HS1M中文资料
湿度传感器HS1101

湿度传感器HS11011引言湿度传感器是根据某种物质从其周围空气中吸收水分后引起的物理或化学性质的变化,从而获得该物质的吸水量和周围空气的湿度。
湿度传感器分为电阻式和电容式两种,产品的基本形式都是在基片涂覆感湿材料形成感湿膜。
空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。
湿敏电容一般是用高分子薄膜电容制成的,由于它具有灵敏度高、产品互换性好、响应速度快、湿度的滞后量小、便于制造、容易实现小型化和集成化,其精度一般比湿敏电阻要低一些。
但电阻对温度的敏感因而限制了器件在较大温度范围内的应用,因而电容湿度传感器越来越受到重视。
2 湿敏元件及变送器芯片特性目前,生产湿敏电容的主要厂家是法国Humirel 公司。
它生产的HS1101 测量范围是0%,100%RH,电容量由162PF 变到200PF,其误差不大于?2%RH;响应时间小于5S;湿度系数为0.34PF/?;年漂移量0.5%RH/年,长期稳定。
图1 为HS1101湿敏电容的湿度-电容响应曲线。
湿度变送器采用了美国 BB 公司生产的XTR105芯片,该变送器具有以下特点:a 工作范围宽;b 测量精度高;c 电路简单;d 可靠性好,使用寿命长;e 抗干扰能力强;f 工作温度范围宽(-40,+85?)3 湿度测量电路HS1101在电路中相当于一个电容器件,它的电容量随着所测空气湿度的增加而增大,为了能将电容的变化转换成电压的变化,我们设计了振荡电路、消除零点电容影响电路、整流电路、积分电路、电压—电流转换电路、放大电路等,其工作原理简图如图2 所示。
3.1 振荡电路振荡电路的作用是将电容的变化量转化为频率可变的方波。
由图3 可知,这是一个非对称多谐振荡器。
或非门G1 工作在电压传输特性的转折区,把它的输出电压直接连接到或非门G2 的输入端。
G2即可得到一个介于高低电平之间的静态偏置电压,从而使G2 的静态工作点也处于电压传输特性转折区上。
HSME-T500中文资料

1-204HSMD-TX00HSME-TX00HSMG-TX00HSMH-TX00HSMS-TX00HSMY-TX00Device Selection GuideDH AS HighHigh AlGaAs EfficiencyPerformanceEmerald Red Red Orange Yellow Green Green HSMH-HSMS-HSMD-HSMY-HSMG-HSME-Description T400T400T400T400T400T40012 mm Tape, 7" Reel,2000 Devices T500T500T500T500T500T50012 mm Tape, 13" Reel,8000 Devices T600T600T600T600T600T6008 mm Tape, 7" Reel,2000 Devices T700T700T700T700T700T7008 mm Tape, 13" Reel,8000 DevicesSurface Mount LED Indicator Technical DataFeatures• Compatible with Automatic Placement Equipment • Compatible with Infrared and Vapor Phase Reflow Solder Processes• Packaged in 12mm or 8mm tape on 7" or 13" Diameter Reels• EIA Standard Package • Low Package Profile • Nondiffused PackageExcellent for Backlighting and Coupling to Light PipesDescriptionThese solid state surface mount indicators are designed with a flat top and sides to be easily handled by automatic placementequipment. A glue pad is provided for adhesive mounting processes.They are compatible withconvective IR and vapor phase reflow soldering and conductive epoxy attachment processes.The package size and configura-tion conform to the EIA-535BAAC standard specification for case size 3528 tantalum capacitors. The folded leadsH5964-9359Epermit dense placement and provide an external solder joint for ease of inspection.These devices are nondiffused,providing high intensity forapplications such as backlighting,light pipe illumination, and front panel indication.1-205Package DimensionsTape and Reel SpecificationsHewlett Packard surface mount LEDs are packaged tape and reel in accordance with EIA-481A,Taping of Surface MountComponents for Automatic Placement . This packaging system is compatible with tape-fed automatic pick and place systems. Each reel is sealed in avapor barrier bag for added protection. Bulk packaging in vapor barrier bags is availableupon special request.Absolute Maximum Ratings at T A = 25°CDH AS High HighAlGaAs Efficiency Perf.Emerald Parameter Red Red Orange Yellow Green Green Units DC Forward303030303030mA Current[1]Peak Forward3009090609090mA Current[2]Average202525202525mA ForwardCurrent[2]LED Junction95°C TemperatureTransientForwardCurrent[3](10 µs Pulse)500mA Reverse Voltage5V (I R = 100 mA)Operating-40 to +85-20 to +85°C TemperatureRangeStorage-40 to +85°C TemperatureRangeReflow SolderingTemperatureConvective IR235°C Peak, above 185°C for 90 seconds.Vapor Phase 215°C for 3 minutes.Notes:1. Derate dc current linearly from 50°C: For AlGaAs red, high efficiency red, and green devices at 0.67 mA/°C. For yellow devices at0.44mA/°C.2. Refer to Figure 5 showing Maximum Tolerable Peak Current vs. Pulse duration to establish pulsed operating conditions.3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die andwire bond. The device should not be operated at peak currents above the Absolute Maximum Peak Forward Current.1-2061-207DH AS AlGaAs Red HSMH-TX00ParameterSymbol Min.Typ.Max.Units Test Conditions Luminous Intensity I v 9.017.0mcd I F = 10 mA Forward VoltageV F 1.8 2.2V I F = 10 mA Reverse Breakdown Voltage V R 5.015.0V I R = 100 µAIncluded Angle Between Half Intensity Points [1]2θ1/2120deg.Peak Wavelength λPEAK 645nm Dominant Wavelength [2]λd 637nm Spectral Line Half Width ∆λ1/220nm Speed of Response τs 30ns Time Constant, e -t/τCapacitance C 30pF V F = 0, f = 1 MHz Thermal Resistance R θJ-pin 180°C/W Junction-to-Cathode Luminous Efficacy [3]ηv80lm/WHigh Efficiency Red HSMS-TX00ParameterSymbol Min.Typ.Max.Units Test Conditions Luminous Intensity I v 2.06.0mcd I F = 10 mA Forward VoltageV F 1.9 2.5V I F = 10 mA Reverse Breakdown Voltage V R 5.030.0V I R = 100 µAIncluded Angle Between Half Intensity Points [1]2θ1/2120deg.Peak Wavelength λPEAK 635nm Dominant Wavelength [2]λd 626nm Spectral Line Half Width ∆λ1/240nm Speed of Response τs 90ns Time Constant, e -t/τCapacitance C 11pF V F = 0, f = 1 MHz Thermal Resistance R θJ-pin 160°C/W Junction-to-Cathode Luminous Efficacy [3]ηv145lm/WNotes:1. θ1/2 is the off-axis angle where the luminous intensity is half the on-axis value.2. The dominant wavelength, λd , is derived from the CIE Chromaticity Diagram and represents the color of the device.3. The radiant intensity, I e , in watts per steradian, may be found from the equation I e = I v / ηv , where I v is the luminous intensity in candelas and ηv is luminous efficacy in lumens/watt.Electrical/Optical Characteristics at T A = 25°Cs s1-208Orange HSMD-TX00ParameterSymbol Min.Typ.Max.Units Test Conditions Luminous Intensity I v 1.55.0mcd I F = 10 mA Forward VoltageV F 1.9 2.5V I F = 10 mA Reverse Breakdown Voltage V R 5.030.0V I R = 100 µAIncluded Angle Between Half Intensity Points [1]2θ1/2120deg.Peak Wavelength λPEAK 600nm Dominant Wavelength [2]λd 602nm Spectral Line Half Width ∆λ1/240nm Speed of Response τs 260ns Time Constant, e -t/τCapacitance C 4pF V F = 0, f = 1 MHz Thermal Resistance R θJ-pin 160°C/W Junction-to-Cathode Luminous Efficacy [3]ηv380lm/WYellow HSMY-TX00ParameterSymbol Min.Typ.Max.Units Test Conditions Luminous Intensity I v 2.05.0mcd I F = 10 mA Forward VoltageV F 2.0 2.5V I F = 10 mA Reverse Breakdown Voltage V R 5.050.0V I R = 100 µAIncluded Angle Between Half Intensity Points [1]2θ1/2120deg.Peak Wavelength λPEAK 583nm Dominant Wavelength [2]λd 585nm Spectral Line Half Width ∆λ1/236nm Speed of Response τs 90ns Time Constant, e -t/τCapacitance C 15pF V F = 0, f = 1 MHz Thermal Resistance R θJ-pin 160°C/W Junction-to-Cathode Luminous Efficacy [3]ηv500lm/WNotes:1. θ1/2 is the off-axis angle where the luminous intensity is half the on-axis value.2. The dominant wavelength, λd , is derived from the CIE Chromaticity Diagram and represents the color of the device.3. The radiant intensity, I e , in watts per steradian, may be found from the equation I e = I v / ηv , where I v is the luminous intensity in candelas and ηv is luminous efficacy in lumens/watt.s s1-209High Performance Green HSMG-TX00ParameterSymbol Min.Typ.Max.Units Test Conditions Luminous Intensity I v 4.010.0mcd I F = 10 mA Forward VoltageV F 2.0 2.5V I F = 10 mA Reverse Breakdown Voltage V R 5.050.0V I R = 100 µAIncluded Angle Between Half Intensity Points [1]2θ1/2120deg.Peak Wavelength λPEAK 570nm Dominant Wavelength [2]λd 572nm Spectral Line Half Width ∆λ1/228nm Speed of Response τs 500ns Time Constant, e -t/τCapacitance C 18pF V F = 0, f = 1 MHz Thermal Resistance R θJ-pin 160°C/W Junction-to-Cathode Luminous Efficacy [3]ηv595lm/WNotes:1. θ1/2 is the off-axis angle where the luminous intensity is half the on-axis value.2. The dominant wavelength, λd , is derived from the CIE Chromaticity Diagram and represents the color of the device.3. The radiant intensity, I e , in watts per steradian, may be found from the equation I e = I v / ηv , where I v is the luminous intensity in candelas and ηv is luminous efficacy in lumens/watt.Emerald Green HSME-TX00ParameterSymbol Min.Typ.Max.Units Test Conditions Luminous Intensity I v 1.01.5mcd I F = 10 mA Forward VoltageV F 2.2 2.27V I F = 10 mA Reverse Breakdown Voltage V R 5.050.0V I R = 100 µAIncluded Angle Between Half Intensity Points [1]2θ1/2120deg.Peak Wavelength λPEAK 558nm Dominant Wavelength [2]λd 560nm Spectral Line Half Width ∆λ1/228nm Speed of Response τs 500ns Time Constant, e -t/τCapacitance C 52pF V F = 0, f = 1 MHz Thermal Resistance R θJ-pin 120°C/W Junction-to-Cathode Luminous Efficacy [3]ηv680lm/WNotes:1. θ1/2 is the off-axis angle where the luminous intensity is half the on-axis value.2. The dominant wavelength, λd , is derived from the CIE Chromaticity Diagram and represents the color of the device.3. The radiant intensity, I e , in watts per steradian, may be found from the equation I e = I v / ηv , where I v is the luminous intensity in candelas and ηv is luminous efficacy in lumens/watt.4. Refer to Application Note 1061 for information comparing high performance green with emerald green light output degradation.s s1-210V – FORWARD VOLTAGE – V FI – F O R W A R D C U R R E N T – m AF Figure 1. Relative Intensity vs. Wavelength.Figure 2. Forward Current vs. Forward Voltage.Figure 3. Relative Luminous Intensity vs. Forward Current.300280260240220200180160140120100804020V – FORWARD VOLTAGE – V FI – F O R W A R D C U R R E N T – m AF DH AS AlGaAs RED3.02.52.01.51.00.50.0I – DC FORWARD CURRENT – mA FR E L A T I V E L U M I N O U S I N T E N S I T Y (N O R M A L I Z E D A T 10 m A )DH AS AlGaAs RED4.03.02.01.00.0I – DC FORWARD CURRENT – mAFR E L A T I V E L U M I N O U S I N T E N S I T Y (N O R M A L I Z E D A T 10m A )WAVELENGTH – nmR E L A T I V E I N T E N S I T Y1.00.50500550600650700750HER, ORANGE, YELLOW,HIGH PERFORMANCE GREEN AND EMERALD GREENHER, ORANGE, YELLOW,HIGH PERFORMANCE GREEN AND EMERALD GREEN1-211Figure 6. Relative Intensity vs. Angular Displacement.Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration (I DC MAX per MAX Ratings).ηv – R E L A T I V E E F F I C I E N C Y (N O R M A L I Z E D A T 10 m A )I PEAK – PEAK FORWARD CURRENT – mA307010509020608040HER, ORANGE, YELLOW,HIGH PERFORMANCE GREEN AND EMERALD GREENHER, ORANGE, YELLOW,HIGH PERFORMANCE GREEN AND EMERALD GREENFigure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.。
OHSMS分类对照表资料

02.03
一
泥煤的采掘
02.03.00
泥煤的采掘
02.04
一
原油及天然气的开采
单独管理
02.04.00
原油及天然气的开采
02.05
二
除试采勘查外与采油及采气有关的服务活动
1)单独管理;
2)02.04覆盖02.05。
02.05.00
除试采勘查外与采油及采气有关的服务活动
02.06
一
铀及钍矿石的采掘
01.06.02b
一
森林防火
单独管理
01.07
捕鱼业、鱼类饲养;与渔业相关的服务
01.07.01
一
捕鱼业
单独管理
01.07.02
三
鱼类的饲养
本大类三级合并管理
01.07.03
三
与渔业相关服务
02
采矿业和采石业
02.01
一
无烟煤的采掘
合并管理
02.01.00
无烟煤的采掘
02.02
一
褐煤的采掘
02.02.00
牧场及农园等家畜用饲料的生产
03.07.02
宠物饲料的生产
03.08
其他食品的制作
03.08.01
面包制作;新鲜油酥点心及糕点的制作
03.08.02
烤面包片及饼干的制作;可保存的油酥点心及糕点的制作
03.08.03
砂糖的制作
03.08.04
可可的制作;巧克力及糖果的制作
03.08.05
通心粉,面条类及类似的粉制品的制作
12.01.01
工业用气的生产
含:液化或压缩的工业或医用气体的生产;单质气体;工业混合气体;惰性气体;绝缘气体等
HSMS-2822-TR1G中文资料

Package Lead Code Identification, SOT-23/SOT-143
(Top View)
SINGLE 3
SERIES 3
COMMON ANODE 3
COMMON CATHODE
3
1
2
#0
UNCONNECTED PAIR
34
1
2
#2
RING QUAD 34
1
2
#3
BRIDGE QUAD 34
4. Effective Carrier Lifetime (τ) for all these diodes is 100 ps maximum measured with Krakauer method at 5 mA. 5. See section titled “Quad Capacitance.”
2824
C4[3]
4 Common Cathode
2825
C5[3]
5 Unconnected Pair
2827
C7[3]
7 Ring Quad[5]
2828
C8[3]
8 Bridge Quad[5]
2829
C9[3]
9 Cross-over Quad
282B
C0[7]
B Single
282C
C2[7]
°C
θjc
Thermal Resistance[2]
°C/W
1 15 150 -65 to 150 500
1 15 150 -65 to 150 150
Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to
集中安全管理

HSM(Hillstone Security Management™)集中安全管理系统概述HSM使企业和服务提供商可以很容易地管理多个设备,最大程度地降低了管理、监控、维护设备的投入成本,支持企业和服务提供商集中高效地管理多台设备。
HSM为企业提供了全方位基于用户和应用的审计,可针对各类网络访问行为进行审计,包括Web访问、论坛发帖、P2P、IM(即时通讯)、游戏等等,能够满足公安部82号令要求,为数据中心安全防护提供了长期的审计数据存储和统计分析。
HSM通过对全网设备进行状态监控、流量监控、攻击行为分析,找出用户网络的安全威胁和安全漏洞,发现网络脆弱点和安全短板,加强安全策略的应用并检验安全策略应用效果,从而构成安全闭环,对各个行业的互联网安全提供了动态安全防护保障。
HSM系统分为三部分,即HSM代理(Hillstone Security Management Agent)、HSM服务器(Hillstone Security Management Server)和HSM客户端(Hillstone Security Management Client)。
将这三部分合理部署到网络中,并且实现安全连接后,用户可以通过客户端程序,查看被管理安全设备的日志信息、统计信息、设备属性等,监控被管理设备的运行状态和流量信息。
产品特点可视化展现基于设备面板状态监控∙多维度图形化监控∙设备集中状态监控深层次审计分析∙高性能数据处理能力∙高容量数据存储∙多应用数据挖掘和分析∙递进方式关联审计集中管理∙设备配置管理∙批量设备升级∙复杂网络环境应用典型案例HSM应用场景许多大中型企业在全国各地都建有分支机构或者办事处,当企业部署防火墙系统时会面临因分支机构众多而导致对整体安全系统的管理成本过高、整体监控难度过大的问题,集中管理方案的推出正是为了解决这一难题,具体的网络环境示意图如下。
软硬件环境硬件配置需求HSM服务器对硬件的基本配置:HSM客户端对硬件的基本配置:软件配置需求HSM服务器对软件的配置需求:HSM客户端对软件的配置需求:。
HSM电气系统

HSM电气系统主传动采用交-直-交变频调速系统,全数字矢量控制,实现高精度、高速度控制功能自动化控制采用四级系统实现生产自动化和企业管理的全流程控制。
1)基础自动化系统(L1级)主要完成设备的顺序控制、自动位置控制、速度控制、液压控制、板/卷的温度、厚度、宽度、板形控制,加热炉热工参数控制,各种操作界面和数据采集等任务。
2)过程自动化系统(L2级)主要完成材料跟踪,过程控制参数设定计算、自适应控制、质量数据收集与分析,以及操作指导等任务。
3)生产制造执行系统(MES)主要完成全厂物料跟踪、三库(板坯库、钢卷库和成品库)管理、质量管理、发货管理、磨辊管理、轧制计划的编制、调整和发行,生产实绩数据的收集、处理,以及统计分析报告等任务。
4)企业资源计划管理系统(ERP)主要完成经营决策、采购管理、销售管理、财务管理、人力资源管理、生产计划编制协调、材料申请、将作业计划下发给L3级、并收集L3级的生产实绩,跟踪生产和质量情况,以及组织成品出厂发货等任务。
2、产品大纲碳素结构钢、优质碳素结构钢、低合金结构钢、IF钢、耐候钢、焊接气瓶用钢、压力容器及锅炉用钢、中高牌号无取向硅钢、取向硅钢、船板、管线钢及热轧双相钢等。
1、板坯规格(1)碳钢厚度:230mm(250mm,少量)宽度:900~2150mm长度:9000~11000mm(定尺坯)4500~5300mm(短尺坯)板坯质量:max.38t(2)中、高牌号无取向硅钢、取向硅钢厚度:210mm、230mm宽度:900~1350mm长度:9000~11000mm(定尺坯)4500~5300mm(短尺坯)板坯质量:max.26.6t(3)不锈钢厚度:180mm、200mm2、中间坯规格中间坯规格:厚度35~60 mm宽度900~2130 mm重量:38t(max)精轧入口中间坯温度:≧920 ℃3、产品规格厚度: 1.2~25.4 mm宽度:900~2130 mm钢卷内径:Ф762 mm钢卷外径:Ф 1200~Ф2100 mm钢卷重量:~38t(max)单位卷重:22kg/mm(max)产品平均宽度:1450mm产品平均厚度: 4.2mm4、板坯技术条件厚度偏差:±5mm宽度偏差:±15mm长度偏差:±30mm侧弯及翘曲:长尺≤40mm短尺≤20mm板坯表面质量:全部为无缺陷合格板坯。
海明码最通俗易懂的讲解

的数据只有两种状态,不是 1 就是 0,有 r 位数据就应该能表示出 2r 种状态,如果每一种状
态代表一个码元发生了错误,有 k+r 位码元,就要有 k+r 种状态来表示,另外还要有一种状
校验码 Pi (i 取 1,2,3,4)在编码中的位置为 2i1 ,如下表所示:
M1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M10
甲 P1
P2
P3
P4
③ 确定数据的位置 这个很简单,除了校验码的位置其余的就是数据的位置,填充进去就可以了,于是可以
把数据信息先填进去,见“乙”行,下面就是最关键的部分,求出校验位的值啦!!!
海明码求解具体步骤: ① 确定校验码的位数 k ② 确定校验码的位置 ③ 确定数据的位置 ④ 求出校验位的值 下面开始实战练习。假设我们要推导 D= 101101 这串二进制的海明码,按照步骤一步步
来: ① 确定校验码的位数 k
数据的位数 k=6,按照上面说的公式来计算满足条件 r 的最小值,如下公式:
M1 甲 P1
乙
M2 M3
P2
D1
1
M4 M5 M6 M7
P3
D2
D3
D4
0
1
1
M 8 M 9 M10
P4
D5
D6
0
1
④ 求出校位的值 这个公式不是难,99%左右的考生都能看懂海明码的求解过程,但是真正能够过目不忘
的相信就是极少数了,很多考生在论坛抱怨躺在床上眼睛一闭,一睁,就忘记了一半。眼睛
网络安全模块

关
关(Gateway)又称间连接器、协议转换器。关在络层以上实现络互连,是最复杂的络互连设备,仅用于两个 高层协议不同的络互连。关既可以用于广域互连,也可以用于局域互连。关是一种充当转换重任的计算机系统或 设备。使用在不同的通信协议、数据格式或语言,甚至体系结构完全不同的两种系统之间,关是一个翻译器。与 桥只是简单地传达信息不同,关对收到的信息要重新打包,以适应目的系统的需求。同层--应用层。
络硬盘存储系统的安全模块
图1络硬盘在加载安全模块后的系统构架由于大部分络硬盘产品使用客户端-服务器构架,所以为了能使安全 模块适应多数盘的结构,安全模块分为三个部分:客户端安全模块、服务器安全模块和认证中心。客户端安全模 块负责数据的加解密、完整性校验;服务器安全模块负责用户的访问权限控制与安全元数据的管理;认证中心 (Certificate Authority)作为独立于盘提供商的第三方存在于整个系统当中,负责密钥的生成与管理、证书颁 发与校验等工作,其目的是加强系统的安全性。络硬盘提供商只需在盘系统的客户端与服务器的交互中,按照一 定的逻辑调用安全模块中的函数,即可提供相应的数据安全保障。安全模块的具体架构如图1所示。采用此种系统 构架可以带来以下优点:安全模块与原有络硬盘耦合性低,大部分络硬盘;只需做较少改动,就能够完成整合安 全模块的工作以保障用户数据安全;认证中心作为独立的第三方存在于盘系统中,使得系统更具可靠性。由于认 证中心负责生成并分发用户的根密钥,所以即使用户数据被窃取,也无法被非法用户解密。整个系统的大部分密 码学计算和完整性校验工作都由客户端安全模块完成,所以络硬盘加载安全模块并不会在性能开销方面给系统服 务器端造成过多影响,从而避免了服务器成为整个系统的瓶颈 。
模块
模块是构成系统、实现系统功能的基本单位,可以理解为一般意义上的子程序。一个模块具有输入/输出、功 能、内部数据和程序代码等四个特性。输入和输出分别是模块需要和产生的信息,功能是指模块所做的工作,输 入输出和功能构成了一个模块的外貌,即模块的外部特性。模块是用程序代码完成它的功能的,内部数据是仅供 该模块本身引用的数据,内部数据和程序代码是模块的内部特性。系统中模块的一个重要特征,就是模块间存在 着调用和被调用的关系,并伴随模块的调用过程,存在着模块间的参数传递,构成模块间的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INSTANTANEOUS FORWARD CURRENT. (A)
100
Tj=100 0C
Tj=25 0C
10
HS
0.1 0.01 0 0.2 0.4 0.6 0.8 1.0 1.2
1
0.1 0 20 40 60 80 100 120 140 PERCENT OF RATED PEAK REVERSE VOLTAGE. (%)
1.0 30 1.0 1.3 5.0 100 50 20 75 15 1.7
V uA uA nS pF ℃/W ℃ ℃
70 Operating Temperature Range TJ -55 to +150 Storage Temperature Range TSTG -55 to +150 Notes: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, IRR=0.25A 2. Measured at 1 MHz and Applied VR=4.0 Volts 3. Mounted on P.C.B. with 0.2”x0.2” ( 5 x 5 mm ) Copper Pad Areas.
SMA/DO-214AC
.062(1.58) .050(1.27) .111(2.83) .090(2.29)
.187(4.75) .160(4.06)
.091(2.30) .078(1.99)
Mechanical Data
Cases: Molded plastic Terminals: Solder plated Polarity: Indicated by cathode band Packing: 12mm tape per E1A STD RS-481 Weight: 0.064 gram
.056(1.41) .035(0.90) .210(5.33) .195(4.95)
.012(.31) .006(.15) .008(.20) .004(.10)
Dimensions in inches and (millimeters)
Maximum Ratings and Electrical Characteristics
元器件交易网
HS1A THRU HS1M
1.0 AMP. High Efficient Surface Mount Rectifiers
Voltage Range 50 to 1000 Volts Current 1.0 Ampere
Features
Glass passivated junction chip. For surface mounted application Low forward voltage drop Low profile package Built-in stain relief, ideal for automatic placement Fast switching for high efficiency High temperature soldering: 260℃/10 seconds at terminals Plastic material used carries Underwriters Laboratory Classification 94V-O
-1.0A 1cm SET TIME BASE FOR 5/ 10ns/ cm
FIG.3- TYPICAL REVERSE CHARACTERISTICS
1000 100
FIG.4- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS
INSTANTANEOUS REVERSE CURRENT. ( A)
1A
-HS
1M
1G
HS
10 0 0.1
0.5
1
2
5
10
20
50
M
100 200
1G
1 HS
A-
1 HS
D
500
1000
Hale Waihona Puke REVERSE VOLTAGE. (V)
- 301 -
HS
1.4
Tj=25 0C
1J
-H
10
1
S1
1.6 FORWARD VOLTAGE. (V)
FIG.5- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT
40 70
FIG.6- TYPICAL JUNCTION CAPACITANCE
PEAK FORWARD SURGE CURRENT. (A)
- 300 -
元器件交易网
RATINGS AND CHARACTERISTIC CURVES (HS1A THRU HS1M)
FIG.1- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM
trr +0.5A (-) DUT (+) 50Vdc (approx) (-) PULSE GENERATOR (NOTE 2) 1W NON INDUCTIVE OSCILLOSCOPE (NOTE 1) (+) 0 -0.25A
P.C.B.MOUNTED 0.2X0.2"(5.0X5.0mm) COPPER PAD AREAS
NOTES: 1. Rise Time=7ns max. Input Impedance= 1 megohm 22pf 2. Rise Time=10ns max. Sourse Impedance= 50 ohms
AVERAGE FORWARD CURRENT. (A)
50W NONINDUCTIVE
10W NONINDUCTIVE
FIG.2- MAXIMUM AVERAGE FORWARD CURRENT DERATING
1.2 1.0 0.8 0.6 0.4 0.2 0 80 90 100 110 120 130 o 140 LEAD TEMPERATURE. ( C) 150
HS 1F
HS 1G
HS 1J
HS 1K
HS 1M
Units V V V A A
VRRM VRMS VDC I(AV) IFSM VF IR Trr Cj RθJA
50 35 50
100 200 300 400 600 800 1000 70 140 210 280 420 560 700 100 200 300 400 600 800 1000
JUNCTION CAPACITANCE.(pF)
35 30 25 20 15 10 5 1 2 5 10 20 50 100 NUMBER OF CYCLES AT 60Hz 8.3ms Single Half Sine Wave JEDEC Method
60 50 40 30 20
HS
HS
1J-
1A 1B 1D Maximum Recurrent Peak Reverse Voltage Maximum RMS Voltage Maximum DC Blocking Voltage Maximum Average Forward Rectified Current See Fig.2 Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method ) Maximum Instantaneous Forward Voltage @ 1.0A Maximum DC Reverse Current @ TA =25℃ at Rated DC Blocking Voltage @ TA=100℃ Maximum Reverse Recovery Time ( Note 1 ) Typical Junction Capacitance ( Note 2 ) Maximum Thermal Resistance ( Note 3 )