发动机布置形式解析

合集下载

简述汽车传动系统的布置形式

简述汽车传动系统的布置形式

简述汽车传动系统的布置形式
汽车传动系统的布置形式如下:
1、前置后驱—FR:即发动机前置、后轮驱动,这是一种传统的布置型式。

国内外的大多数货车、部分轿车和部分客车都采用这种车型式。

2、后置后驱—RR:即发动机后置、后轮驱动,在大型客车上多采用这种布置型式,少量微型、轻型轿车也采用这种型式。

发动机后置,使前轴不易过载,并能更充分地利用车箱面积,还可有效地降低车身地板的高度或充分利用汽车中部地板下的空间安置行李,也有利于减轻发动机的高温和噪声对驾驶员的影响。

3、前置前驱—FF:发动机前置、前轮驱动,这种型式操纵机构简单、发动机散热条件好。

但上坡时汽车质量后移,使前驱动轮的附着质量减小,驱动轮易打滑;下坡制动时则由于汽车质量前移,前轮负荷过重,高速时易发生翻车现象。

如今大多数轿车采取这种布置型式。

4、中置后驱—MR:发动机置于前后轴之间,同时使用后轮驱动。

扩展:
传动系统的布置形式有:前置前驱、前置后驱、中置后驱、后置后驱、全轮驱动,传动系统是由离合器、变速器、万向传动装置和驱动桥组成的,传动系统的作用是:}
1、减速增矩;
2、变速变矩;
3、实现倒车;
4、中断传动系统的动力传递。

汽车传动系工作原理是:汽车发动机所发出的动力靠传动系传递到驱动车轮,具有减速、变速、倒车、中断动力、轮间差速和轴间差速功能,与发动机配合工作能保证汽车在各种工况条件下的正常行驶,具有良好的动力性和经济性。

汽车名词解释-发动机参数

汽车名词解释-发动机参数

今天我们介绍有关车身方面的参数,首先从发动机的主要参数开始……● 发动机描述发动机(英文:Engine),又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能(把电能转化为机器能的称谓电动机)。

装配在汽车上都主要以汽油或柴油为原料,现在的新能源汽车则包括电动、氢气等形式。

发动机描述这个参数主要是简要地描述一下这款车的发动机,我们标准的描述方式是:排气量+排列形式+汽缸数+发动机特殊功能。

例如宝马335i的“3.0升直列6缸双涡轮增压直喷发动机”,奔驰C200的“1.8升直列4缸机械增压发动机”。

● 发动机放置位置根据发动机相对车身所处的位置和自身安置的方向,我们将发动机放置按以下两种划分。

◆发动机放置以前后轴划分:发动机整体在前轮轴前面的称为“前置发动机”(常用英文”F”表示),绝大部分轿车都是前置发动机。

发动机整体在前后轴之间的称为“中置发动机”(常用英文”M”表示),很多双座的超级跑车均采用这种布置方式,例如:兰博基尼LP640,法拉利F430等。

发动机整体在后轮轴后面的称为“后置发动机”(常用英文”R”表示),这类车型比较少,典型代表车型就是保时捷911。

◆发动机位置以曲轴纵横标准划分:发动机位置以曲轴位置为标准,我们将发动机分为横向式(常用英文”Q”表示)和纵向式(常用英文”L”表示)两种放置类型。

曲轴和车体方向成直角的叫横置发动机,一般前驱车均为横置发动机,例如:大众速腾、标致307、丰田凯美瑞等。

曲轴和车体方向平行的叫纵置发动机,一般后驱车和全驱车多数都为纵置发动机,例如:奔驰C 级、宝马3系、丰田锐志等。

不过也有特例,奥迪就是典型的前驱车,但是纵置发动机。

可能您还有点不明白,说的再简单点,如果您站在车头前方,如果发动机横向放在你眼前就是横置式发动机,纵向呈现在你眼前则为纵置式发动机。

丰田凯美瑞240G采用发动机横置宝马3系采用发动机纵置所以在我们的数据库中,发动机放置位置这一项,就有出现6种情况,分别是:前置发动机,横向;前置发动机,纵向;中置发动机,横向;中置发动机,纵向;后置发动机,横向;后置发动机,纵向。

发动机结构及工作原理

发动机结构及工作原理

首先来看看最常见的一个发动机参数— ——发动机排量。 发动机排量是发动机各汽缸工作容积的总 和,一般用升(L)表示。而汽缸工作容积则 是指活塞从上止点到下止点所扫过的气体 容积,又称为单缸排量,它取决于缸径和 活塞行程。 发动机排量是非常重要的发动机参数,它 比缸径和缸数更能代表发动机的大小,发 动机的许多指标都同排气量密切相关。 一般来说,排量越大,发动机输出功率越 大。
发动机结构及工作原理
讲师:张媛媛
目前汽车使用的发动机均属于内燃 机,
发动机的功能就是将燃料的化学能 转成热能再转成机械能,
而机械能也就是一般所谓的动力。
发动机在将燃料转成动力的过程中 会经过一定的工作程序,而且此程序 是周而复始连续不断的循环。
发动机的基本构造——缸径、冲程、排气量与 压缩比
发动机的凸轮轴装置在气缸盖顶部,而且只有一支凸轮轴,一 般简称为OHC (顶置凸轮轴,Over Head Cam Shaft)。凸轮轴 透过摇臂驱动气门做开启和关闭的动作。
在每气缸二气门的发动机上还有一种无摇臂的设计方式,此方 式是将进气门和排气门排在一直在线,让凸轮轴直接驱动气门 做开闭的动作。有VVL装置的发动机则会透过一组摇臂机构去 驱动气门做开闭的动作。
◆ 可变长度进气岐管: 为了使发动机在高、低转速时能够维持平稳的进气效率,如 何制造出长度适合的进气管路就成了一件重要的课题。藉由在进 气管路中设置阀门来使进气管路改变成长、短二种路径。以满足 发动机在高转速运转时需要流速快、动能大的气流;并且在低转 速时供给发动机适当流量的空气。这样就能够使发动机在高转速 时获得较大的马力,而在较低转速时有较佳的油耗表现
(3) 隧道式气缸体 这种形式的气缸体曲轴的主轴承孔为 整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后 部装入。其优点是结构紧凑、刚度和强度好,但其缺点是

汽车的总体构造、布置形式、功能特性【范本模板】

汽车的总体构造、布置形式、功能特性【范本模板】

汽车的总体构造、布置形式、功能特性了解汽车的总体构造、布置形式、功能特性的重要性汽车于十九世纪末首先出现在西欧.汽车是许多国家的科技工作者、发明家的智慧的综合产物,并经历了一个不断演变和发展的过程。

它是公路运输的主要运载工具.汽车作为一种陆上交通工具,具有方便、机动、灵活、速度快、适应性强等特点.此外,其品种多、数量大,为工农业生产和国防建设以及人们日常生活所不可缺少.安全,是现在汽车学上最重要的话题。

随着汽车对于人类生活的重要性日益的提高,汽车已成为每个现代人生活的一部分。

而从第一辆汽车发明以来,车祸这个字也成为人类生活的一部份。

当车辆的性能越来越好、性能越来越高,而人们大多不太了解汽车,让车祸所可能能造成的风险代价也越来越高.所以,作为一个现代人,我们应该与时俱进的去了解一些与汽车相关的知识,既是为自己安全着想,也是充分享受生活的一个保障。

以下就是我从邓鹏云老师《汽车运用知识》课堂上学到的有关汽汽车的总体构造、布置型式、功能特性的一些知识。

汽车的总体构造汽车的类型虽然很多,各类汽车的总体构造有所不同,但它们的基本组成是一致的,都由发动机、底盘、车身和电器设备四大部分组成。

(一)发动机:汽车的动力装置,是汽车的"心脏"。

其作用是使燃料燃烧后产生动力,然后通过底盘的传动系驱动汽车行驶.汽车发动机由曲柄连杆机构、配气机构、燃料供给系、冷却系、润滑系、点火系和起动系,即“二大机构、五大系统组成.在汽车发展史上,使用的发动机都是用燃料燃烧的热能转变为机械能的热力发动机。

热力发动机又可分为内燃机和外燃机。

燃料燃烧的气体将所含的热能通过其它介质转变为机械能的称为外燃机,如蒸汽机;燃料燃烧的气体直接将所含的热能转变为机械能的称为内燃机,如汽油机和柴油机。

由于外燃机热效率低、结构笨重、维修不便,在现代汽车上没有采用,而内燃机热效率高、结构紧凑、维修方便,故在汽车领域中占有统治地位。

目前在汽车上占优势的是往复活塞式内燃机,其中主要是汽油机和柴油机.常见的汽油机是利用化油器使汽油与空气混合后吸入发动机气缸内,用电火花强制点燃混合气体使其燃烧后产生热能而作功;柴油机则利用喷油泵使柴油产生高压后由喷油器直接喷入发动机气缸内并与气缸内压缩空气混合形成混合气,柴油自燃后产生热能而作功。

赵英勋汽车概论-第三章汽车发动机

赵英勋汽车概论-第三章汽车发动机
滤清器外形
4.细滤器
机油细滤器用来过滤机油中直径0.001mm以上的细小杂质,这种滤 清器对机油的流动阻力较大,故多做成分流式,它与主油道并联,只有 少量的机油通过它滤清后又回到油底壳。
二、润滑系统工作原理 1. 润滑作用机理
润滑油
轴承

2.润滑系统原理
§3-7 冷却系统
功用
把发动机工作时受热零件吸收的部分热量及时散发出去, 使工作中的发动机得到适度冷却,保持发动机在最适宜的 温度下工作。
功用:连接活塞和连杆小头,并把活塞承受的气 体压力传递给连杆。
活塞销连接方式 形式:全浮式(工作时自由转动)、半浮式。
活塞销
全浮式:活 塞销能在连 杆衬套和活 塞销座中自 由摆动,使 磨损均匀。
连杆
半浮式: 活塞中部 与连杆小 头采用紧 固螺栓连 接,活塞 销只能在 两端销座 内作自由 摆动。多 用于小轿
保证气缸与活塞间的密封性,防止漏气,并把活塞顶
部吸收的大部分热量传给气缸壁,再由冷却水将其带
走。
气环
切口
气环密封原理 将2~3道气环的切口相互错开形成“迷宫式”封气装置。
气环断面形状及泵油作用
油环
功用 ❖ 布油(活塞上行) ❖ 刮油 ❖ 密封(辅助作用)
活塞环
油环的刮油作用
油环形状
3. 活塞销
空气供给系统
汽油供给系统
电子控制系统
电控汽油喷射系统的工作原理
3.汽油喷射式燃油供给系统主要部件
喷油器
喷油器
电磁线圈
分配器
柱塞针阀
汽油喷射式燃油供给系统主要部件
电动汽油泵
汽油喷射式燃油供给系统主要部件 燃油压力调节器和燃油分配管
二、柴油机燃油供给系统

汽车结构详解

汽车结构详解

冷却液在强制循环水冷中的流动
点火系与起动系
●点火系
汽油发动机气缸内燃料与空气的混合气在压缩行程终 了时采用高压电火花点燃。
点火系的功能是,根据汽油机工况,在气缸内适时、 准确、可靠地产生电火花,以点燃可燃混合气,使汽 油机实现作功。
现代汽车汽油发动机点火系由于组成及产生高压电的 方式不同,有蓄电池点火系、半导体点火系、微机控 制点火系等。
§2 汽车发动机总体构造及性能指标
四冲程发动机的工作原理
发动机内部
四冲程发动机工作原理
发动机的总体构造
发动机由机体组、曲柄连杆机构、配气机 构、供给系、点火系、冷却系、润滑系和 起动系组成。
(一机体,两机构,五大系统)
机体组
1-气门室罩 2-气缸盖 3-气缸垫 4-气缸体 5-油底壳 6-油底壳油封
悬架系统由弹性元件、导向装置和减振器等部 分组成,轿车悬架系统还要加装横向稳定器。
Ford_Mustang_2005_024_D281E55C
Lincoln_Mark_LT_
Volkswagen_Touareg
车轮和轮胎
车轮和轮胎是汽车行驶系中的重要部件, 他的作用是支撑汽车的质量、传递汽车与 路面间的各种力和力矩、吸收不平路面引 起的振动、确定汽车的行驶方向。
Hummer_H2
驱动桥
驱动桥由主减速器、差速器、半轴和驱动桥壳 等组成。其作用是:①将万向传动装置传来的 发动机转矩通过主减速器、差速器、半轴等传 到驱动车轮,实现降速、增大转矩;②通过主 减速器圆锥齿轮副改变转矩的传递方向;③通 过差速器实现两侧车轮差速作用,保证内、外 侧车轮以不同转速转向。
Lincoln_Navigator
Hummer_H3

发动机构造及工作原理

2.曲柄连杆机构
·组成:活塞、连杆、曲 轴三部分
·作用:将活塞的往复直线 运动—曲轴的旋转运动 对外输出动力
3.供给系统
·组成:燃油供给系统和进、排气系统组成 ·作用:将燃油系统和空气及时地供给气缸, 并将燃烧后的废气及时排除 ·主要部件:化油器(汽)、喷油泵和喷油
器 (柴)、空气滤清器、进气管、排气管、声
be=(B/Pe)×10-3 (g/(KWh)) •B—每小时的燃油消耗量,kg/h •Pe—有效功率,kW 显然燃油消耗率越低,燃油经济性越好
§1.5 发动机的性能指标
三、发动机的速度特性
指发动机的功率、转矩和燃 油消耗率三者随曲轴转速变化 的规律。
发动机外特性:
当节气门开度达到最 大时,所得到的速度 特性称为发动机外特 性
状态 行程
进气行程
压缩行程
作功行程
排气行程
温度(K)
压力
370~440
75~90 kPa
600~800
600~1500 kPa
2200~2800(瞬时最高) 1500~1700(作功终了)
3~5MPa (瞬时最高) 300~500 kPa (作功终了)
900~1200
105~125 kPa
§1.3.2 四冲程柴油机的工作原理
活塞行程(S)
曲柄半径(R)
气缸工作容积(V s )
发动机排量(VL)
燃烧室容积(Vc ) 气缸总容积(Va ) 压缩比ε
Vs= πD2·S ×10-6/4 (L)
D——气缸直径mm S——活塞行程mm
VL= Vs × I
工工况作(循P环、n) 负荷率(%)
ε= Va / Vc
压缩比
定义:压缩前气缸中气体的最大容积与压缩后的最小容积 之比称为压缩比。用ε表示。

凸轮轴布置形式

凸轮轴布置形式凸轮轴是内燃机中的重要零部件,用于控制气门的开闭时间和行程。

凸轮轴的布置形式对于发动机的性能和运行效果有着重要的影响。

本文将介绍凸轮轴的几种常见布置形式。

一、顶置凸轮轴(SOHC)顶置凸轮轴是一种常见的凸轮轴布置形式,它通常位于汽缸头上方,并由皮带或链条与曲轴相连。

顶置凸轮轴可以通过一根凸轮杆或一组摇臂来控制气门的开闭。

这种布置形式简单、紧凑,适用于小型和中型发动机。

二、双顶置凸轮轴(DOHC)双顶置凸轮轴是一种更高级的凸轮轴布置形式,它在每个气缸组(通常包括两个气缸)上都有一个顶置凸轮轴。

这种布置形式可以独立控制进气和排气气门的开闭,使得发动机的性能更加出色。

双顶置凸轮轴通常使用链条传动,稳定可靠。

三、中置凸轮轴(MID)中置凸轮轴是一种将凸轮轴布置在汽缸头中央的形式。

它通常使用摇臂或滚子来控制气门的开闭。

中置凸轮轴的布置形式使得气门的开闭行程更加直接和准确,提高了发动机的效率和性能。

四、侧置凸轮轴(Lateral)侧置凸轮轴是一种将凸轮轴布置在汽缸头侧面的形式。

它通常使用摇臂、推杆或者液压驱动来控制气门的开闭。

侧置凸轮轴的布置形式适用于大型发动机,可以提供更高的输出功率和扭矩。

五、分体式凸轮轴分体式凸轮轴是一种将凸轮轴分成多段的形式。

每段凸轮轴控制一个气缸组的气门开闭。

这种布置形式可以根据需要调整每个气缸的气门开闭时间和行程,提高发动机的可调性和性能。

六、可变气门正时系统(VVT)可变气门正时系统是一种可以根据发动机负载和转速自动调整凸轮轴正时的系统。

它通过改变凸轮轴相对于曲轴的位置或者改变凸轮轴上凸轮的形状来实现。

可变气门正时系统可以提高发动机的燃烧效率和动力输出。

以上是凸轮轴的几种常见布置形式。

不同的布置形式适用于不同类型和功率的发动机。

选择合适的凸轮轴布置形式可以提高发动机的性能和经济性。

希望本文对您有所帮助。

汽车基础知识(发动机)PPT课件


A. 进气阀、摇臂、压紧弹簧 B. 阀门盖 C. 进气门 D. 气缸盖 E. 冷却水 F. 发动机体 G. 油底壳 H. 机油泵 I. 凸轮轴 J. 排气阀、摇臂、弹簧 K. 火花塞 L. 排气门 M. 活塞 N. 连杆 O. 连杆轴 P. 曲轴
演示
1.进气冲程 2.压缩冲程 3.做功冲程 4.排气冲程
本田 VTEC技术
VTEC=Variable Valve Timing and Lift Electronic Control System 可变气门正时及升程电子控制系统
VTC=Variable Timing Control iVTEC=VTEC+VTC
34
Valvetronic
——改变功率和扭矩的技术
组成: 1. 发动机 2. 转速传感器 3. 节气门位置传感器 4. 节气门执行器 5. 节气门 6. 加速踏板位置传感器 7. 车速传感器 8. 变速器 9. 加速踏板 10. 节气门电子控制单元(ECU)
23
——动力性能指标
动力性能指标:功率 和 扭矩
•有效扭矩 最大扭矩
•有效功率 最高输出功率
11
——发动机常用术语
压缩比:气体压缩前的容积与气体压缩后的容积之比值,即气缸 总容积与燃烧室容积之比称为压缩比。
12
——发动机汽缸布置形式
直列5缸(Volvo)

直列(L型)4缸 示 直列6缸(BMW)
13

V型6缸 示
——发动机汽缸布置形式
演示
14
——发动机汽缸布置形式
V型8缸
W型12缸
37
——燃料供给系
燃料供给系汽油电喷系统
38
——燃料供给系
燃料供给系汽油电喷系统 喷油嘴

汽车概论第三章汽车发动机构造

这样,曲拐便会忽而比飞轮转得快,忽而又比飞轮 转得慢、形成相对于飞轮的扭转摆动,也就是曲轴
第二节 发动机机体组与曲柄连杆 机构
(3)飞轮
飞轮主要功用是将在作功行程中传输给曲轴的 功的一部分贮存起来,用以在其它行程中克服阻力, 带动曲柄连杆机构越过上、下止点,保证曲轴的旋 转角速度和输出转矩尽可能均匀,并使发动机有可 能克服短时间的超载荷。
第二节 发动机机体组与曲柄连杆 机构
第二节 发动机机体组与曲柄连杆 机构
汽油机常用燃烧室形状有以下几种:
①半球形燃烧室 半球形燃烧室(如图3-4a所示)的结构较前两种紧
凑,但因进、排气门分别置于缸盖两侧,故使配气 机构比较复杂。由于其散热面积小,有利于促进燃 料的完全燃烧和减少棑气中的有害气体,现代发动 机上用得较多。
在发动机的作功行程时,活塞顶部承受着燃气 的带冲击性的高压力。对于汽油机活塞瞬时的压力 最大值可达3-5Mpa;对于柴油机活塞,其最大值
第二节 发动机机体组与曲柄连杆 机构
(2)活塞环
活塞环包括气环和油环两种。
气环的作用是保证活塞与气缸壁间的密封,防止气 缸中的高温、高压燃气大量漏入曲轴箱,同时还将 活塞顶部的大部分热量传导到气缸壁,再由冷却水 或空气带走。
第二节 发动机机体组与曲柄连杆 机构
二、曲柄连杆机构
曲柄连杆机构是发动机的主要运动机构,其功用是 将活塞的往复运动转变为曲轴的旋转运动,同时将 作用于活塞上的力转变为曲轴对外输出的转矩,以 驱动汽车车轮转动。曲柄连杆机构由活塞连杆组和 曲轴飞轮组等零部件组成。
1.活塞连杆组
活塞连杆组由活塞、活塞环、活塞销、连杆等机件 组成,其组成示意图如图3-6所示。
第三节 配气机构
第三节 配气机构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发动机布置形式解析
发动机纵置是指发动机与汽车的前桥垂直,发动机横置是指发动机和汽车前桥平行。

简单的讲就是你站在车头前面向发动机,如果发动机横着放在你眼前,就是横置发动机;竖着放在你眼前,就是纵置式发动机。

这里只讲轿车的前置发动机的横置和纵置问题,其他布置方式暂不讨论。

既然前置发动机有两种布置方式,那这里就应该有好与不好的问题。

不过好不好不是那么容易评价的,应该说各有优劣,或者说对于不同的车型各自有不同的表现。

简单来讲,前驱的紧凑型轿车、大多数的中级轿车和少数高级轿车都采用了横置发动机的布置方式,是主流。

而后驱轿车基本上都采用了纵置发动机,比如德国三驾马车:宝马的所有车型(不含MINI)都是纵置发动机;奔驰除了A、B级也都是纵置发动机;奥迪A4及以上车型也全都是纵置发动机。

是不是纵置发动机就好与横置发动机呢?那为什么大多数的轿车都采用了横置发动机呢?
从力学角度来说,力的传输损耗与力的传输距离成正比,与力的方向变化次数成正比。

横置发动机的曲轴、变速器的输入输出轴以及车桥都是平行的,所以如果是前驱车的话,最适合的就是前横置发动机,动力传输距离短,方向一致,因此传动效率很高。

这算是大多数车采用横置发动机的第一个原因。

而后驱车,因为动力要传递到后桥上,在传动距离无法缩短的情况下,就要尽可能减少动力的方向转换。

如果采用横置的话,因为曲轴和传动轴的方向垂直,所以先要转换一次方向,以通过传动轴传输动力,但是传动轴的方向和后桥的方向也是垂直的,所以在后桥需要再将旋转方向转换过来,这无疑降低了传动系统的效率。

而使用纵置发动机就可以使得曲轴与传动轴平行,减少了一次传动方向的转换,无疑是降低了能量的损失。

这算是后驱车采用纵置发动机的第一个原因。

众所周知,50:50的前后完美轴荷一直是以操控著称的宝马汽车不惜一切所坚持的。

而整车最具重量的发动机和变速器总成的布置无疑是左右前后轴荷配比的关键因素。

纵置发动机可以让变速器的位置尽量向后伸,使动力总成的重心位于前桥之后,而横置发动机却难以做到这一点。

轴荷分配不合理的横置发动机轿车甚至达到了前70%后30%,其性能可想而知。

把一台V6发动机横着放进发动机舱里不算是多么困难的事情,很多车型都
做到了,大众甚至把V6发动机放进了GOLF这么小的车子里。

但是却没有哪个生产商可以把V8横着放进发动机舱,V10、V12、W16就更不用说了。

所以大排量的豪华车只能选择纵置发动机。

如果你看到奔驰SLR或者SL、亦或者宝马Z4,你一定会被它修长的车头所吸引。

庞大的发动机舱甚至占去了整车一半的长度,只需要这视觉的冲击,你就会被浮现在你脑海的澎湃动力所感染!这属于美学的东西,我不懂,只知道那确实很美,就像穿短裙的长腿美女!
这样分析下来纵置发动机似乎是最好的布置方式了。

其实不然,尤其是对于级别不够高的车型,比如奔驰C、宝马3、奥迪A4,它们狭窄的后排空间一直被国人看成是败笔,不过,那实在是为了整车性能做出的牺牲,不得已而为之。

所以说奥迪A4、A6以及宝马5系加了个不伦不类的L之后无疑会让它本来优越的操控打了折扣,这与国人的用车取向有关,卖得好不能代表什么,希望奔驰E 级不要因为这样原本错误的取向而弄出个奔驰EL来!
那么横置发动机就一无是处了吗?其实不然,横置发动机当然也有它的优点。

总结下来有两点:第一,前置前驱的最佳布置方案,这一点前面说过了,动力传递直接、传输效率高;第二,减小发动机舱、最大化的扩大驾乘空间;横置发动机占用的纵向空间小,可以极大限度缩短了发动机舱的纵向空间,换来的是宽敞的驾乘空间,尤其是前排乘客的腿部拓展的空间。

这对于尺寸有限的紧凑型轿车来讲尤为重要,在操控性不佳而舒适性不错的日系车中表现得尤为突出。

比如思域,只有的4.5米的长度,轴距却达到了2.7米,空间表现相当突出,这不得不说是横置发动机为它做出的贡献啊。

当然,横置发动机的缺点要比纵置发动机的缺点突出,首当其冲的就是轴荷分布问题,前轴荷过大是个难以解决的的问题。

不过在这方面大众做的很好,它的GOLF(狗夫)、JETTA(捷达也就是国内的速腾)以及PASSAT(国内的迈腾)虽然也是前横置发动机,但轴荷分布也做到了前58%后42%的水平,实属难得。

另外,由于横置发动机变速器安装位置过于偏向一侧的原因,其驱动轴是一长一短的,当巨大的驱动力作用在不等长的传动轴上时,会使车两个前轮有转速
差,从而导致急加速时车头有左右摆动现象,这一点在大排量前置前驱车型上尤为明显,比如一直坚持横置前驱的VOLVO S80。

最后,总结下来就是这样的:不同的车型需要采用不同的布置方式,纵置发动机最适合的后驱以及四驱车型,能够满足复杂的悬架结构以及体积庞大的大排量发动机的布置要求,属于高级别的车型的布置手法。

横置发动机适合小排量、低级别的前驱车型,能够提高前机舱利用率,最大化的增加驾乘空间。

相关文档
最新文档