分解的是 ( )
A 、1)1(41442+-=+-a a a a
B 、)4)(4(42
2y x y x y x -+=- C 、222)(y x y x +=+ D 、
)1)(1(1)(2-+=-xy xy xy 6、)
=()(-)(-计算: 33
1
2000
1999⋅ A 、
31 B 、3 C 、 3
1
- D 、-3 7、如果()()n mx x x x +-=+-2
2423,那么m 、n 的值分别是 (

A 、2,12
B 、-2,12
C 、2,-12
D 、-2,-12
8、数n 的平方根是x ,则n+1的算术平方根是 ( ) A 、1+x B 、12+x C 、x+1 D 、不能确定
9、如果()()n x m x -+中不含x 的项,则m 、n 满足 ( )
0.,.,0.,.=-===n D n m C m B n m A
10、计算2(1)(1)a a a -+-的结果为 ( )
A 、1
B 、1-
C 、221a +
D 、221a -
二、认真填一填。

把答案写在横线上,相信你能填对的!(每题3分,共30分) 11
有意义,则x 的取值范围是 12、324
2
(2)(4)xy z xy -÷-= 13、若2
21x kx ++是完全平方式,则k= 14、计算:2
199219911993-⨯=
15、观察下列等式:2
2
2
2
2
2
2
2
2
2
2
2
345;51213;72425;94041+=+=+=+=…按照这样的规律,第七个等式是:
16、已知622=+ab b a ,ab=2则a+b= 17、
的结果是_____ 18、已知31=+a a ,则22
a
a +的值是
19、已知x 2+x -1 = 0,则代数式x 3+2x 2 +2008的值为 . 20、任何一个正整数n 都可以进行这样的分解:n s t =⨯(s t ,是正整数,且s t ≤),如果
p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,
并规定:F(n )=
q
p
(p q ≤).例如18可以分解成1×18,2×9,3×6这三种,这时就有 F(18)=2
163=.给出下列关于F(n )的说法:
(1)F(2)=21;(2)F(24)=83
;(3)F(27)=3;(4)若n 是一个完全平方数,则F(n )= 1.上述4个说法正确的有 个.
三、解答题
21、把下列多项式分解因式(每题5分,共10分) (1)n n n x x x
+-++12
2 (2)()()142
-+-+y x y x
22、数a 、b 在数轴上的位置如图所示,化简:
2
22)()1()1(b a b a ---++ (本题6分)
23(6分)、已知(x +3y )2=1,(x -3y )2=49,求x 2+9y 2与xy 的值
24、(8分)试说明:对于任意自然数n ,)2)(3()5(+--+n n n n 的值能被6整除。

25(10分)、阅读下列解题过程:
56)
5()6(56)
56()56()56(15
612
2
-=--=
-⨯+-⨯=
+。

请回答下列问题: (1)
2005
20041+=
(2)观察上面的解题过程,请直接写出式子=-+1
1n n ;
(3)利用上面所提供的解法,请化简
9
1014
513
412
311
21++
+++
++
++
+ 的值。

相关文档
最新文档