平面四杆机构的基本类型及应用
平面四杆机构类型介绍课件

03
应用:汽车转向机构、自行车脚踏板机构等
04
优点:结构简单,运动可靠,易于实现各种运动规律
双摇杆机构
组成:两个摇杆和 一个连杆 1
特点:结构简单,运 动灵活,但运动轨迹 4 复杂,设计难度较大
运动:两个摇杆 2 可以同时摆动,
连杆随之运动
应用:汽车转向 3 系统、飞机起落
架等
3
平面四杆机构的 应用
构
05
平行四杆机构:由四个平行杆组成的机构
06
空间四杆机构:由四个空间杆组成的机构
平面四杆机构的特点
由四个构件组成,其中至少有一个构件是活 动构件 构件之间通过转动副或移动副连接
机构的运动是通过构件之间的相对运动实现 的
机构的运动具有确定的运动规律,可以通过 分析机构的几何关系和运动学原理来研究
2
平面四杆机构的 类型
曲柄摇杆机构
02
03
04
优点:结构简单、运动 平稳、易于控制和实现 自动化
应用:广泛应用于各种 机械设备中,如汽车、 飞机、船舶等
特点:曲柄和摇杆的 运动轨迹为圆弧
01
组成:曲柄、摇杆、 连杆和机架
双曲柄机构
01
组成:两个曲柄和一个连杆
02
特点:两个曲柄可以同时转动,连杆只能做摆动运动
能满足强度要求
设计合理的传动比,
2
避免过大的传动比导
致机构过载
优化结构设计,减少
3
应力集中和疲劳破坏
满足加工工艺要求
01
04
设计机构时,要考虑到成 本控制的要求,如采用何 种材料、加工方法等。
03
设计机构时,要考虑到维 修工艺的要求,如采用何 种维修方法、维修工具等。
平面四杆机构的类型特点及应用概念

平面四杆机构的类型特点及应用概念平行四杆机构的特点是固定杆和活动杆平行且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。
它的运动可以实现平行移动,适用于汽车悬挂系统、工艺机械等领域。
正交四杆机构的特点是固定杆和活动杆相交且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。
它的运动可以实现直线运动,适用于推动机械、绞车等领域。
菱形四杆机构的特点是固定杆和活动杆两两相交且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。
它的运动可以实现平行移动和旋转运动,适用于啮合机构、制造机械等领域。
推动机构的特点是固定杆和活动杆两两平行且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。
它的运动可以实现直线运动,适用于传动机构、物料输送机械等领域。
平面四杆机构的应用非常广泛。
它可以用于制造机械、工艺机械、汽车悬挂系统、绞车、传动机构、物料输送机械等领域。
在制造机械中,平面四杆机构常用于构建精密机床,如铣床、钻床等。
在工艺机械中,平面四杆机构常用于构建织机、纺机等。
在汽车悬挂系统中,平面四杆机构可以实现汽车悬挂系统的运动,提高汽车悬挂性能。
在绞车中,平面四杆机构可以用于提升和绞丝等工作。
在传动机构中,平面四杆机构可以用于实现直线传动和转动传动。
在物料输送机械中,平面四杆机构可以用于实现物料的输送和分拨。
总之,平面四杆机构具有多种类型和特点,适用于多个领域的应用。
它可以实现复杂的运动轨迹,广泛应用于制造机械、工艺机械、汽车悬挂系统、绞车、传动机构、物料输送机械等领域。
平面四杆机构的基本类型

平面四杆机构是一种常见的机械结构,由四个连杆组成,可以实现转动和传递力量。
根据其连杆排列方式和运动特点,平面四杆机构可以分为以下几种基本类型:
四杆平行机构:四个连杆平行排列的机构,常见的形式是平行四边形。
四杆平行机构具有简单结构和稳定性好的特点,在工程和机械设计中广泛应用。
四杆平行滑块机构:四个连杆中有一个是滑块,可以在平面内作直线运动。
这种机构常见的应用是在平面上实现直线运动,如印刷机的工作台。
四杆旋转机构:四个连杆可以围绕一个固定点旋转,形成一个封闭的轨迹。
这种机构常见的形式是摇杆机构或曲柄摇杆机构,常用于发动机的活塞运动转化为旋转运动。
四杆转动滑块机构:四个连杆中有一个是滑块,可以在平面内作转动运动。
这种机构常见的应用是实现旋转运动和直线运动的转换,如某些机床的进给机构。
这些基本类型的平面四杆机构都具有不同的运动特点和应用场景。
根据具体的工程需求和设计要求,可以选择合适的平面四杆机构类型,并进行优化和改进,以满足特定的运动和力学要求。
简述平面四杆机构的类型特点和应用

简述平面四杆机构的类型特点和应用一、平面四杆机构的类型:1. 平衡四杆机构:该机构有能力保持平衡,即使受到外部干扰也能够回到原来的位置。
这种机构被广泛用于稳定系统和开放环境。
2. 驱动四杆机构:该机构可以转化旋转运动为线性运动或反之。
这种机构广泛应用于机械工程、模具制造和自动化工程中。
3. 可逆四杆机构:该机构可以逆向工作,在不同的任务中灵活应用。
这种机构被广泛用于机器人工程和自动化工程中。
4. 变位四杆机构:该机构可以在不同位置自动调整,以适应不同的应用需求。
这种机构被广泛用于自动化机械和精密制造领域。
二、平面四杆机构的特点:1. 平面四杆机构可以转换不同类型的运动,包括旋转、线性、摆动等。
2. 平面四杆机构结构简单,易于制造和维护,具有良好的可靠性和稳定性。
3. 平面四杆机构可以通过组装多个单元来实现更高级别的机械结构,例如机器人、自动化系统等。
4. 平面四杆机构广泛应用于机械、汽车、制造、物流、自动化等领域,并逐渐成为机器人、智能装备的重要组成部分。
三、平面四杆机构的应用:1. 发动机连杆机构:由于发动机需要将旋转运动转化为线性运动来驱动汽车轮胎,平面四杆机构被广泛应用于汽车发动机的连杆机构中。
2. 物流设备:平面四杆机构可以逆向工作,可以将线性运动转化为旋转运动,这使得物流设备可以保持高速和精度,如自动包装线、调料机等。
3. 机械手:平面四杆机构的结构简单,稳定性好,这使得它成为机器人手臂的优选部件之一,广泛应用于各个制造领域。
4. 印刷机械:平衡四杆机构可以使印刷平台始终稳定,特别是在高速印刷时,它可以保持印刷品的精度和质量。
5. 飞控系统:平衡四杆机构被广泛应用于飞控系统的调节器中,以帮助控制飞行器的稳定性。
总的来说,平面四杆机构具有结构简单、稳定性好、运动特性多样等特点,可以在各个行业发挥重要的作用。
平面四杆机构考研题库

平面四杆机构考研题库平面四杆机构是机械工程中一个重要的研究领域,也是考研中常见的题型之一。
在这篇文章中,我们将探讨平面四杆机构的基本概念、应用以及相关的考研题库。
一、平面四杆机构的基本概念平面四杆机构是由四个连杆组成的机械系统,其中两个连杆为固定连杆,另外两个连杆为运动连杆。
这四个连杆通过铰链连接在一起,形成一个闭合的结构。
平面四杆机构的运动可以通过连杆的长度、角度以及连接方式来调节和控制。
平面四杆机构有许多不同的类型,包括双曲杆机构、平行杆机构、交叉杆机构等。
每种类型的机构都有其特定的运动规律和应用领域。
在考研中,我们需要了解这些基本概念,并能够应用到具体的问题中。
二、平面四杆机构的应用平面四杆机构在工程领域有广泛的应用。
其中一个典型的应用是在机械传动系统中。
通过调节连杆的长度和角度,可以实现不同的运动和力学特性,从而满足不同的工程需求。
另一个常见的应用是在机器人技术中。
平面四杆机构可以用来设计和控制机器人的运动,实现复杂的动作和任务。
例如,通过改变连杆的长度和角度,可以实现机器人的抓取、转动和推动等动作。
平面四杆机构还可以应用于汽车制造、航空航天、医疗设备等领域。
在汽车制造中,平面四杆机构可以用来设计和控制汽车的悬挂系统、转向系统等。
在航空航天中,平面四杆机构可以用来设计和控制飞机的起落架、舵面等。
在医疗设备中,平面四杆机构可以用来设计和控制手术机器人、康复设备等。
三、平面四杆机构考研题库在考研中,平面四杆机构是一个常见的考点。
以下是一些常见的考研题目:1. 请简述平面四杆机构的基本概念和分类。
2. 一台机器人的手臂由两个连杆组成,长度分别为L1和L2。
如果L1=10cm,L2=15cm,连杆之间的夹角为60度,请计算手臂的最大工作范围。
3. 一台汽车的悬挂系统采用平面四杆机构,其中两个连杆的长度分别为L1=30cm,L2=40cm。
请计算当汽车通过一个凸起的路面时,悬挂系统的最大位移。
4. 一台手术机器人的手臂由两个连杆组成,长度分别为L1=20cm,L2=25cm。
(完整版)平面四杆机构的基本类型及其演化

第三讲课题:§3-1 平面四杆机构的基本类型及其演化教学目的:理解平面四杆机构的各种类型及其应用。
教学重点: 铰链四杆机构类型及其演化,理解曲柄存在条件。
教学难点:导杆机构教学方法:课堂演示、多媒体教学互动:每个知识点后提问或讨论。
教学安排:§3-1 平面四杆机构的基本类型及其演化复习旧课:机构组成,运动副,运动简图等。
平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。
因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。
一、四杆机构的类型1.曲柄摇杆机构两连架杆一为曲柄,一为摇杆。
功能:将等速转动转换为变速摆动或将摆动转换为连续转动。
应用:雷达天线机构、缝纫机踏板机构。
2.双曲柄机构两连架杆都为曲柄功能:将等速转动转换为等速同向、不等速同向、不等速反向转动。
应用:惯性筛机构若两曲柄的长度相等,连杆与机架的长度也相等,则该机构称为平行双曲柄机构。
如铲斗机构还有反平行四边形机构,例:公共汽车车门启闭机构3.双摇杆机构两连架杆都为摇杆功能:一种摆动转换为另一种摆动。
应用:鹤式起重机、飞机起落架二、铰链四杆机构的曲柄存在条件证明:结论:铰链四杆机构存在一个曲柄的条件是:1.最短杆与最长杆长度之和小于或等于其余两杆长度之和2.曲柄为最短杆。
铰链四杆机构存在曲柄的条件是:1.最短杆与最长杆长度之和小于或等于其余两杆长度之和2.机架或连架杆为最短杆。
三、四杆机构类型判别否Lmax+Lmin< L' +L"是不可能有曲柄可能有曲柄最短杆对边最短杆最短杆邻边双摇杆机构曲柄摇杆机构双曲柄机构四、铰链四杆机构的演化1.曲柄滑块机构2.偏心轮机构3.导杆机构①摆动导杆机构(牛头刨床)②转动导杆机构③移动导杆机构4.摇块机构小结:本次课主要熟悉四杆机构的各种类型,了解它们的应用作业:预习下次课内容。
平面四杆机构的基本类型及其应用

一、特点
全低副(面接触),利于润滑,故磨损小、压强小,传载 大、寿命长;几何形状较简单,易加工,制造成本低等。
不能精确实现复杂的运动规律,设计计算较复杂,惯性 力不易平衡等。
二、应用 实现已知运动规律; 实现给定点的运动轨迹。
§8–2 平面四杆机构的类型和应用
平面连杆机构-平面机构+低副连接 (转动、移动副) 最常用→平面四杆机构( 四个构件→四根杆)
三、双移动副机构
正弦机构
正切机构
双转块机构 (十字滑块机构)
动画
双滑块机构 椭圆仪
四、偏心轮机构
• 对心式曲柄滑块机构
• 偏心轮机构
B
1
2
A
3
C
B副扩大
4
B
1 A
2
3
C 4
五、四杆机构的扩展
手动冲床
双摇杆机构 摇杆滑块机构
筛料机构 双曲柄机构
曲柄滑块机构
连杆
2
C 连架杆
3
4
D
机架
(按连架杆类型)
铰链四杆机构
曲柄摇杆机构
双曲柄机构
双摇杆机构
一曲一摇
二曲
二摇
1.曲柄摇杆机构: 连架杆┌曲柄→(一般)原动件→匀速转动
└摇杆→(一般)从动件→变速往复摆动
雷达调整机构
(天线→摇杆)→调整天线 俯仰角的大小
搅拌器机构 缝纫机踏板 刮雨器
B 1 A
C 2
3
4
基本类型
→铰链四杆机构(全由转动副相联)
→最简单,应用广泛,组成多杆机构的基础。
一、铰链四杆机构基本类型
-全由转动副相联的平面四杆机构
§8—2平面四杆机构的类型及应用

图8-3
振动筛机构
在双曲柄机构中,有两种特例: 1)平行四边形机构:其相对两杆平行且相等,如图8-7a 所示。
其运动特性是:
①两曲柄作等速同向转动; ②连杆作平移运动。
图8-7a
应用实例: 图8-8所示的机车车轮的联动机构就利用了特性① ;
图8-8
如图所示的摄影平台升降机构和图8-9 b所示的播种 机料斗机构则是利用了特摇杆长度相等。 图8-12b所示的汽车、拖拉机前轮的转向机构。
图8-12b
二、平面四杆机构的演化型式
(Evolution of Planar Four-bar Linkage)
1、四杆机构演化的目的: 满足运动方面的要求、改善受力状况、满足结构设 计上的要求。 2、四杆机构的演化方法: 1)改变构件的形状和运动尺寸
在图8-14,b所示的曲柄滑块机构中,B点相对于C 点的运动轨迹是αα。
连杆2做成滑块
αα 做成导轨
图8-14 b)
曲柄滑块机构 演化
图8-15 a) 双滑块机构
连杆长→∞,
αα →直线
图8-15 b)
正弦机构s=LABsinψ
2)改变运动副的尺寸
扩大转动副B的半径
使之超过曲柄的长度
图8-16 a) 图8-16 b) 演化 偏心轮机构
摇杆3做成滑块 ββ做成导轨
具有曲线导 轨的曲柄滑 块机构
图8-13 a )
图8-13 b )
图8-13 a )
摇杆长→∞, ββ →直线 摇杆3 →滑块, 转动副D →移动副 偏置(eccentric or e≠0
offset)
对心(in-line) e=0 图8-14 曲柄滑块机构
曲柄滑块机构(slider-crank mechanism)常用在冲床、 内燃机、空压机等机械中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3-16b
图3-19
图3-20
• 若选用曲柄滑块机构中滑块3作机架(图316c),即演化成移动导杆机构 移动导杆机构(或称定块 移动导杆机构 定块 机构)。 机构 • 它应用于手摇卿筒(图3—21)和双作用式 水泵等机械中。
图3—21
图3-16c
(3)变化双移动副机构的机架
• 在图3-15和图3-22a所示的具有两个移动副的四杆机 正弦机构, 构中,是选择滑块4作为机架的,称之为正弦机构 正弦机构 这种机构在印刷机械、纺织机械、机床中均得到广 泛地应用,例如机床变速箱操纵机构、缝纫机中针 杆机构(图3—22d);
图3-4
(2)变化单移动副机构的机架
• 若将图3-14b所示的对心曲 柄滑块机构,重新选用不同 构件为机架,又可演化成以 下具有不同运动特性和不同 用途的机构。
图3-14b
图3-16
• 若选构件1为机架(图3-16a),虽然各构件 的形状和相对运动关系都未改变,但沿块3将 在可转动(或摆动)的构件4(称其为导杆) 上作相对移动,此时图3-14b所示的曲柄滑 块机构就演化成转动(或摆动)导杆机构(图 3-16a);差异? 摆动导杆 机构能否 回复为曲 柄滑块机 构??
转动导杆机构
摆动导杆机构
Hale Waihona Puke • 它可用于回转式油泵、牛头刨床及插床 等机器中。图3-17所示小型刨床和图3— 18中的牛头刨床,分别是转动导杆机构 和摆动导杆机构的应用实例。
图3-17
图3—18
• 若选用构件2为机架,滑块3仅能绕机架上 铰链C作摆动,此时演化成曲柄摇块机构 曲柄摇块机构 (图3-16b);它广泛应用于机床、液压 驱动及气动装置中,图3-19所示为Y54 插齿机中驱动插齿刀的机构和图3-20所 示的自卸卡车的翻斗机构,均是曲柄摇块 机构应用实例。
二、平面连杆机构的演化
• 前面介绍的三种铰链四杆机构, 还远远满足不了实际工作机械的 需要,在实际应用中,常常采用 多种不同外形、构造和特性的四 杆机构,这些类型的四杆机构可以看作是由铰链 四杆机构通过各种方法演化而来的。 • 这些演化机构扩大了平面连杆机构的应用,丰 富了其内涵。
1、改变相对杆长、转动副演化为移动副 、改变相对杆长、
图3-22
总结: 总结:平面连杆机构的演化
图3-15
图3—22
• 若选取构件1为机架(图3-22b), 则演化成双转块机构 双转块机构,它常应用 双转块机构 作两距离很小的平行轴的联轴器, 图3-22e所示的十字滑块联轴节为 其应用实例;
图3-22b
图3-22e
• 当选取构件3为机架(图3-22c)时, 演化成双滑块机构 双滑块机构,常应用它作椭圆 双滑块机构 仪(图3—22f)。
• 若继续改变图3—14b中对心曲柄滑块机构中杆 2长度,转动副C转化成移动副,又可演化成双 滑块机构(图3-15)。该种机构常应用在仪 表和解算装置中。
2、选用不同构件为机架
原理: 原理:各构件间的相对运动保持不变 (1)变化铰链四杆机构的机架 )
• 如图3-4所示的三种铰链四杆机构,各杆件间的相对运动和 长度都不变,但选取不同构件为机架,演化成了具有不同结 构型式、不同运动性质和不同用途的以下三种机构 三种机构。 三种机构
铰链四杆机构可分为以下三种类型
1、曲柄摇杆机构 、
• 铰链四杆机构的两连架杆中一个能作整 周转动,另一个只能作往复摆动的机构。
2、双曲柄机构 、
铰链四杆机构的两连架杆均能作整周转 动的机构。
• 在双曲柄机构中,若相对两杆平行相 等,称为平行双曲柄机构 平行双曲柄机构(图3-9)。 平行双曲柄机构 这种机构的特点是其两曲柄能以相同 的角速度同时转动,而连杆作平行移 动。图3-10a所示机车车轮联动机构 和图3-10b所示的摄影平台升降机构 均为其应用实例。
在曲柄摇杆机构中,若摇杆的杆长增大至无穷长,则 其与连杆相联的转动副转化成移动副。 ——曲柄滑块机构 曲柄滑块机构
曲柄滑块机构——偏心轮机构 曲柄滑块机构
• 当曲柄的实际尺寸很 短并传递较大的动力 时,可将曲柄做成几 何中心与回转中心距 离等于曲柄长度的圆 盘,常称此机构为偏 心轮机构。
双滑块机构
图 3-11 -
3、双摇杆机构 、
双摇杆机构:铰链四杆机构中的两连架杆均不能作 双摇杆机构 整周转动的机构。
如 图 3 - 12 所 示 鹤 式 起 重 机 的 双 摇 杆 机 构 ABCD,它可使悬挂重物作近似水平直线移动, 避免不必要的升降而消耗能量。在双摇杆机构 中,若两摇杆的长度相等称等腰梯形机构,如 图3—13中的汽车前轮转向机构。
• 一、平面四杆机构的基本类型及应用
• 全部运动副为转动副的四杆机构称为铰链四杆机构 铰链四杆机构, 铰链四杆机构 • 它是平面四杆机构的最基本型式(如图3-4a所示)
图3-4a
a—曲柄: 与机架相联并且作整周转动的构件; 曲柄: 曲柄 b—连杆 连杆:不与机架相联作平面运动的构件; 连杆 c—摇杆 摇杆:与机架相联并且作往复摆动的构件; 摇杆 d—机架 机架: 机架 a、c—连架杆。 连架杆。 连架杆
图3-9
图3-10
• 在图3-11a所示双曲柄机构中,虽然其对应边长度 也相等,但BC杆与AD杆并不平行,两曲柄AB和 CD转动方向也相反,故称其为反平行四边形机构 反平行四边形机构。 反平行四边形机构 • 图 3-11b所示的车门开闭机构即为其应用实例, 它是利用反平行四边形机构运动时,两曲柄转向相 反的特性,达到两扇车门同时敞开或关闭的目的。