博弈论地地地总结
《博弈论》知识点总结

《博弈论》知识点总结博弈论作为一门交叉学科,涵盖了数学、经济学、政治学、心理学等多个学科领域。
其研究对象包括零和博弈、非零和博弈、合作博弈、序贯博弈等。
博弈论的应用领域也非常广泛,包括经济学、政治学、社会学、管理学等。
博弈论在求解决策问题、预测市场行为、推导策略和解释社会现象等方面有着广泛的应用。
博弈论的主要内容包括:1.博弈的定义博弈是指互相影响的参与者所进行的一种决策活动。
在博弈中,每个参与者都要做出一个选择,其结果受到其他参与者的选择的影响。
博弈的结果取决于所有参与者的选择。
2.博弈的基本元素博弈的基本元素包括参与者、策略和结果。
参与者是进行决策的主体,策略是参与者可以选择的行为方式,结果是参与者选择策略后所得到的收益或损失。
3.博弈的分类根据参与者的利益关系和决策方式,博弈可以分为零和博弈和非零和博弈。
零和博弈指参与者的利益完全相反,一方获利即意味着另一方损失,而非零和博弈则指参与者的利益可能存在重叠或者是共同合作的情况。
4.博弈的解博弈的解是指在博弈参与者做出决策选择之后,通过某种机制确定最终的结果。
常见的博弈解包括纳什均衡、霍夫达均衡、帕累托最优等。
5.博弈论的应用博弈论在经济学、政治学、社会学等领域有着广泛的应用。
在经济学中,博弈论可以用来解释市场行为、预测价格变动等。
在政治学中,博弈论可以用来分析政治决策、议事程序等。
在社会学中,博弈论可以用来解释群体行为、合作问题等。
博弈论是一门具有重要理论意义和广泛应用价值的学科,它不仅可以帮助人们更好地理解决策制定的规律和机制,还可以为人们提供更科学的决策指导。
在日常生活中,我们可以通过学习和应用博弈论的知识,更加理性地做出决策,并更好地理解他人的选择和行为。
希望未来博弈论能够继续在各个领域发挥作用,为人类社会的进步和发展做出更大的贡献。
博弈论的总结

博弈论的总结简介博弈论是研究决策制定和策略选择问题的数学模型和方法。
它通过建立数学模型,分析参与者的策略选择和决策结果之间的相互关系,从而预测可能发生的结果。
博弈论广泛应用于经济学、政治学、管理学等领域,对于理解人类行为和决策过程有重要意义。
基本概念1. 博弈博弈是指多个参与者根据一定规则进行决策的过程。
每个参与者都会考虑其他参与者的反应,从而选择自己的策略。
博弈的基本要素包括参与者、策略、收益和规则。
2. 参与者参与者是指博弈过程中的决策者,可以是个体或者集体。
3. 策略策略是参与者针对博弈过程中可能出现的各种情况所做的决策方案。
4. 收益在博弈中,每个参与者根据自己的策略选择和其他参与者的选择,获得相应的收益。
###5. 规则规则是指博弈过程中参与者必须遵守的行为准则和约束。
基本模型博弈论中有许多不同的模型,常见的有零和博弈、合作博弈和非合作博弈等。
1. 零和博弈零和博弈是指参与者的收益总和为零的一类博弈。
在零和博弈中,参与者之间存在一种竞争关系,一个参与者的收益的增加必将导致其他参与者收益的减少。
2. 合作博弈合作博弈是指参与者之间可以合作的一类博弈。
在合作博弈中,参与者可以通过协商、合作达成一致,来获得更高的收益。
3. 非合作博弈非合作博弈是指参与者之间不可合作的一类博弈。
在非合作博弈中,每个参与者根据自己的利益和目标,独立地选择策略,从而导致最终的结果。
博弈论的应用1. 经济学博弈论在经济学中有广泛的应用。
例如,在市场竞争中,企业之间选择定价策略、广告策略等都可以使用博弈论的模型进行分析和预测。
2. 政治学博弈论在政治学中也起到了重要的作用。
比如,选举制度的设计、国际关系中的谈判策略等问题都可以利用博弈论的模型来进行研究。
3. 管理学博弈论在管理学中的应用也非常丰富。
例如,企业中的合作与竞争、员工之间的博弈行为、资源分配等问题都可以使用博弈论的方法进行分析和决策。
总结博弈论是研究决策制定和策略选择问题的重要工具。
博弈论总结

博弈论总结博弈论是一门研究决策和策略在竞争环境下的科学,它不仅仅应用于经济学领域,还渗透到了生活的方方面面。
通过分析不同参与者的利益和行动,博弈论揭示了决策者之间的相互关系和可能的结果。
一、基本概念博弈论中的基本概念包括参与者、策略、收益和均衡。
参与者是决策的主体,可以是个人、组织或国家。
策略是参与者根据自身利益选择的行动方式。
收益是参与者在特定策略下获得的结果,可以是利润、权力或其他形式的回报。
博弈论研究的重点是均衡,即在参与者做出决策后,没有动力再次改变策略,这是一种稳定的状态。
二、博弈类型在博弈论中,存在多种不同的博弈类型,其中最经典的是零和博弈和非零和博弈。
零和博弈是指参与者的利益互为对立,一个人的收益必然导致另一个人的损失。
这种博弈策略是零和博弈中的核心,参与者通过优化自身利益来获取最大化的收益。
经典的例子是赌场中的赌博游戏,赌徒之间的输赢是相互抵消的,没有合作的可能。
非零和博弈则将参与者的利益看作是互补的,不同决策者之间可以通过合作或竞争来达到共同的目标。
例如,在商业竞争中,公司之间的合作可以达到双赢的局面,而过度竞争则可能导致市场的破坏。
三、重要理论博弈论涉及了许多重要的理论和策略,其中最著名的是纳什均衡和最优响应。
纳什均衡是博弈论中的重要概念,指的是在参与者做出最优决策的情况下,没有动力再次改变策略。
纳什均衡强调了个体的最佳策略选择,每个参与者都基于其他参与者的行动来做出自己的决策。
最优响应则指的是参与者在其他参与者的选择之后,做出的对自身利益最有利的策略。
这种策略可以是合作的也可以是竞争的,取决于参与者的利益和目标。
四、博弈论的应用博弈论不仅在经济学领域有广泛的应用,还渗透到了生活的各个方面。
在商业中,博弈论可以帮助企业制定市场定价和竞争策略。
通过分析竞争对手的行动,企业可以找到最优的策略以提高自身的竞争力。
在个人生活中,博弈论可以帮助我们理解和处理人际关系。
无论是在家庭、友谊还是爱情关系中,博弈论的概念都可以帮助我们更好地理解彼此行为的动机,并寻求互惠互利的解决方案。
博弈论知识点总结完整版

博弈论知识点总结完整版博弈论是数学和经济学中一个重要的分支,研究决策制度下的相互作用和决策策略。
它是通过数学模型来描述和分析不同参与者的决策行为和决策结果,并找到最优的决策策略。
下面是博弈论中的一些重要知识点的总结。
1.博弈的定义和基本概念:-博弈是指参与者在一定的规则下做出决策,并根据其他参与者的决策结果来确定自己的收益或损失。
-参与者称为博弈者,他们的决策称为策略,策略的组合称为策略组合。
-博弈可以是合作博弈或非合作博弈,合作博弈强调协作,非合作博弈强调竞争。
2.标准博弈:-标准博弈是博弈论中最基础的形式,参与者之间的策略和收益都是确定的。
-标准博弈可以是零和博弈(总收益为零)或非零和博弈(总收益不为零)。
3.纳什均衡:-纳什均衡是指在博弈中,不存在一个参与者可以通过改变自己的策略来获得更高收益的情况。
-纳什均衡是博弈论中的核心概念,它描述了博弈中的稳定状态。
-一个博弈可能有一个或多个纳什均衡,也可能没有纳什均衡。
4.基本博弈:-二人零和博弈是一种特殊的博弈,其中一个参与者的利益是另一个参与者的损失。
-石头、剪刀、布是一个典型的二人零和博弈,存在一个纳什均衡策略。
-行棋游戏如国际象棋、围棋也是二人零和博弈,但策略空间较复杂。
5.博弈理论的扩展:-广义博弈是对博弈理论的扩展,考虑了更复杂的情况,如多人博弈、不完全信息博弈等。
-多人博弈是指博弈中有多个参与者,每个参与者都会影响其他参与者的决策。
-不完全信息博弈是指博弈中参与者对其他参与者的信息是不完全的。
6.博弈论在经济学中的应用:-博弈论在经济学中有广泛的应用,如市场竞争、拍卖等。
-例如,决定定价策略的厂商可以使用博弈论来确定最优的定价策略。
-拍卖是一种常见的博弈形式,在博弈过程中参与者可以选择不同的竞标策略。
7.演化博弈:-演化博弈是博弈论的一个重要分支,研究博弈在一定的演化过程中的演化规律。
-演化博弈通过数学模型来描述和分析参与者的策略演化和演化结果。
博弈论学习心得(精品5篇)

博弈论学习心得(精品5篇)博弈论学习心得篇1博弈论学习心得学习博弈论的经历带给我许多深刻的见解和体验。
我将在此分享一些主要的思想,以及对博弈论的理解和应用。
1.背景介绍博弈论,起源于____冯·诺依曼和摩根斯坦于1944年合著的《博弈论与经济行为》。
博弈论,从学科分类来说,应该属于数学的范畴,但它又与经济学紧密相连,有时又被称为“应用数学”。
2.深入分析博弈论的主要思想是,参与者在面对一系列可能的决策和行动时,会考虑他们的选择以及可能的结果。
这与传统的经济学理论不同,后者主要关注于生产、分配和消费等宏观问题,而博弈论则聚焦于个体决策的过程。
3.个人观点对于博弈论,我认为它是理解和分析人类行为的一个强大的工具。
它使我们更好地理解,当面临多种选择时,人们是如何做出决策的。
例如,在谈判中,博弈论可以帮助我们理解对手可能采取的策略,以及我们如何应对。
4.对比与参照与传统的经济学相比,博弈论更关注于人类行为的不完美,以及在面对冲突和竞争时的选择。
这使得博弈论在解释和理解现实生活中的许多问题上,如囚徒困境、拍卖等,具有独特的优势。
5.创作风格在写作过程中,我尝试了一种清晰简洁的风格,以使读者能够理解和欣赏博弈论的理论框架。
我相信,通过清晰和深入的思考,我们可以更好地应用博弈论来解决现实生活中的问题。
6.结论和评分总的来说,学习博弈论让我对人类行为和决策有了更深的理解。
我认为,博弈论是一个非常有用的工具,可以帮助我们理解和解决现实生活中的冲突和问题。
我会继续学习和应用博弈论,以更好地理解和处理生活中的各种决策。
在*的写作过程中,我尽力遵循了准确、清晰和简洁的原则,希望能使读者更好地理解和欣赏博弈论。
博弈论学习心得篇2博弈论学习心得我之所以开始学习博弈论,主要是因为我对决策科学和策略游戏产生了浓厚的兴趣。
在这个过程中,我逐渐了解了博弈论的基本概念,如策略、纳什均衡、囚徒困境等。
随着学习的深入,我开始将这些理论应用到现实生活中,并从中获得了许多宝贵的经验。
《博弈论》知识点总结归纳

《博弈论》知识点总结归纳《博弈论》知识点总结归纳摘要:博弈论是研究决策者之间相互影响和决策制定的数学分析工具。
本文对博弈论的基本概念、解的概念、均衡理论、博弈策略和应用等方面进行了总结归纳,以帮助读者更好地理解和应用博弈论的相关知识。
关键词:博弈论、基本概念、解的概念、均衡理论、博弈策略、应用引言博弈论是研究决策者之间相互影响和决策制定的数学分析工具,源自于经济学和数学两大学科的交叉。
博弈论在经济学、管理学、政治学、社会学、计算机科学等多个领域都有广泛的应用。
本文将对博弈论的相关知识进行详细的总结和归纳。
一、基本概念1.1 博弈博弈是指决策者之间相互影响和策略选择的过程。
博弈的基本要素包括:参与者、策略、收益和信息。
1.2 参与者参与者是指博弈中的决策者,可以是个人、团体、企业、国家等。
参与者的目标是实现自身利益的最大化。
1.3 策略策略是指参与者在博弈中所能采取的行动或选择。
通常分为纯策略和混合策略。
1.4 收益收益是指在博弈中参与者根据所选择的策略所能得到的结果或利益。
收益可以用来衡量参与者的利益大小。
1.5 信息信息是指参与者在博弈中所了解的有关其他参与者或博弈环境的信息。
信息可以分为对称信息和非对称信息。
二、解的概念2.1 均衡均衡是指在博弈中各参与者选择了策略后,没有动力再改变策略,从而达到一种稳定状态。
常见的均衡概念有纳什均衡、帕累托最优和博弈解。
2.2 纳什均衡纳什均衡是指在博弈中的一组策略选择,使得每个参与者选择的策略是对其他参与者的策略选择的最佳应对,没有动机再改变策略。
2.3 帕累托最优帕累托最优是指在博弈中的一组策略选择,使得至少有一个参与者的收益达到最大,而其他参与者的收益至少不会减小。
帕累托最优是一种资源分配的有效方式。
2.4 博弈解博弈解是指在博弈中的一组策略选择,使得没参与者都没有动力再改变策略。
博弈解往往是均衡的特殊情况。
三、均衡理论3.1 零和博弈零和博弈是一种特殊的博弈形式,即参与者的利益总和为零。
《博弈论》学习体会范文(2篇)

《博弈论》学习体会范文《博弈论》是一门研究决策制定的数学理论,主要应用于经济学、政治学和生物学等领域。
在学习过程中,我深刻认识到博弈论对于理解决策过程和预测结果的重要性。
同时,学习博弈论的过程也启发了我对于决策策略的思考和分析能力的提升。
以下是我对于学习博弈论的体会和经验总结:一、博弈论的基本概念和模型在学习博弈论的初期,我首先了解了博弈论的基本概念和模型。
博弈论主要研究的是参与者在决策过程中的相互影响和相互作用,通过建立各个参与者的决策模型和收益函数,探讨他们在不同策略下的最佳决策方式。
在初步了解了博弈论的基本概念后,我开始学习博弈论的基本模型,包括零和博弈、非零和博弈、合作博弈等。
零和博弈是博弈论中最基本的模型之一,也是最简单的博弈模型。
零和博弈是指参与者之间的利益完全相反,一个人的收益就是另一个人的损失。
通过学习零和博弈模型,我了解到了博弈中的关键概念,例如纳什均衡和最优反应策略等。
非零和博弈是指参与者之间的利益不一定完全相反,他们的利益可能存在一定的重叠部分。
学习非零和博弈模型,我了解到了通过合作和策略选择来实现最优利益的方法。
合作博弈是指参与者之间可以通过合作来获得更好的收益的博弈模型。
合作博弈着重研究参与者之间的合作和协调,通过建立合作博弈的分配规则来实现利益的最大化。
通过学习合作博弈模型,我了解到了通过合理分配和合作博弈的方式来实现参与者之间的共赢。
二、博弈论在实践中的应用在学习了博弈论的基本概念和模型之后,我开始了解博弈论在实践中的应用。
博弈论主要在经济学、政治学和生物学等领域有广泛的应用。
在经济学中,博弈论可以应用于竞争策略、定价策略和合作博弈等方面。
通过分析参与者的策略选择和收益函数,可以为企业制定更合理和更优化的决策策略,提高利润和市场竞争力。
在政治学领域,博弈论可以用于分析选举策略、决策制定和外交政策等方面。
通过分析不同参与者的策略选择和收益函数,可以预测选举结果、分析政策争论和推断外交决策。
博弈论总结(精选13篇)

博弈论总结第1篇最大化自己最坏情况下的收益。
着眼于自己的收益,保证自己收益,防止风险使得自己的收益变小。
以性别之战为例子:首先你得先得到一个关于妻子和丈夫的一个收益表 1.进行假设:妻子策略:P概率看韩剧、(1-P)概率看体育丈夫策略:Q概率看韩剧、(1-Q)概率看体育 xxx子期望收益(着眼于自己的期望收益): Uw(q,p)=2PQ + 0×P(1-Q) + 0×Q(1-P) +1×(1-P)(1-Q) = 3PQ - P -Q +1 前面的系数参考收益表(妻子收益)3.妻子的最小收益可能为Q=0或Q=1(当丈夫选择Q=0时,意味着丈夫100%想看体育,妻子的收益可能为0;当Q=1时,丈夫100%想看韩剧,如果这时妻子想看体育,收益同样最小)这里只是在讨论妻子收益最小的可能性4.妻子的最坏收益为:minUw(p,q) = min(1-P,2P)5.最大化最坏收益: max(min(1-P,2P))解的:P=1/3则妻子的maxmin策略为:1/3概率选择韩剧,2/3概率选择体育。
同理得丈夫的maxmin策略为:1/3概率选择体育,2/3概率选择韩剧。
minmax策略 1.最小化对手最好情况下的收益。
是着眼于对手的收益。
还是这样的一个收益表 1.进行假设:妻子策略:P概率看韩剧、(1-P)概率看体育丈夫策略:Q概率看韩剧、(1-Q)概率看体育2.丈夫期望收益(着眼于对方的期望收益):(与maxmin不同要注意!!)Uw(q,p)=PQ + 0×P(1-Q) + 0×Q(1-P) +2×(1-P)(1-Q) = 3PQ - 2P -2Q +2前面的系数参考收益表(丈夫收益)3.妻子的最小收益可能为Q=0或Q=1(当丈夫选择Q=0时,意味着丈夫100%想看体育,如果这时妻子也想看体育,丈夫收益到2;当Q=1时,丈夫100%想看韩剧,如果这时妻子想看韩剧,收益同最大1)这里只是在讨论妻子收益最小的可能性xxx夫的最大收益为:maxUw(p,q) = max(2-2P,P) 5.最小化最好收益: min(max(1-P,2P))妻子的minmax策略:2/3概率选择韩剧,1/3概率选择体育同里丈夫为的minmax为…在零和博弈中,maxmin策略和minmax策略是等价的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论学习的个人总结刘艳丽第一部分:基本情况视频来源:耶鲁公开课《博弈论》1----5讲,人人影视参考资料:耶鲁校园网《博弈论--战略分析入门》,美,罗杰A麦凯恩,原毅军译,机械工业出版社,2006,42元《策略博弈》,阿维纳什迪克西特,蒲勇健译,中国人民大学出版社,第二版,2009,65元班级:工商,人力08级学生课时:8节我的时间投入:视频26个小时;书籍,25小时;上网时间,无法统计。
第二部分:知识层面一、The five lessons:五个基本的结论1、Don't play a strictly dominated strategy2、Rational choices can lead to bad outcomes3、You can't get what you want4、Put yourself in other people's shoes5、Yale students are evil二、Game 2: "pick a number."数字游戏Without showing your neighbor what you're doing, put in the box below a whole number between 1 and a 100 [whole number between 1 and 100--integer.] We will calculate the average number chosen in the class. The winner in this game is the person whose number is closest to two-thirds times the average in the class.三、The Prisoners' Dilemma:some examples囚徒困境A joint projectPrice competitionA common resourceGlobal warming and carbon emissionscommunication,contracts,treaties between countries,regulation,education cannot workSolutions OF The Prisoners' Dilemma:changing payoffs.改变收益结构四、The ingredients of a game:博弈的基本结构Players:i 、jStrategies:"s i" to be a particular strategy of Player iS i" to be the set of alternatives."s" to mean a particular play of the gamePayoffs:"U" for utile, to be Player i's payoff.So "U i" will depend on Player 1's choice … all the way to Player i's ownchoice … all the way up to Player N's choices.Player i's payoff "U i," a shorter way of writing that would be "U i(s)," itdepends on the profileS-i" to mean a strategy choice for everybody except person "i."Assume that everybody knows the possible strategies everyone else could choose and everyone knows everyone else's payoffs五、如何寻找博弈均衡解1、成绩案例-----求解方法,如存在最优策略,则选择最优。
2、数字游戏——如果不在绝对优势策略,则叠代剔出劣势策略(情景案例:中间选民理论,合作博弈,产品植入理论)3、点球游戏——不存在严格优劣势策略,则根据对对手的策略,来确定自己的最优策略。
(最佳反应策略。
)六、纳什均衡1、纳什均衡的定义在一个没有严格优势策略的博弈中,如果没一个参与人都采用了针对其他参与人所选策略的最优反应策略,那么参与人的策略就是一个纳什均衡。
2、研究纳什均衡的意义第一个意义,是我不后悔。
如果其他人的行为不改变,那么我改变了策略,我的收益会减少,我会后悔没有选择符合纳什均衡的策略。
这个不后悔。
第二个意义是自我实施的信念。
第三个意义是任何博弈都会趋向于一个稳定的均衡,而这个均衡是纳什均衡。
生活中和商业案例中有许多纳什均衡的案例。
研究纳什均衡可以帮助我们理解商业活动3、纳什的求解方法一、逐格检查法,通过寻找每个参与人的最佳策略来确定纳什均衡方法二、叠代提出法,剔除明显劣势的反应策略,以求得拿事均衡方法三、猜方法四、通过获取信息来确定纳什均衡。
4、情景案例:第三部分:思维与方法层面一、构件模型的目的建立模型的目的是为了更好地描述事实以激发灵感,模型是有重要的事实抽象而来得,它一般不完善,但是能清晰的明确事物之间的关系。
我们可以完善模型,通过给它加入约束条件,而后检验这个约束条件对结论有何影响。
二、如何去分析每个博弈一般而言,应该找到一个博弈的三个要素:参与人,策略以及收益。
参与人的策略可以是连续的,也可以是离散;一般理性的参与人是追求自身收益最大化的;参与人可以是二人,也可以是多人,可以是单次博弈也可以是多次博弈。
三、如何传达“新的知识”站在自己的肩膀上。
首先是一个情景式的案例描述,而后是用我们已熟悉的知识也分析或者描述这个案例,而后尝试着用新的方法去分析或者描述这个案例。
新的知识就这样由熟悉和已知的知识所引导出,最后需要我们用术语来描述新知识。
第四部分,其他与八卦1、电影《美丽心灵》(沉闷的电影)2、哈佛公开课《公正,如何做才更好》(苏格拉底式的上课风格)耶鲁公开课《博弈论》(严谨的教学风格,不过容易打瞌睡)3、强烈错位感。
应当认真学习的人在忙着“生活”;应当忙于生计的人在忙着学习。
人生错位可能是一种常态吧,在什么样的年龄段就应该做什么事。
我无法感慨和遗憾我的大学时代没有这么强大的公开课资料,但是今天我遇到了,便不会错过,哪怕我已经35岁了。
4、真正的大师是深入浅出,而不是故作高深。
从这个意义上,我第一个部分,交易成本经济学的讲解并不成功(自我安慰一下,人家是大师啊!)。
5、通过学生,我知道了坚持的价值。
他们比我聪明,但浮躁。
他们缺乏一种对于知识的信仰和敬畏。
无须强求,快餐时代知识并无太大用处。
附近:1、《博弈论--战略分析入门》的基本结构(目录)(此书可购买收藏,丫头高中阅读)第一部分基本原理第一章冲突、战略与博弈1、西班牙叛乱:击溃赫图勒斯2、博弈论的产生3、博弈与游戏的关系4、囚徒困境5、博弈的标准式与扩展式6、电影中约翰纳什的问题7、一个科学的隐喻小结与练习与讨论第二章扩展式博弈与标准式博弈1、标准式博弈2、考察标准式博弈3、囚徒困境博弈的扩展式表达4、军事史上的一个例子小结与练习第二部分标准式博弈的非合作均衡第三章占优战略与社会两难1、垃圾处理博弈2、占优战略3、社会两难与博弈的合作解4、合作产品研法5、再看合作博弈与非合作博弈6、一个政治博弈7、存在两个以上战略的博弈8、教科书博弈小结与练习第四章纳什均衡1、教科书博弈(续)2、纳什均衡3、选址博弈4、纳什均衡的启发式寻找方法5、选择电视台节目形式6、推与不推博弈7、赶集日8、再议《美丽心灵》9、逃跑博弈小结与练习第五章博弈论中的经典例子1、竟猜博弈2、最大最小解3、零和博弈的作用4、性别大战5、单小鬼博弈6、鹰鸽博弈7、以序号表示收益小结与练习第六章三人博弈1、国际联盟2、政治博弈中的:“拆台者”3、股票投资建议4、群体博弈5、公共物品提供博弈小结与练习第七章概率与博弈论1、概率2、期望值3、自然的不确定性4、海军冲突5、风险厌恶6、期望效用附录A:测量效用附录B:贝叶斯法则小结与练习第八章混合战略纳什均衡1、棒球比赛中诚实的人们2、纯战略和混合战略3、促销博弈4、混合战略和纯战略共同存在时的均衡5、混合战略的图形分析小结与练习第九章非合作均衡的深入讨论1、再看选址博弈2、反复剔除劣势策略3、纳什均衡的精练:颤抖手4、认罪博弈5、金发女朗问题的对称非合作解6、纳森德特的两难小结与练习第十章双寡头垄断的战略与定价1、古诺模型2、古诺模型中的纳什均衡3、伯特兰与埃奇沃斯4、混合战略定价博弈5、适用性附录A:古诺模型的数学解法附录B:基于微积分的混合战略定价模型与商业案例第11章多人博弈1、排队博弈2、多人博弈中的简化假设3、多个参与者的博弈:比例博弈4、再看鹦鸽博弈5、供给、需求和试算法6、凯恩斯经济学和协调问题7、假设的利弊小结与练习第三部分博弈的合作解第12章合作博弈的要素1、自行车交易2、可信的承诺3、房地产开发4、解集5、核6、顺风车7、一些政治联盟8、国际联盟博弈小结与联系第13章核在经济学中的应用1、市场博弈2、双人交易博弈的核3、多人交易的核4、公共物品提供博弈的核5、垄断与规则小结与练习第四部分序贯博弈第14章序贯博弈1、遏制进入的战略性投资2、序贯博弈的概念3、再看西班牙叛乱4、纳什均衡和子博弈完美均衡5、蜈蚣博弈6、椰子博弈小结与练习第15章嵌套博弈1、博士学习计划2、马耳他之鹰3、求解蜈蚣博弈4、再看反击5、为什么有罢工小结与练习第16章重复博弈1、露营者的难题2、熨衬衣3、连锁店悖论4、恐怖活动小结与练习第17章无限重复博弈1、重复的努力困境2、折现因子3、露营者的难题4、毒气5、合谋定价6、错误小结与练习第五部分(还没有阅读)第18章博弈论、法律与社会机制设计第19章投票博弈第20章博弈与实验第21章拍卖第22章演进和有限性学习。