青海省西宁市2017_2018学年高一数学下学期期末考试试题(含解析)

合集下载

西宁市高一下学期期末数学试卷 (I)卷(考试)

西宁市高一下学期期末数学试卷 (I)卷(考试)
A . (x+3)2+(y-3)2=2
B . (x-1)2+(y+1)2=2
C . (x-2)2+(y+2)2=2
D . (x-3)2+(y+3)2=2
9. (2分) 一艘轮船从海面上从A点出发,以40nmile/h的速度沿着北偏东30°的方向航行,在A点正西方有一点B,AB=10nmile,该船1小时后到达C点并立刻转为南偏东60°的方向航行, 小时后到达D点,整个航行过程中存在不同的三点到B点的距离构成等比数列,则以下不可能成为该数列的公比的数是( )
A . (3,2)
B .
C . (-3,-2)
D .
6. (2分) 设 ,且 ,则( )
A .
B .
C .
D .
7. (2分) 设a>0,b>0且a+b=1则 的最小值是 ( )
A . 2
B . 4
C .
D . 6
8. (2分) 已知圆C1:(x+2)2+(y-2)2=2,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )
(1)
(1)将曲线 的极坐标方程化为直角坐标方程,
(2)
(2)设点 的直角坐标为 ,直线 与曲线 的交点为 ,求 的值
19. (10分) (2018·唐山模拟) 如图,在平面四边形 中, ,设 .
(1) 若 ,求 的长度;
(2) 若 ,求 .
20. (5分) 设函数f(x)=x2+ax+b,a,b∈R.
西宁市高一下学期期末数学试卷 (I)卷
姓名:________班级:________ 成绩:________
一、 选择题 (共12题;共24分)
1. (2分) (2017·成都模拟) 已知α为第二象限角.且sin2α=﹣ ,则cosα﹣sinα的值为( )

青海省西宁2017-2018学年高一下学期期中数学试卷Word版含解析

青海省西宁2017-2018学年高一下学期期中数学试卷Word版含解析

青海省西宁2017-2018学年高一下学期期中考试数学试卷一、选择题:(本大题有12小题,每小题5分,共60分,请从A,B,C,D四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分.)1.如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是()A.ab>ac B.c(b﹣a)>0 C.cb2<ab2D.ac(a﹣c)<02.等差数列中,a1+a2+a3=﹣24,a18+a19+a20=78,则此数列前20项和等于()A.160 B.180 C.200 D.2203.若A={x|x2﹣1<0},B={x|lgx<1},则A∩B=()A.{x|﹣1<x<10} B.{x|0<x<10} C.{x|0<x<1} D.{x|﹣1<x<1}4.根据下列情况,判断三角形解的情况,其中正确的是()A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解5.函数的定义域是()A. B. D.6.△ABC的三内角A,B,C所对边的长分别为a,b,c.设向量=(a+c,b),=(b﹣a,c﹣a),若向量∥,则角C的大小是()A.B.C.D.7.已知数列{a n}满足a1=1,a n+1=a n+2n,则a10=()A.1 024 B.1 023 C.2 048 D.2 0478.在△ABC中,AB=3,AC=2,BC=,则•等于()A.﹣ B.﹣ C.D.9.已知两个等差数列{a n}和{b n}的前n项和之比为,则等于()A.B.C.D.10.在△ABC中,b2﹣bc﹣2c2=0,,,则△ABC的面积为()A. B.C.2 D.11.已知等差数列{a n}中,S n是它的前n项和,若S16>0,S17<0,则当S n最大时n的值为()A.8 B.9 C.10 D.1612.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C. D.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置)13.数列{a n}的通项公式为a n=log n+1(n+2),则它前14项的积为 4.14.点(a,1)在直线x﹣2y+4=0的右下方,则a的取值范围是.15.已知数列{a n}满足,则a20= .16.△ABC的两边长分别为2,3,其夹角的余弦值为,则其外接圆的半径为.三、解答题:解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤)17.△ABC中,角A,B,C所对的边分别是a,b,c,且cosA=.(1)求的值;(2)若b=2,△ABC的面积S=3,求a的值.18.若等差数列{a n}的首项a1=13,d=﹣4,记T n=|a1|+|a2||…+|a n|,求T n.19.已知函数f(x)=lg的定义域为R,则实数m的取值范围是.20.在△ABC中,角A、B、C的对边分别为a,b,c,已知向量=(cos,sin),=(cos,sin),且满足|+|=.(1)求角A的大小;(2)若b+c=a,试判断△ABC的形状.21.设数列{a n}的前n项为S n,点(n,),(n∈N*)均在函数y=3x﹣2的图象上.(1)求数列{a n}的通项公式.(2)设b n=,T n为数列{b n}的前n项和,求使得T n<对所有n∈N*都成立的最小正整数m.22.(1)已知关于x的不等式ax2+bx+c<0的解集是{x|x<﹣2,或x>﹣},求不等式ax2﹣bx+c>0的解集.(2)已知M是关于x的不等式2x2+(3a﹣7)x+3+a﹣2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.青海省西宁2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题:(本大题有12小题,每小题5分,共60分,请从A,B,C,D四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分.)1.如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是()A.ab>ac B.c(b﹣a)>0 C.cb2<ab2D.ac(a﹣c)<0【考点】71:不等关系与不等式.【分析】本题根据c<b<a,可以得到b﹣a与a﹣c的符号,当a>0时,则A成立,c<0时,B成立,又根据ac<0,得到D成立,当b=0时,C不一定成立.【解答】解:对于A,∵c<b<a且ac<0,∴则a>0,c<0,必有ab>ac,故A一定成立对于B,∵c<b<a∴b﹣a<0,又由c<0,则有c(b﹣a)>0,故B一定成立,对于C,当b=0时,cb2<ab2不成立,当b≠0时,cb2<ab2成立,故C不一定成立,对于D,∵c<b<a且ac<0∴a﹣c>0∴ac(a﹣c)<0,故D一定成立故选C.2.等差数列中,a1+a2+a3=﹣24,a18+a19+a20=78,则此数列前20项和等于()A.160 B.180 C.200 D.220【考点】8F:等差数列的性质.【分析】先根据a1+a2+a3=﹣24,a18+a19+a20=78可得到a1+a20=18,再由等差数列的前20项和的式子可得到答案.【解答】解:∵a1+a2+a3=﹣24,a18+a19+a20=78∴a1+a20+a2+a19+a3+a18=54=3(a1+a20)∴a1+a20=18∴=180故选B3.若A={x|x2﹣1<0},B={x|lgx<1},则A∩B=()A.{x|﹣1<x<10} B.{x|0<x<10} C.{x|0<x<1} D.{x|﹣1<x<1} 【考点】1E:交集及其运算.【分析】利用交集定义和对数函数性质求解.【解答】解:∵A={x|x2﹣1<0}={x|﹣1<x<1},B={x|lgx<1}={x|}={x|0<x<10},∴A∩B={x|0<x<1}.故选:B.4.根据下列情况,判断三角形解的情况,其中正确的是()A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解【考点】HX:解三角形.【分析】利用正弦定理分别对A,B,C,D选项进行验证.【解答】解:A项中sinB=•sinA=1,∴B=,故三角形一个解,A项说法错误.B项中sinC=sinB=,∵0<C<π,故C有锐角和钝角两种解.C项中b==,故有解.D项中sinB=•sinA=,∵A=150°,∴B一定为锐角,有一个解.故选:D.5.函数的定义域是()A. B. D.【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式,求出解集即可.【解答】解:函数,∴(x2﹣2)≥0,∴0<x2﹣2≤1,∴2<x2≤3,解得﹣≤x<﹣或<x≤;∴函数y的定义域是.故选:D6.△ABC的三内角A,B,C所对边的长分别为a,b,c.设向量=(a+c,b),=(b﹣a,c﹣a),若向量∥,则角C的大小是()A.B.C.D.【考点】HR:余弦定理;96:平行向量与共线向量.【分析】因为,根据向量平行定理可得(a+c)(c﹣a)=b(b﹣a),展开即得b2+a2﹣c2=ab,又根据余弦定理可得角C的值.【解答】解:∵∴(a+c)(c﹣a)=b(b﹣a)∴b2+a2﹣c2=ab2cosC=1∴C=故选B.7.已知数列{a n}满足a1=1,a n+1=a n+2n,则a10=()A.1 024 B.1 023 C.2 048 D.2 047【考点】11:集合的含义;8H:数列递推式.【分析】根据条件,从而{a n+1﹣a n}为等比数列,求该数列的前9项和便可得到,这样即可求出a10.【解答】解:;∴;∴(a2﹣a1)+(a3﹣a2)+…+(a10﹣a9)=;∴a10﹣a1=a10﹣1=1022;∴a10=1023.故选:B.8.在△ABC中,AB=3,AC=2,BC=,则•等于()A.﹣B.﹣C.D.【考点】HR:余弦定理;9R:平面向量数量积的运算.【分析】根据利用余弦定理求出cosA,通过向量数量积的量,=,求解即可.【解答】解:在△ABC中,由余弦定理得:cosA===,==﹣=﹣=.故选:A.9.已知两个等差数列{a n}和{b n}的前n项和之比为,则等于()A.B.C.D.【考点】85:等差数列的前n项和.【分析】利用等差数列的性质可得: =,即可得出.【解答】解:利用等差数列的性质可得: ===.故选:C.10.在△ABC中,b2﹣bc﹣2c2=0,,,则△ABC的面积为()A. B.C.2 D.【考点】HP:正弦定理;HR:余弦定理.【分析】由已知的等式分解因式,求出b与c的关系,用c表示出b,然后根据余弦定理表示出cosA,把a 与cosA的值代入即可得到b与c的关系式,将表示出的含c的式子代入即可得到关于b的方程,求出方程的解即可得到b的值,从而求得c的值,即可求得△ABC的面积.【解答】解:由b2﹣bc﹣2c2=0因式分解得:(b﹣2c)(b+c)=0,解得:b=2c,b=﹣c(舍去).又根据余弦定理得:cosA===,化简得:4b2+4c2﹣24=7bc,将c=代入得:4b2+b2﹣24=b2,即b2=16,解得:b=4或b=﹣4(舍去),则b=4,故c=2.由可得 sinA=,故△ABC的面积为=,故选B.11.已知等差数列{a n}中,S n是它的前n项和,若S16>0,S17<0,则当S n最大时n的值为()A.8 B.9 C.10 D.16【考点】8E:数列的求和.【分析】根据所给的等差数列的S16>0且S17<0,根据等差数列的前n项和公式,看出第九项小于0,第八项和第九项的和大于0,得到第八项大于0,这样前8项的和最大.【解答】解:∵等差数列{a n}中,S16>0且S17<0∴a8+a9>0,a9<0,∴a8>0,∴数列的前8项和最大故选A12.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C. D.【考点】7C:简单线性规划.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x ﹣y 可得y=3x ﹣z ,则﹣z 为直线y=3x ﹣z 在y 轴上的截距,截距越大,z 越小 结合图形可知,当直线y=3x ﹣z 平移到B 时,z 最小,平移到C 时z 最大由可得B (,3),由可得C (2,0),z max =6∴故选A二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置) 13.数列{a n }的通项公式为a n =log n+1(n+2),则它前14项的积为 4. 【考点】81:数列的概念及简单表示法;4H :对数的运算性质.【分析】利用对数的换底公式可得a n =log n+1(n+2)=,代入即可得出.【解答】解:∵a n =log n+1(n+2)=,则a 1a 2•…•a 14===4,故答案为:4.14.点(a ,1)在直线x ﹣2y+4=0的右下方,则a 的取值范围是 (﹣2,+∞) . 【考点】7B :二元一次不等式(组)与平面区域.【分析】因为原点(0,0)在直线x ﹣2y+4=0的右下方区域,所以代入直线方程左侧的值大于0,代表所有原点所在区域,点(a,1)和(0,0)在直线的同侧,所以点的坐标代入直线左侧的代数式后大于0.【解答】解:点(a,1)在直线x﹣2y+4=0的右下方区域,则a﹣2+4>0,解得:a>﹣2.故答案为:(﹣2,+∞).15.已知数列{a n}满足,则a20= ﹣.【考点】8H:数列递推式.【分析】先根据可得到a2,a3,a4的值,从而可得到数列{a n}是以3为周期的数列,根据20=3×6+2得到a20=a2=﹣,进而得到答案.【解答】解:∵,∴,,,…∴数列{a n}是以3为周期的数列,又20=3×6+2∴a20=a2=﹣故答案为:﹣16.△ABC的两边长分别为2,3,其夹角的余弦值为,则其外接圆的半径为.【考点】HP:正弦定理.【分析】由条件利用余弦定理求得第三边x,再利用正弦定理求得外接圆的半径R的值.【解答】解:设另一条边为x,则x2=22+32﹣2×2×3×,∴x2=9,∴x=3.设cosθ=,则sinθ=.∴再由正弦定理可得 2R====,∴外接圆的半径R=,故答案为:.三、解答题:解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤)17.△ABC中,角A,B,C所对的边分别是a,b,c,且cosA=.(1)求的值;(2)若b=2,△ABC的面积S=3,求a的值.【考点】HX:解三角形.【分析】(1)利用诱导公式及二倍角的余弦公式对式子化简,==,代入可求(2)由可求sinA,代入三角形的面积公式 S=可求c,然后利用余弦定理可得a2=b2+c2﹣2bccosA可求a【解答】解:(1)====(2)∵∴ S===3∴c=5,a2=b2+c2﹣2bccosA=∴18.若等差数列{a n}的首项a1=13,d=﹣4,记T n=|a1|+|a2||…+|a n|,求T n.【考点】85:等差数列的前n项和.【分析】先求出a n=17﹣4n,等差数列{a n}的前n项和S n=15n﹣2n2,由n≤4时,T n=S n,n≥5时,T n=﹣S n+2S4,能求出T n.【解答】解:∵等差数列{a n}的首项a1=13,d=﹣4,∴a n=13+(n﹣1)×(﹣4)=17﹣4n,等差数列{a n}的前n项和S n=×(﹣4)=15n﹣2n2,由a n=17﹣4n>0,得n<,a4=17﹣16=1,a5=17﹣4×5=﹣3,∵T n=|a1|+|a2||…+|a n|,∴n≤4时,T n=S n=15n﹣n2,n≥5时,T n=﹣S n+2S4=n2﹣15n+88.∴.19.已知函数f(x)=lg的定义域为R,则实数m的取值范围是m>或m≤1 .【考点】33:函数的定义域及其求法.【分析】由于f(x)的定义域为R,则(m2﹣3m+2)x2+(m﹣1)x+1>0恒成立,讨论m2﹣3m+2=0,和m2﹣3m+2>0,且判别式小于0,解出它们,求并集即可.【解答】解:由于f(x)的定义域为R,则(m2﹣3m+2)x2+(m﹣1)x+1>0恒成立,若m2﹣3m+2=0,即有m=1或2,当m=1时,1>0,恒成立,当m=2时,x+1>0不恒成立.若m2﹣3m+2>0,且判别式小于0,即(m﹣1)2﹣4(m2﹣3m+2)<0,即有m>2或m<1,且m>或m<1,则m>或m<1,综上,可得,m>或m≤1,故答案为:m>或m≤1.20.在△ABC中,角A、B、C的对边分别为a,b,c,已知向量=(cos,sin),=(cos,sin),且满足|+|=.(1)求角A的大小;(2)若b+c=a,试判断△ABC的形状.【考点】GZ:三角形的形状判断;GF:三角函数的恒等变换及化简求值.【分析】(1)根据所给的向量的坐标和向量模的条件,得到关于角A的三角函数关系,本题要求角A的大小,利用整理出来的三角函数值和角是三角形的内角,得到结果.(2)本题是一个解三角形问题,应用上一问给出的结果,和.根据正弦定理把边之间的关系变化为角之间的关系,逆用两角和的正弦公式,得到结果.【解答】解:(1)∵,∴ =2+2cosA=3,∴,∴(2)∵,∴,∴,∴2b2﹣5bc+2c2=0,∴当b=2c时,a2+c2=3c2+c2=4c2=b2,△ABC是以∠C为直角的直角三角形当b=时,a2+b2=c2,△ABC是以∠B为直角的直角三角形终上所述:△ABC是直角三角形21.设数列{a n}的前n项为S n,点(n,),(n∈N*)均在函数y=3x﹣2的图象上.(1)求数列{a n}的通项公式.(2)设b n=,T n为数列{b n}的前n项和,求使得T n<对所有n∈N*都成立的最小正整数m.【考点】8I:数列与函数的综合;84:等差数列的通项公式;8E:数列的求和.【分析】(1)由点在y=3x﹣2的图象上,得=3n﹣2,即s n=3n2﹣2n;由a n=S n ﹣S n﹣1可得通项公式,须验证n=1时,a n也成立.(2)由(1)知,b n==…=;求和T n=,可得;令;即,解得m即可.【解答】解:(1)依题意,点在y=3x﹣2的图象上,得=3n﹣2,∴s n=3n2﹣2n;当n≥2时,a n=S n﹣S n﹣1=(3n2﹣2n)﹣=6n﹣5 ①;当n=1时,a1=S1=3×12﹣2=1,适合①式,所以,a n=6n﹣5 (n∈N*)(2)由(1)知,b n===;故T n===;因此,使成立的m,必须且仅须满足,即m≥10;所以,满足要求的最小正整数m为10.22.(1)已知关于x的不等式ax2+bx+c<0的解集是{x|x<﹣2,或x>﹣},求不等式ax2﹣bx+c>0的解集.(2)已知M是关于x的不等式2x2+(3a﹣7)x+3+a﹣2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.【考点】74:一元二次不等式的解法.【分析】(1)不等式ax2+bx+c<0的解集得出a<0,且对应方程的两实数根,利用根与系数的关系求出和的值,再化不等式ax2﹣bx+c>0,从而求出它的解集;(2)x=0代入不等式2x2+(3a﹣7)x+3+a﹣2a2<0,求出a的取值范围;再求对应二次不等式2x2+(3a﹣7)x+(3+a﹣2a2)<0的解集.【解答】解:(1)关于x的不等式ax2+bx+c<0的解集是{x|x<﹣2,或x>﹣},∴a<0,且方程ax2+bx+c=0的两实数根为﹣2和﹣,由根与系数的关系知,;解得=, =1;∴不等式ax2﹣bx+c>0可化为x2﹣x+1<0,解得<x<2,∴所求不等式的解集为(,2);(2)根据题意,把x=0代入不等式2x2+(3a﹣7)x+3+a﹣2a2<0,得3+a﹣2a2<0,即2a2﹣a﹣3>0,解得a<﹣1或a>;∴实数a的取值范围是(﹣∞,﹣1)∪(,+∞);二次不等式对应的方程为2x2+(3a﹣7)x+(3+a﹣2a2)=0,其两根为3﹣2a, a+,当a<﹣1时,3﹣2a>a+,∴不等式2x2+(3a﹣7)x+(3+a﹣2a2)<0的解集为{x|a+<x<3﹣2a};当a>时,3﹣2a<a+,∴不等式2x2+(3a﹣7)x+(3+a﹣2a2)<0的解集为{x|3﹣2a<x<a+}.。

〖数学期末〗2017-2018学年高一下期末考试数学试题含答案

〖数学期末〗2017-2018学年高一下期末考试数学试题含答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A .2 B .2- C .2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537 C.37.378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式;(II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)44cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭,.因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-.. 19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。

青海省西宁市高一下学期期末数学试卷(理科)

青海省西宁市高一下学期期末数学试卷(理科)

青海省西宁市高一下学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)知全集U={0,1,3,5,6,8},集合A={1,5,8 }, B ={2},则集合()A . {0,2,3,6}B . {0,3,6,}C . {2,1,5,8,}D .2. (2分)若0<x1<x2<1,则()A . ﹣>lnx2﹣lnx1B . ﹣<lnx2﹣lnx1C . x2>x1D . x2<x13. (2分) (2018高一下·濮阳期末) 若将函数的图形向右平移个单位,所得图象关于轴对称,则的最小正值是()A .B .C .D .4. (2分)计算sin43°cos13°﹣cos43°sin13°的结果等于()A .B .C .D .5. (2分)已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A . 1B .C . 3D . 26. (2分) (2018高二下·辽源月考) 若命题“∃x0∈R,使得x+mx0+2m-3<0”为假命题,则实数m的取值范围是()A . [2,6]B . [-6,-2]C . (2,6)D . (-6,-2)7. (2分)若直线l:x+ay+2=0平行于直线2x﹣y+3=0,则直线l在两坐标轴上截距之和是()A . 6B . 2C . -1D . -28. (2分) (2019高一下·朝阳期末) 已知二次函数交轴于两点(不重合),交轴于点. 圆过三点.下列说法正确的是()① 圆心在直线上;② 的取值范围是;③ 圆半径的最小值为;④ 存在定点,使得圆恒过点 .A . ①②③B . ①③④C . ②③D . ①④9. (2分) (2016高二上·延安期中) 在△ABC中,a,b,c分别为角A,B,C所对边,若a=2bcosC,则此三角形一定是()A . 等腰直角三角形B . 直角三角形C . 等腰三角形D . 等腰或直角三角形10. (2分) (2016高三上·天津期中) 已知数列{an}满足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)•( +1)(n∈N*),b1=﹣λ,且数列{bn}是单调递增数列,則实数λ的取值范围是()A .B .C .D .11. (2分) (2016高一上·镇海期末) 已知,,,为非零向量,且 + = ,﹣= ,则下列说法正确的个数为()①若| |=| |,则• =0;②若• =0,则| |=| |;③若| |=| |,则• =0;④若• =0,则| |=| |A . 1B . 2C . 3D . 412. (2分)过点P(2,3),并且在两轴上的截距相等的直线方程是()A . x+y﹣5=0B . 3x﹣2y=0C . x+y﹣5=0或3x﹣2y=0D . x﹣y+1=0或3x﹣2y=0二、填空题 (共4题;共4分)13. (1分)(2017·焦作模拟) 在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC 的外接圆半径为1,,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为________.14. (1分) (2016高二上·济南期中) 函数y=x+ (x>2)的最小值是________.15. (1分) (2016高一下·汕头期末) 已知x,y满足不等式,且函数z=2x+y﹣a的最大值为8,则常数a的值为________.16. (1分)函数f(x)=-2tanx+m,x[,]有零点,则实数m的取值范围是________ .三、解答题 (共6题;共60分)17. (10分) (2016高三上·闵行期中) 已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为(,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移0.5π个单位长度后得到函数g(x)的图象;(1)求函数f(x)与g(x)的解析式;(2)当a≥1,求实数a与正整数n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019个零点.18. (10分)已知圆P过点A(1,0),B(4,0).(1)若圆P还过点C(6,﹣2),求圆P的方程;(2)若圆心P的纵坐标为 2,求圆P的方程.19. (10分) (2017高二上·浦东期中) 已知数列{an}满足a1=4,2an+1=an+1.(1)求{an}的通项公式和a5;(2)若要使a≤ ,求n的取值范围.20. (10分)在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)﹣f(x).某公司每月最多生产100台报警系统装置,生产x(x∈N*)台的收入函数为R(x)=3000x+ax2(单位:元),其成本函数为C (x)=kx+4000(单位:元),利润是收入与成本之差.当生产10台时,成本为9000元,利润为19000元.(1)求利润函数P(x)及边际利润函数MP(x);(2)利润函数P(x)与边际利润函数MP(x)是否具有相同的最大值?21. (10分) (2017高一下·苏州期末) 已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn .(1)求{an}和{bn}的通项;(2)令cn= ,①求{cn}的前n项和Tn;②是否存在正整数m满足m>3,c2,c3,cm成等差数列?若存在,请求出m;若不存在,请说明理由.22. (10分)已知椭圆C: + =1(a>b>0),离心率是,原点与C直线x=1的交点围成的三角形面积是.(1)求椭圆方程;(2)若直线l过点(,0)与椭圆C相交于A,B两点(A,B不是左右顶点),D是椭圆C的右顶点,求∠ADB是定值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共11 页。

西宁市高一下学期数学期末考试试卷 B卷

西宁市高一下学期数学期末考试试卷 B卷

西宁市高一下学期数学期末考试试卷 B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一上·深圳期末) 下列方程表示的直线倾斜角为135°的是()A . y=x﹣1B . y﹣1= (x+2)C . + =1D . x+2y=02. (2分)直线x+(b﹣2)y+1=0与直线a2x+(b+2)y+3=0互相垂直,a,b∈R,则ab的最大值为()A . 1B . 2C . 4D . 53. (2分) (2018高一下·抚顺期末) 某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A .B .C .D .4. (2分)(2013·重庆理) 执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A . k≤6B . k≤7C . k≤8D . k≤95. (2分) (2017高二下·岳阳期中) M在不等式组所表示的平面区域上,点N在曲线x2+y2+4x+3=0上,那么|MN|的最小值是()A .B . 1C . ﹣1D .6. (2分)为调查某中学学生平均每人每天参加体育锻炼时间X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②10~20分钟;③20~30分钟;④30分钟以上.有2000名中学生参加了此项活动.下表是此次调查中的频数分布表.国家规定中学生每天参加体育锻炼时间达到30分钟以上者,才能保持良好健康的身体发展,则平均每天保持良好健康的身体发展的学生的频率是()组距[0,10)[10,20)[20,30)[30,+)频数400600800200A . 0.1B . 0.2C . 0.3D . 0.47. (2分) (2017高二上·荆门期末) 抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A . 至多有2件次品B . 至多有1件次品C . 至多有2件正品D . 至多有1件正品8. (2分)已知函数f(x)=sin2x﹣(x∈[0,π]),g(x)=x+3,点P(x1 , y1),Q(x2 , y2)分别位于f(x),g(x)的图象上,则(x1﹣x2)2+(y1﹣y2)2的最小值为()A .B .C .D .9. (2分)如果4个数x1 , x2 , x3 , x4的方差7,那么3x1+5,3x2+5,3x3+5,3x4+5,这4个数的方差是()A . 12B . 21C . 26D . 6310. (2分)执行如图所示的程序框图,输出的s值为A . -10B . -3C . 4D . 511. (2分)春节前,某市一过江大桥上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的6秒内任一时刻等可能发生,然后每串彩灯以6秒内间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过3秒的概率是()A .B .C .D .12. (2分)过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l 与m的距离为()A . 4B . 2C .D .二、填空题 (共5题;共5分)13. (1分)三进制数121(3)化为十进制数为________14. (1分)菲特台风重创宁波,志愿者纷纷前往灾区救援.现从四男三女共7名志愿者中任选2名(每名志愿者被选中的机会相等),则2名都是女志愿者的概率为________.15. (1分) (2018高二上·寻乌期末) 已知,若且,则的取值范围为________.16. (1分) (2019高二上·上海期中) 如图,光线从出发,经过直线反射到,该光线又在点被轴反射,若反射光线恰与直线平行,且,则实数的取值范围是________.17. (1分)样本数据﹣2,0,5,3,4的方差是________.三、解答题 (共5题;共60分)18. (10分)设直线l1:(a﹣1)x﹣4y=1,l2:(a+1)x+3y=2,l3:x﹣2y=3.(1)若直线l1的倾斜角为135°,求实数a的值;(2)若l2∥l3,求实数a的值.19. (10分)设人的某一特征(如眼睛的大小)是由他的一对基因所决定,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:(1) 1个孩子显露显性特征的概率是多少?(2)“该父母生的2个孩子中至少有1个显露显性特征”,这种说法正确吗?20. (10分) (2018高一下·唐山期末) 某公司经营一种二手机械,对该型号机械的使用年数与再销售价格(单位:百万元/台)进行统计整理,得到如下关系:使用年数246810再销售价格16139.575附:参考公式:, .(1)求关于的回归直线方程;(2)该机械每台的收购价格为(百万元),根据(1)中所求的回归方程,预测为何值时,此公司销售一台该型号二手机械所获得的利润最大?21. (15分) (2016高一下·和平期末) 某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.组号分组回答正确的人数回答正确的人数占本组的比例第1组[18,28)50.5第2组[28,38)18a第3组[38,48)270.9第4组[48,58)x0.36第5组[58,68)30.2(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.22. (15分) (2017高一下·赣州期末) 已知直线l的方程为(2﹣m)x+(2m+1)y+3m+4=0,其中m∈R.(1)求证:直线l恒过定点;(2)当m变化时,求点P(3,1)到直线l的距离的最大值;(3)若直线l分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线l的方程.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共60分) 18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、第11 页共11 页。

青海省西宁市高一下学期期末数学试卷

青海省西宁市高一下学期期末数学试卷

青海省西宁市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高二下·怀仁期末) 在锐角中,角的对边分别为,若,,则的取值范围是()A .B .C .D .2. (2分)若a、b、c∈R,,则下列不等式成立的是()A . <B .C . >D .3. (2分)下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为()A . 0B . 1C . 2D . 34. (2分)若数列{an}的通项公式为an=2n+5,则此数列是()A . 公差为2的等差数列B . 公差为5的等差数列C . 首项为5的等差数列D . 公差为n的等差数列5. (2分) (2017高二上·桂林月考) 在△ABC中,若acosB=bcosA ,则该三角形一定是()A . 等腰三角形B . 直角三角形C . 等边三角形D . 等腰直角三角形6. (2分) (2016高一下·黄冈期末) 下列命题错误的是()A . 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB . 如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC . 如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD . 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β7. (2分)在中,,则角的大小为()A .B .C .D .8. (2分)如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()A . 3B . 3C . 4D . 59. (2分) (2016高三上·黑龙江期中) 设等差数列{an}的前n项和为Sn ,若a6=18﹣a7 ,则S12=()A . 18B . 54C . 72D . 10810. (2分) (2016高二上·郑州期中) 设a>0,b>0,若a+b=1,则的最小值为()A . 4B . 8C . 1D .11. (2分) (2017高一下·宜昌期中) 在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2﹣b2= ac,则角B的值为()A .B .C . 或D . 或12. (2分) (2016高二上·黄浦期中) 数列{an}的前n项和Sn=an﹣1,则关于数列{an}的下列说法中,正确的个数有()①一定是等比数列,但不可能是等差数列②一定是等差数列,但不可能是等比数列③可能是等比数列,也可能是等差数列④可能既不是等差数列,又不是等比数列⑤可能既是等差数列,又是等比数列.A . 4B . 3C . 2D . 1二、填空题 (共4题;共5分)13. (1分) (2016高三上·泰兴期中) =________.14. (2分)如图,在正方体ABCD−A1B1C1D1中判断下列位置关系:(1) AD1所在的直线与平面BCC1B1的位置关系是________;(2)平面A1BC1与平面ABCD的位置关系是________.15. (1分)已知数列{an}的首项为1,数列{bn}为等比数列,且,则a15=________.16. (1分) (2016高三上·大庆期中) 给出以下命题:①双曲线﹣x2=1的渐近线方程为y=± x;②命题P:∀x∈R+ , sinx+ ≥1是真命题;③已知线性回归方程为 =3+2x,当变量x增加2个单位,其预报值平均增加4个单位;④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(﹣1<ξ<0)=0.6;则正确命题的序号为________.三、解答题 (共8题;共70分)17. (5分)(2017·襄阳模拟) 已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN= π,在△ABC 中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.18. (5分) (2016高二上·临沂期中) 数列{an}满足an+1+an=4n﹣3(n∈N*)(Ⅰ)若{an}是等差数列,求其通项公式;(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1 .19. (10分) (2018高二下·辽宁期中) 如图,在三棱柱中,,,为的中点,.(1)求证:平面平面;(2)求到平面的距离.20. (10分) (2018高二上·泰安月考) 解下列关于的不等式:(1);(2) .21. (10分)(2017·成安模拟) 已知数列{an}满足a1= ,an+1=10an+1.(1)证明数列{an+ }是等比数列,并求数列{an}的通项公式;(2)数列{bn}满足bn=lg(an+ ),Tn为数列{ }的前n项和,求证:Tn<.22. (10分)已知α,β∈(0,),且sin(α+2β)= sinα.(1)求tan(α+β)﹣6tanβ的值;(2)若tanα=3tanβ,求α的值.23. (10分)(2020·秦淮模拟) 如图,在△ABC中,已知B ,AB=3,AD为边BC上的中线,设∠BAD =α,若cosα .(1)求AD的长;(2)求sinC的值.24. (10分) (2018高二下·衡阳期末) [选修4—5:不等式选讲]已知函数(1)求不等式的解集.(2)若不等式的解集非空,求的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、14-2、15-1、16-1、三、解答题 (共8题;共70分) 17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、。

【高一数学试题精选】2018年西宁市高一数学下期末试卷(有答案和解释)

【高一数学试题精选】2018年西宁市高一数学下期末试卷(有答案和解释)

2018年西宁市高一数学下期末试卷(有答案和解释)
5 c 2018学年青海省西宁市高一(下)期末数学试卷
参考答案与试题解析
一、选择题(本大题共12小题,每小题5分,满分60分,每小题给出四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入相应题号的表格内)
1.如果a<b<0,那么下面一定成立的是()
A.a﹣b>0B.ac<bcc. D.a2>b2
【考点】不等式比较大小.
【分析】利用不等式的性质即可得出.
【解答】解∵a<b<0,
∴﹣a>﹣b>0,
∴a2>b2.
故选D.
2.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事是()
A.恰有1名男生与恰有2名女生
B.至少有1名男生与全是男生
c.至少有1名男生与至少有1名女生
D.至少有1名男生与全是女生
【考点】互斥事与对立事.
【分析】互斥事是两个事不包括共同的事,对立事首先是互斥事,再就是两个事的和事是全集,由此规律对四个选项逐一验证即可得到答案.
【解答】解A中的两个事符合要求,它们是互斥且不对立的两个事;。

2016-2017学年青海省西宁市高一数学下期末考试试题

2016-2017学年青海省西宁市高一数学下期末考试试题

西宁市2016-2017学年度第二学期末调研测试卷高一数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若a b >,则下面一定成立的是( ) A .ac bc >B .1a b >C .11a b <D .22a c bc 32.把红、蓝、白3张纸牌随机地分发给甲、乙、丙三个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上都不对3.不等式10x y +->表示的区域在直线10x y +-=的( ) A .右上方B .右下方C .左上方D .左下方4.已知在等比数列{}n a 中,11a =,59a =,则3a =( ) A .3±B .3C.5±D .5 5.下列叙述错误的是( )A .若事件A 发生的概率为()P A ,则()01P A #B .互斥事件不一定是对立事件,但是对立事件一定是互斥事件C.两个对立事件的概率之和为1 D .对于任意两个事件A 和B ,都有()()()P A B P A P B =+6.两灯塔,A B 与海洋观察站C 的距离都为a ,灯塔A 在C 的北偏东30°,B 在C 的南偏东60°,则,A B 两灯塔之间距离为() A .2a B .3a C.2a D .a7.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件),若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5 C.3,7 D .5,7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西宁市2017-2018学年度第二学期末调研测试卷高一数学第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为正确的选项序号填入相应题号的表格内)1.1.设,,,且,则()A. B. C. D.【答案】D【解析】当时,选项A错误;当时,选项B错误;当时,选项C错误;∵函数在上单调递增,∴当时,.本题选择D选项.点睛:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便.2. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的()A. 白色B. 黑色C. 白色可能性大D. 黑色可能性大【答案】A【解析】由图可知,珠子出现的规律是3白2黑、3白2黑依次进行下去的特点,据此可知白、黑珠子的出现以5为周期,又……1,故第36颗珠子应该是白色的,故选A.3.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是 ( )A. 对立事件B. 不可能事件C. 互斥但不对立事件D. 不是互斥事件【答案】C【解析】甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.选C.4.4.在中,,,,则解的情况()A. 无解B. 有唯一解C. 有两解D. 不能确定【答案】B【解析】【分析】根据正弦定理,结合题中数据解出,再由,得出,从而,由此可得满足条件的有且只有一个.【详解】中,,根据正弦定理,得,,得,由,得,从而得到,因此,满足条件的有且只有一个,故选B.【点睛】本题主要考查正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.5.5.一组数据的茎叶图如图所示,则数据落在区间内的概率为A. 0.2B. 0.4C. 0.5D. 0.6【答案】D【解析】【分析】根据茎叶图个原始数据落在区间内的个数,由古典概型的概率公式可得结论. 【详解】由茎叶图个原始数据,数出落在区间内的共有6个,包括2个个个,2个30,所以数据落在区间内的概率为,故选D.【点睛】本题主要考查古典概型概率公式的应用,属于简单题. 在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.6.6.设,,则()A. B. C. D.【答案】C【解析】【分析】利用“作差法”,只需证明即可得结果.【详解】,,,,恒成立,,即,故选C.【点睛】本题主要考查“作差法”比较两个数的大小,属于简单题. 比较两个数的大小主要有三种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.7.7.已知,,是一个等比数列的前三项,则的值为()A. -4或-1B. -4C. -1D. 4或1【答案】B【解析】【分析】由是一个等比数列的连续三项,利用等比中项的性质列方程即可求出的值. 【详解】是一个等比数列的连续三项,,整理,得,解得或,当时,分别为,构不成一个等比数列,,当时,分别为,能构成一个等比数列,,故选B.【点睛】本题主要考查等比数列的定义、等比中项的应用,意在考查对基础知识掌握的熟练程度以及函数与方程思想的应用,属于简单题.8.8.某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中为座位号),并以输出的值作为下一轮输入的值.若第一次输入的值为8,则第三次输出的值为()A. 8B. 15C. 20D. 36【答案】A【解析】【分析】由已知的程序框图,可知该程序的功能是利用条件结构,计算并输出变量的值,模拟程序的运行过程,可得结论.【详解】输入后,满足进条件,则输出;输入,满足条件,则输出;输入,不满足条件,,输出,故第三次输出的值为,故选A.【点睛】本题主要考查程序框图应用,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.9.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1-160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A. 7B. 6C. 5D. 4【答案】B【解析】【分析】设第一组抽出的号码为,则第组抽出的号码应为,由第15组中抽出的号码为118,列方程可得结果.【详解】因为从160名学生中抽取容量为20的样本所以系统抽样的组数为,间隔为,设第一组抽出的号码为,则由系统抽样的法则,可知第组抽出的号码应为,第组应抽出号码为,得,故选B.【点睛】本题主要考查系统抽样的方法,属于简单题. 系统抽样适合抽取样本较多且个体之间没有明显差异的总体,系统抽样最主要的特征是,所抽取的样本相邻编号等距离,可以利用等差数列的性质解答.10.10.具有线性相关关系的变量,满足一组数据如表所示,若与的回归直线方程为,则的值是()A. 4B.C. 5D. 6【答案】A【解析】由表中数据得:,根据最小二乘法,将代入回归方程,得,故选A.11.11.若关于、的不等式组表示的平面区域是一个三角形,则的取值范围是( )A. B. C. D. 或【答案】C【解析】分析:先画出不等式组表示的平面区域,再根据条件确定的取值范围.详解:画出不等式组表示的平面区域如图阴影部分所示.由解得,∴点A的坐标为(2,7).结合图形可得,若不等式组表示的平面区域是一个三角形,则实数需满足.故选C.点睛:不等式组表示的平面区域是各个不等式所表示的平面区域点集的交集,由不等式组表示的平面图形的形状求参数的取值范围时,可先画出不含参数的不等式组表示的平面区域,再根据题意及原不等式组表示的区域的形状确定参数的取值范围.12.12.公比不为1的等比数列的前项和为,且,,成等差数列,若,则()A. -5B. 0C. 5D. 7【答案】A【解析】【分析】设公比为,运用等差数列中项的性质和等比数列的通项公式,解方程可得公比,再由等比数列的求和公式即可得结果.【详解】设的公比为,由成等差数列,可得,若,可得,解得舍去),则,故选A.【点睛】本题主要考查等比数列的通项公式、等比数列的求和公式以及等差中项的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分,将答案填写在题中的横线上)13.13.二次函数的部分对应值如下表:则不等式的解集为;【答案】【解析】试题分析:两个根为2,-3,由函数值变化可知a>0∴ax2+bx+c>0的解集是(-∞,-2)∪(3,+∞)。

考点:主要考查一元二次不等式的概念及解法。

点评:基本题型,一元二次方程的根为“变号零点”。

14.14.右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为_____________.【答案】9.【解析】分析:计算正方形二维码的面积,利用面积比等于对应的点数比求得黑色部分的面积.详解:边长为4的正方形二维码面积为,设图中黑色部分的面积为S,则,解得.据此估计黑色部分的面积为9.故答案为:9.点睛:本题考查了用模拟实验的方法估计概率的应用计算问题,是基础题.15.15.若数列的前项和为,则的值为__________.【答案】24【解析】【分析】由,根据求出的值,从而可得结果.【详解】因为数列的前项和为,所以,,,故答案为.【点睛】本题主要考查数列的通项公式与前项和公式之间的关系,属于中档题. 已知数列前项和与第项关系,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式. 在利用与通项的关系求的过程中,一定要注意的情况.16.16.已知,求的最小值__________.【答案】【解析】【分析】化简,利用基本不等式可得结果.【详解】,,当且仅当,即时取等号,函数的最小值为,故答案为.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.17.渔政船在东海某海域巡航,已知该船正以海里/时的速度向正北方向航行,该船在点处时发现在北偏东方向的海面上有一个小岛,继续航行20分钟到达点,此时发现该小岛在北偏东方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里?【答案】该船向北继续航行,船与小岛的最小距离为7.5海里.【解析】【分析】先求出,利用为等腰三角形,可得,由直角三角形的性质可得结果. 【详解】根据题意画出相应的图形,如图所示,过作,由题意得: (海里)∵,∴,则为等腰三角形,所以.在中,∵,,∴则该船向北继续航行,船与小岛的最小距离为7.5海里.【点睛】本题主要考查阅读能力、数学建模能力和化归思想以及三角函数的应用,属于简单题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18.18.在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为,中二等奖或三等奖的概率是. (Ⅰ)求任取一张,中一等奖的概率;(Ⅱ)若中一等奖或二等奖的概率是,求任取一张,中三等奖的概率.【答案】(1);(2).【解析】【分析】(Ⅰ)设任取一张,抽得一等奖、二等奖、三等奖、不中奖的事件分别为,,,,利用互斥事件以及独立事件的概率公式求解即可;Ⅱ)由,结合,可得,利用,即可的结果. 【详解】设任取一张,抽得一等奖、二等奖、三等奖、不中奖的事件分别为,,,,它们是互斥事件.由条件可得,,(Ⅰ)由对立事件的概率公式知,所以任取一张,中一等奖的概率为;(Ⅱ)∵,而∴,又,∴所以任取一张,中三等奖的概率为.【点睛】本题主要考查互斥事件、对立事件的概率,属于简单题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.19.19.已知等差数列的前项和为,且,.(Ⅰ)求及;(Ⅱ)令,求证:数列为等差数列【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据等差数列中,,列出关于首项、公差的方程组,解方程组可得与的值,从而可求得及;(2)利用(1)求出,则,所以,数列为等差数列.【详解】(Ⅰ)设等差数列的首项为,公差为,由题意有解得,,则,(Ⅱ)因为,又,所以,数列为等差数列.【点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可“知二求三”,通过列方程组所求问题可以迎刃而解.20.20.某中学从高三男生中随机抽取名学生的身高,将数据整理,得到的频率分布表如下所示,(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.【答案】(1)见解析;(2).【解析】【分析】(Ⅰ)根据表格中数据,求出第1组第2组,第3组的频数,从而可得直方图的纵坐标,进而可得结果;(Ⅱ利用分层抽样,可得第3,4,5组分别抽取3人,2人,1人,利用列举法可得从6位同学中抽两位同学的可能共有15种,其中第4组的两位同学至少有一位同学被选中的有9种,利用古典概型概率公式可得结果.【详解】(Ⅰ)由题可知,第1组:,得第2组的频数为人,第3组的频数为.即①处的数据为35,②处的数据为0.300.(Ⅱ)因为第3,4,5组共有60名学生,所以利用分层抽样,在60名学生中抽取6名学生,每组分别为:第3组:人;第4组:人;第5组:人.所以第3,4,5组分别抽取3人,2人,1人.设第3组的3位同学为,,,第4组的2位同学为,,第5组的1位同学为,则从6位同学中抽两位同学的可能有,,,,,,,,,,,,,,共15种;其中第4组的两位同学至少有一位同学被选中的有:,,,,,,,,共9种可能.所以第4组的两位同学至少有一位同学被选中的概率.【点睛】本题主要考查直方图的应用以及古典概型概率公式的应用,属于中档题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….… 这样才能避免多写、漏写现象的发生.21.21.在锐角中,分别为角所对的边,且(1)求角C的大小;(2)若,且的面积为,求a+b的值.【答案】(1) .(2)5.【解析】试题分析:(1)先根据正弦定理边化角转化为即可得,故(2)∵,∴再由余弦定理可得边c试题解析:解:(1)由正弦定理得,∵是锐角,∴,故.(2)∵,∴由余弦定理得∴点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长视频22.22.设函数(Ⅰ)若不等式对任意恒成立,求实数的取值范围;(Ⅱ)在(Ⅰ)的条件下,当取最大值时,设,且,求的最小值.【答案】(1);(2).【解析】【分析】(Ⅰ)结合二次函数对称轴位置,先判断在上单调递减,所以,从而可得结果;(Ⅱ)结合(1)可得,由此可得,展开后,利用基本不等式可得结果.【详解】(Ⅰ)因为函数的对称轴为,且开口向上,所以在上单调递减,所以,∴.(Ⅱ)根据题意,由(Ⅰ)可得,即,所以.所以.∵,则当且仅当,即,时,等号成立.所以的最小值为.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).。

相关文档
最新文档