(R)九年级上学期期末基础知识复习题目6
山东省泰安市新泰市2022-2023学年九年级上学期期末数学试卷(基础题)及解析

【分析】先判断出 是正数,再根据反比例函数图象的性质,比例系数 时,函数图象位于第一三象限,在每一个象限内 随 的增大而减小判断出 、 、 的大小关系,然后即可选取答案.
【详解】解: ,
,是正数,
反比例函数 的图象位于第一、三象限,且在每一个象限内 随 的增大而减小,
, , 都在反比例函数图象上,
(1)求反比例函数的表达式;
(2)过点 作 轴,垂足为点 ,如果点 在反比例函数图象上,且 的面积等于 ,请直接写出点 的坐标.
22.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览.当船在A处时,船上游客发现岸上 处的临皋亭和 处的遗爱亭都在东北方向;当游船向正东方向行驶 到达B处时,游客发现遗爱亭在北偏西15°方向;当游船继续向正东方向行驶 到达C处时,游客发现临皋亭在北偏西60°方向.
故选:C.
【点睛】本题考查了概率的知识;解题的关键是熟练掌握树状图法求解概率的性质,从而完成求解.
8.D
【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.
【详解】∵∠BCD=30°,
∴∠BOD=2∠BCD=2×30°=60°.
故选:D.
【点睛】本题考查了圆的角度问题,掌握圆周角定理是解题的关键.
(1)求A处到临皋亭P处的距离.
(2)求临皋亭 处与遗爱亭 处之间的距离(计算结果保留根号)
23.如图,在 中,点 在斜边 上,以 为圆心, 为半径作圆,分别与 , 相交于点 , ,连接 ,已知 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
24.某商店销售一种销售成本为 元/千克的水产品,若按 元/千克销售,一个月售出 kg,销售价每涨价1元,月销售量就减少 kg.
期末计算必刷题(第6-7章,含基础、重点、难点)(原卷版)-九年级物理第一学期期末挑战满分训练

期末计算题(第6-7章,含基础、重点、难点)一、计算题1.体积1×10-3m 3的铁球浸没在水中,求铁球受到的浮力F 浮。
2.国产大飞机C919采用碳纤维材料减轻自身质量。
求:体积V 为2米3的碳纤维的质量m 。
已知碳纤维的密度ρ碳纤维=1.8×103千克/米3。
3.体积为2×10-3m 3的实心合金块浸没在水中,求合金块所受浮力F 浮。
4.在某容器装满水时,水的质量为2千克,而装满某液体时,该液体的质量为2.2千克。
求:(1)容器中水的体积V ;(2)该液体的密度ρ液。
5.体积为5×10-3米3,密度为6×103千克/米3的物体浸没在水中,求:(1)物体的质量m ;(2)物体受到的浮力F 浮。
6.将一块重为10牛的合金块浸没在水中,合金块排开水的体积为4510-⨯米3。
求:(1)合金块所受浮力F 浮的大小;(2)合金块所受重力与浮力的合力F 合的大小与方向。
7.如图所示,实心均匀正方体甲和实心均匀圆柱体乙置于水平地面上,已知甲的密度为2×103千克/米3,边长为0.1米。
①求甲对地面的压强p 甲;②若乙的底面积是甲的底面积的一半,且甲、乙对地面的压强相等,现将乙放置于甲的上方,求甲对水平地面的压强p 甲'。
8.如图所示,甲、乙两个完全相同的薄壁圆柱形容器置于水平面上,容器的质量为0.2千克、底面积为2110-⨯米2。
甲中盛有水,乙中盛有酒精(30.810ρ=⨯酒精千克/米3),水和酒精对容器底部的压强相等。
(1)若甲中水的质量为1.8千克,求水的体积V 和甲容器对水平面的压强p 。
(2)求距容器底部0.1米的A 、B 处,水和酒精压强的差值p ∆。
9.如图所示,装有水的薄壁轻质圆柱形容器甲与圆柱形物块乙等高,放置于水平地面上,甲中水的深度为0.1米,底面积为0.02米2,求:(1)水对容器底部的压强p 水。
(2)容器内水的质量m 水。
部编版语文九年级上学期期末专项复习:基础知识综合试卷(含答案)

部编版语文九年级上学期期末专项复习-基础知识综合学校:___________姓名:___________班级:___________考号:___________考试范围:九年级上、下册1.请运用积累的知识,完成后面小题。
文段一:“贤弟,你听我说,你如今回去,奉事父母,总以文章学业为主,人生世上,除了这事,就没有第二件可以出头。
……只要是有本事进了学,中了举人、进士,即刻就荣宗耀祖。
这就是《孝经》上所说的‘显亲扬名’,才是大孝,自身也不得受苦。
古语说得好,书中自有黄金屋,书中自有千钟sù,书中自有颜如玉。
”文段二:“功名到底是身外之物,德行是要紧的。
我看你在孝悌上用心,极是难得,却又不可因后来日子略过得顺利些,就添出一肚子里的势利见识来,改变了小时的心事。
我死之后,你一满了服,就急急的要寻一头亲事,总要穷人家的儿女,万不可贪图富贵,攀高结贵。
”(摘自吴敬梓《儒林外史》第十七回)(1)给加点的字注音,根据拼音写出相应的汉字。
奉事( ) 千钟sù( ) 孝悌( )(2)明清科举有童试、院试、乡试、会试、殿试五级,片段一提到的“举人”和“进士”分别通过的是()A.院试和乡试 B.乡试和会试 C.乡试和殿试 D.会试和殿试(3)这两段文字分别是和对匡超人的教导。
(4)匡超人并没有听取文段二中人物的教导,而是走向了虚伪狡诈、自私冷漠。
请结合原著,简要列举一例。
2.阅读下面语段,回答问题。
我是你簇新的理想,刚从神话的蛛网里挣脱;我是你雪被下古莲的胚芽;我是你挂着眼泪的笑wō﹔我是新刷出的雪白的起跑线;是绯红的黎明正在喷薄;——祖国啊!我是你的十亿分之一,是你九百六十万平方的总和;你以伤痕累累的乳房喂养了迷wǎng的我、深思的我、沸腾的我;那就从我的血肉之躯上去取得你的富饶、你的荣光、你的自由;——祖国啊,我亲爱的祖国!(1)依次给语段中加点的字注音,全都正确的一项是()A.zhèng hèn B.zhēng hèn C.zhèng hén D.zhēng hén(2)根据拼音写出正确的汉字。
人教版九年级物理期末板块复习(6)电学板块(一)(电现象、电路、电流、电压、电阻)超越训练(含答案)

人教版九年级物理期末板块复习(6)电学板块(一)(电现象、电路、电流、电压、电阻)超越训练一、单选题1.(2019·深圳)地磅工作时,重物越重,电表的示数就越大。
下列四幅电路图中, R′是滑动变阻器, R 是定值电阻。
其中符合地磅工作原理的是()2.(2019九上·祁阳月考)在如图甲所示的电路中,当闭合开关后,两个电流表的指针偏转均为图乙所示,则灯泡L1和L2的电流分别为()A. 1.2 A 0.22 AB. 0.98 A 0.22 AC. 0.96 A 0.24 AD. 0.24 A 1.2 A3.(2018九上·福田期中)如图所示是一种自动测定油箱内油量多少的装置, R' 是定值电阻, R 是滑动变阻器,它的金属滑片是杠杆的一端,从油量表(由电流表改装而成)指针所指的刻度,就能知道油箱内剩余油量的多少。
则()A. 油量增加, R 的电阻值增大,油量表指针偏转变小B. 油量增加, R 的电阻值减小,油量表指针偏转变大C. 油量减少, R 的电阻值增大,油量表指针偏转变大D. 油量减少, R 的电阻值减小,油量表指针偏转变小4.(2018九上·龙子湖期中)如图所示,电源电压保持不变,闭合开关s,当滑片P向上移动时,则()A. 电压表V1示数变小,灯变暗B. 电压表V2示数变小,灯变暗C. 电流表示数变小,电压表V1不变D. 电流表示数变大,电压表V2不变5.(2018·河池)为保证司乘人员的安全,轿车上设有安全带未系提示系统。
当人坐在座椅上时,开关S自动闭合。
若未系安全带,则开关S1断开,仪表盘上的指示灯亮;若系上安全带,则开关S1闭合,指示灯灭。
图中设计最合理的电路图是()6.如图所示,电源电压保持不变,当开关S1断开,S2闭合时,电压表示数为4.5V;当开关S1闭合,S2断开时,电压表示数为3V;则L1和L2两端电压分别是()A. 3V和1.5VB. 1.5V和4.5V C. 3V和4.5V D. 1.5V和3V7.(2018·中山模拟)小明按如图甲所示的电路进行实验,当开关闭合后,电压表和的指针位置几乎一样,如图乙所示,造成这一现象的原因是()A. 可能L1开路,L2正常B. 可能L2开路,L1正常C. 可能和所选量程不相同且L1短路D. 可能和所选量程相同,电路各处完好8.(2018·宝安模拟)如图所示为定时爆炸装置示意图,a、b为暴露在外的两导线。
期末复习题 2023—2024学年统编版语文九年级上册

2023-2024年度上学期期末复习质量检测九年级语文试题卷一、单选题(本大题共3小题,共6分)1.下列有关作家作品的连线,不正确的一项是()A. 《我爱这土地》——艾青——《九三年》B. 《沁园春•雪》——毛泽东——革命家C. 《你是人间四月天》——林徽因——建筑学家、文学家D. 《水浒传》——施耐庵——元末明初2.下列加下划线的成语使用有错误的一项是()。
A. 泰州举办老街旅游文化节,各地游客纷至沓来B. 洪宗礼先生说,没有实践,教材编写便缺了源头活水C. 诈骗分子推陈出新,利用最新的市场漏洞,想出了新的诈骗手法D. 《朗读者》《见字如面》《经典咏流传》等文化类节目如一股股清泉,沁人心脾3.下列语句中没有语病的一项是()。
A. 汪国真的诗作曾点燃了一代人的青春梦想。
他猝然长逝,怎不让人扼腕叹息B. 通过我市举办的“名师好课”系列送教活动,促进了全市城乡教育的均衡发展C. “赣剧进校园”的成效并不显著,原因是对地方文化的重要性认识不足造成的D. 实施“校园足球计划”,旨在普及足球运动,进一步培养青少年足球运动水平二、默写(本大题共1小题,共4分)4.填空。
(1) 小时候,______ ,我在这头,母亲在那头。
而现在,______ ,我在这头,大陆在那头。
(2) 为什么我的眼里常含泪水?______(3) 毛泽东《沁园春·雪》中由写景到论史,起承上启下作用的句子是“______,______ ”。
(4) “月”是古诗词中的常见意象。
温庭筠在《商山早行》中描写月清霜冷的诗句是“______ ,______ ”;杜甫在《月夜忆舍弟》中流露月夜思乡之情的诗句是“______ ,______ ”。
三、综合题(本大题共1小题,共9分)5.阅读下面的文字,完成题目。
①毛泽东诗词纵览天下风云,俯瞰(kàn)历史兴衰,感受时光飞逝,把握时代潮流,反映了毛泽东的历史观和人生观,浸(jìn)透着历史智慧,洋溢..着壮志豪情。
(R)九年级上学期期末复习 基础训练题目3

(R)九年级上学期期末复习 基础训练题目31.下列计算正确的是( )A .234265+=B .842=C .2733÷=D .2(3)3-=- 2.某县为发展教育事业,加强了对教育经费的投入,2008年投入3 000万元,预计2010年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .23000(1)5000x +=B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=3..从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( )A . 6B . 3C . 2D . 14.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形,又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(13),,则点M 和点N 的坐标分别为( )A .(13)(13)M N ---,,,B .(13)(13)M N ---,,,C .(13)(13)M N ---,,,D .(13)(13)M N --,,, 5.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( )A .10%B .19%C .9.5%D .20%6.关于x 的一元二次方程()220x mx m -+-=的根的情况是 ( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定7.已知二次根式24a -与2是同类二次根式,则a 的值可以是( )A .5B .6C .7D .88. 要使代数式错误!未找到引用源。
有意义,则x 的取值范围是( ). A. x≠3 B. x≥2或x≠3 C.x≥2 D.x≥2且x≠3O N M A y x。
数学九年级(人教版)上学期期末备考压轴题专项习题:二次函数(含答案)

数学九年级(人教版)上学期期末备考压轴题专项习题:二次函数1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,2),连接BC,位于y轴右侧且垂直于x轴的动直线l,沿x 轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E,连接AC,BC,P A,PB,PC.(1)求抛物线的表达式;(2)如图1,当直线l运动时,求使得△PEA和△AOC相似的点P点的横坐标;(3)如图1,当直线1运动时,求△PCB面积的最大值;(4)如图2,抛物线的对称轴交x轴于点Q,过点B作BG∥AC交y轴于点G.点H、K分别在对称轴和y轴上运动,连接PH、HK,当△PCB的面积最大时,请直接写出PH+HK+KG的最小值.2.在平面直角坐标系中,过点A (3,4)的抛物线y =ax 2+bx +4与x 轴交于点B (﹣1,0),与y 轴交于点C ,过点A 作AD ⊥x 轴于点D .(1)求抛物线的解析式.(2)如图1,点P 是直线AB 上方抛物线上的一个动点,连接PD 交AB 于点Q ,连接AP ,当S △AQD =2S △APQ 时,求点P 的坐标.(3)如图2,G 是线段OC 上一个动点,连接DG ,过点G 作GM ⊥DG 交AC 于点M ,过点M 作射线MN ,使∠NMG =60°,交射线GD 于点N ;过点G 作GH ⊥MN ,垂足为点H ,连接BH .请直接写出线段BH 的最小值.3.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.4.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F 在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.5.在直角坐标平面内,直线y =x +2分别与x 轴、y 轴交于点A 、C .抛物线y =﹣+bx +c经过点A 与点C ,且与x 轴的另一个交点为点B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果△ABE 的面积与△ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD .若△CFD 与△AOC 相似,求点D 的坐标.6.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.7.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.8.在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接P A、PC,在线段PC上确定一点N,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).9.抛物线C1:y=ax2+bx+3与x轴交于A(﹣3,0)两点,与y轴交于点C,点M(﹣2,3)是抛物线上一点.(1)求抛物线C1的表达式.(2)若抛物线C2关于C1关于y轴对称,点A、B、M关于y轴的对称分别为A′、B′、M′.过M′⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.10.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.11.如图,二次函数y =﹣x 2+bx +3的图象与x 轴交于点A 、B ,与y 轴交于点C ,点A 的坐标为(﹣1,0),点D 为OC 的中点,点P 在抛物线上. (1)b = ;(2)若点P 在第一象限,过点P 作PH ⊥x 轴,垂足为H ,PH 与BC 、BD 分别交于点M 、N .是否存在这样的点P ,使得PM =MN =NH ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点P 的横坐标小于3,过点P 作PQ ⊥BD ,垂足为Q ,直线PQ 与x 轴交于点R ,且S △PQB =2S △QRB ,求点P 的坐标.12.如图,已知二次函数y =﹣x 2+bx +c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M . (1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围; (3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.13.如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P 作x轴的垂线1,交抛物线与点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.14.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c 经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.15.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO =3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.参考答案1.解:(1)∵点A(﹣2,0),点B(4,0),∴设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2)代入得:a=﹣,故抛物线的表达式为:y=﹣(x+2)(x﹣4)=﹣x2+x+2;(2)设P(x,﹣x2+x+2),∵动直线l在y轴的右侧,P为抛物线与l的交点,∴0<x<4,∵点A(﹣2,0)、C(0,2),∴OA=2,OC=2,∵l⊥x轴,∴∠PEA=∠AOC=90°,∵∠P AE≠∠CAO,∴只有当∠P AE=∠ACO时,△PEA∽△AOC,此时,即=,3x2﹣2x﹣16=0,(x+2)(3x﹣8)=0,x=﹣2(舍)或,则点P的横坐标为;(3)如图1,△PCB的面积=,∵OB=4是定值,∴当PD的值最大时,△PCB的面积最大,∵B(4,0),C(0,2),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+2,设P(x,﹣x2+x+2),D(x,﹣x+2),∴PD=(﹣x2+x+2)﹣(﹣+2)=﹣+x=﹣(x﹣2)2+,∵﹣<0,∴当x=2时,PD有最大值是,此时△PCB的面积==×4=2;(4)如图2中,△AOC中,OA=2,OC=2,∴AC=4,∴∠ACO=30°,∵BG∥AC,∴∠BGO=∠ACO=30°,Rt△BOG中,OB=4,∴OG=4,由(3)知:△PCB的面积最大时,P(2,2),则OP==4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,Rt△OMG中,OG=4,MG=2,∴OM=6,可得PM=10,∴PH +HK +KG 的最小值为10.2.解:(1)将点A (3,4),B (﹣1,0)代入y =ax 2+bx +4, 得:,解得,∴y =﹣x 2+3x +4;(2)如图1,过点P 作PE ∥x 轴,交AB 于点E ,∵A (3,4),AD ⊥x 轴, ∴D (3,0), ∵B (﹣1,0), ∴BD =3﹣(﹣1)=4,∵S △AQD =2S △APQ ,△AQD 与△APQ 是等高的两个三角形,∴=,∵PE ∥x 轴, ∴△PQE ∽△DQB ,∴==,∴=,∴PE =2,∴可求得直线AB 的解析式为y =x +1, 设E (x ,x +1),则P (x ﹣2,x +1),将点P 坐标代入y =﹣x 2+3x +4得﹣(x +2)2+3(x +2)+4=x +1,解得x 1=3+,x 2=3﹣,当x=3+时,x﹣2=3+﹣2=1+,x+1=3++1=4+,∴点P(1+,4+);当x=3﹣时,x﹣2=3﹣﹣2=1﹣,x+1=3﹣+1=4﹣,∴P(1﹣,4﹣),∵点P是直线AB上方抛物线上的一个动点,∴﹣1<x﹣2<3,∴点P的坐标为(1+,4+)或(1﹣,4﹣);(3)由(1)得,抛物线的解析式为y=﹣x2+3x+4,∴C(0,4),∵A(3,4),∴AC∥x轴,∴∠OCA=90°,∴GH⊥MN,∴∠GHM=90°,在四边形CGHM中,∠GCM+∠GHM=180°,∴点C、G、H、M共圆,如图2,连接CH,则∠GCH=∠GMH=60°,∴点H在与y轴夹角为60°的定直线上,∴当BH⊥CH时,BH最小,过点H作HP⊥x轴于点P,并延长PH交AC于点Q,∵∠GCH=60°,∴∠HCM=30°,又BH⊥CH,∴∠BHC=90°,∴∠BHP=∠HCM=30°,设OP=a,则CQ=a,∴QH=a,∵B(﹣1,0),∴OB=1,∴BP=1+a,在Rt△BPH中,HP==(a+1),BH==2(1+a),∵QH+HP=AD=4,∴a+(a+1)=4,解得a=,=2(1+a)=.∴BH最小3.解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).4.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.5.解:(1)当y=0时,x+2=0,解得x=﹣4,则A(﹣4,0);当x=0时,y=x+2=2,则C(0,2),把A(﹣4,0),C(0,2)代入y=﹣+bx+c得,解得,∴抛物线的解析式为y=﹣﹣x+2;(2)过点E作EH⊥AB于点H,如图1,当y=0时,﹣﹣x+2=0,解得x1=﹣4,x2=1,则B(1,0)设E(x,x+2),∵S=•(1+4)•2=5,△ABC而△ABE的面积与△A BC的面积之比为4:5,=4,∴S△AEB∴•(1+4)•(x+2)=4,解得x=﹣,∴E(﹣,),∴BH=1+=,在Rt△BHE中,cot∠EBH===,即∠DBA的余切值为;(3)∠AOC=∠DFC=90°,若∠DCF=∠ACO时,△DCF∽△ACO,如图2,过点D作DG⊥y轴于点G,过点C作CQ⊥DC交x轴于点Q,∵∠DCQ=∠AOC,∴∠DCF+∠ACQ=90°,即∠ACO+∠ACQ=90°,而∠ACO+∠CAO=90°,∴∠ACQ=∠CAO,∴QA=QC,设Q(m,0),则m+4=,解得m=﹣,∴Q(﹣,0),∵∠QCO+∠DCG=90°,∠QCO+∠CQO=90°,∴∠DCG=∠CQO,∴Rt△DCG∽Rt△CQO,∴=,即===,设DG=4t,CG=3t,则D(﹣4t,3t+2),把D(﹣4t,3t+2)代入y=﹣﹣x+2得﹣8t2+6t+2=3t+2,整理得8t2﹣3t=0,解得t1=0(舍去),t2=,∴D(﹣,);当∠DCF=∠CAO时,△DCF∽△CAO,则CD∥AO,∴点D的纵坐标为2,把y=2代入y=﹣﹣x+2得﹣﹣x+2=2,解得x1=﹣3,x2=0(舍去),∴D(﹣3,2),综上所述,点D的坐标为(﹣,)或(﹣3,2).6.解:(1)抛物线的表达式为:y=﹣(x+5)(x﹣1)=﹣x2﹣x+,则点D(﹣2,4);(2)设点P(m,﹣m2﹣m+),则PE=﹣m2﹣m+,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(﹣m2﹣m+﹣4﹣2m)=﹣(m+)2+,∵﹣<0,故当m=﹣时,矩形PEFG周长最大,此时,点P的横坐标为﹣;(3)∵∠DMN=∠DBA,∠BMD+∠BDM=180°﹣∠ADB,∠NMA+∠DMB=180°﹣∠DMN,∴∠NMA=∠MDB,∴△BDM∽△AMN,,而AB=6,AD=BD=5,①当MN=DM时,∴△BDM≌△AMN,即:AM=BD=5,则AN=MB=1;②当NM=DN时,则∠NDM=∠NMD,∴△AMD∽△ADB,∴AD2=AB×AM,即:25=6×AM,则AM=,而,即=,解得:AN=;③当DN=DM时,∵∠DNM>∠DAB,而∠DAB=∠DMN,∴∠DNM>∠DMN,∴DN≠DM;故AN=1或.7.解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE ′=2,OM ′•OB =×3=4, ∴OE ′2=OM ′•OB ,∴=,∵∠BOE ′=∠M ′OE ′,∴△M ′OE ′∽△E ′OB ,∴==,∴M ′E ′=BE ′,∴AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小(两点间线段最短,A 、M ′、E ′共线时),最小值=AM ′==.8.解:(1)函数表达式为:y =a (x ﹣1)2+4, 将点B 坐标的坐标代入上式得:0=a (3﹣1)2+4, 解得:a =﹣1,故抛物线的表达式为:y =﹣x 2+2x +3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由: 如图1,∵DE ∥AO ,S △ODA =S △OEA ,S △ODA +S △AOM =S △OEA +S △AOM ,即:S 四边形OMAD =S △OBM , ∴S △OME =S △OBM , ∴S 四边形OMAD =S △OBM ;(3)设点P (m ,n ),n =﹣m 2+2m +3,而m +n =﹣1, 解得:m =﹣1或4,故点P (4,﹣5);如图2,故点D 作QD ∥AC 交PC 的延长线于点Q ,由(2)知:点N是PQ的中点,将点C(﹣1,0)、P(4,﹣5)的坐标代入一次函数表达式并解得:直线PC的表达式为:y=﹣x﹣1…①,同理直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣,即点Q(﹣,),∵点N是PQ的中点,由中点公式得:点N(,﹣).9.解:(1)将点A、M的坐标代入函数表达式得:,解得:,故抛物线C1的表达式为:y=﹣x2﹣2x+3;(2)由题意得:点A(﹣3,0)、B(1,0)、C(0,3)、M(﹣2,3)、B′(﹣1,0)、A′(3,0),D(2,1),则AB′=2,AC=3,B′C=,A′D=,①当点P在直线AC的左侧时,当点P在DM′左侧时,A′、D、P为顶点的三角形与△AB′C相似,则△AB′C∽△A′DP,则,即:,解得:A′P=3,故点P(0,0),当点P在DM′左侧时,同理可得点P(P′)(,0);②当点P在直线AC的右侧时,则△AB′C、△DA′P″不相似,综上,点P的坐标为(0,0)或(,0).10.解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6), 设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+,有,﹣x 2﹣x +2=﹣2x , 解得:x 1=2,x 2=﹣1, ∴G (﹣1,2),∵点G 、H 关于原点对称, ∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t , ﹣x 2﹣x +2=﹣2x +t , x 2﹣x ﹣2+t =0, △=1﹣4(t ﹣2)=0,t =,当点H 平移后落在抛物线上时,坐标为(1,0), 把(1,0)代入y =﹣2x +t , t =2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.11.解:(1)∵二次函数y=﹣x2+bx+3的图象与x轴交于点A(﹣1,0)∴﹣1﹣b+3=0解得:b=2故答案为:2.(2)存在满足条件呢的点P,使得PM=MN=NH.∵二次函数解析式为y=﹣x2+2x+3当x=0时y=3,∴C(0,3)当y=0时,﹣x2+2x+3=0解得:x1=﹣1,x2=3∴A(﹣1,0),B(3,0)∴直线BC的解析式为y=﹣x+3∵点D为OC的中点,∴D(0,)∴直线BD的解析式为y=﹣+,设P(t,﹣t2+2t+3)(0<t<3),则M(t,﹣t+3),N(t,﹣t+),H(t,0)∴PM=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,MN=﹣t+3﹣(﹣x+)=﹣t+,NH=﹣t+∴MN=NH∵PM=MN∴﹣t2+3t=﹣t+解得:t1=,t2=3(舍去)∴P(,)∴P的坐标为(,),使得PM=MN=NH.(3)过点P作PF⊥x轴于F,交直线BD于E∵OB=3,OD=,∠BOD=90°∴BD==∴cos∠OBD=∵PQ⊥BD于点Q,PF⊥x轴于点F∴∠PQE=∠BQR=∠PFR=90°∴∠PRF+∠OBD=∠PRF+∠EPQ=90°∴∠EPQ=∠OBD,即cos∠EPQ=cos∠OBD=在Rt△PQE中,cos∠EPQ=∴PQ=PE在Rt △PFR 中,cos ∠RPF =∴PR =PF∵S △PQB =2S △QRB ,S △PQB =BQ •PQ ,S △QRB =BQ •QR ∴PQ =2QR设直线BD 与抛物线交于点G∵﹣+=﹣x 2+2x +3,解得:x 1=3(即点B 横坐标),x 2=﹣∴点G 横坐标为﹣设P (t ,﹣t 2+2t +3)(t <3),则E (t ,﹣t +)∴PF =|﹣t 2+2t +3|,PE =|﹣t 2+2t +3﹣(﹣t +)|=|﹣t 2+t +|①若﹣<t <3,则点P 在直线BD 上方,如图2,∴PF =﹣t 2+2t +3,PE =﹣t 2+t + ∵PQ =2QR∴PQ =PR∴PE =•PF ,即6PE =5PF∴6(﹣t 2+t +)=5(﹣t 2+2t +3) 解得:t 1=2,t 2=3(舍去) ∴P (2,3)②若﹣1<t <﹣,则点P 在x 轴上方、直线BD 下方,如图3, 此时,PQ <QR ,即S △PQB =2S △QRB 不成立. ③若t <﹣1,则点P 在x 轴下方,如图4,∴PF =﹣(﹣t 2+2t +3)=t 2﹣2t ﹣3,PE =﹣t +﹣(﹣t 2+2t +3)=t 2﹣t ﹣ ∵PQ =2QR ∴PQ =2PR∴PE =2•PF ,即2PE =5PF∴2(t2﹣t﹣)=5(t2﹣2t﹣3)解得:t1=﹣,t2=3(舍去)∴P(﹣,﹣)综上所述,点P坐标为(2,3)或(﹣,﹣).12.解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y =﹣x 2+2x +3;(2)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,M (1,4) 设直线MB 的解析式为y =kx +n ,则有解得∴直线MB 的解析式为y =﹣2x +6 ∵PQ ⊥x 轴,OQ =m , ∴点P 的坐标为(m ,﹣2m +6)S 四边形ACPQ =S △AOC +S 梯形PQOC =AO •CO +(PQ +CO )•OQ (1≤m <3)=×1×3+(﹣2m +6+3)•m =﹣m 2+m +;(3)线段BM 上存在点N (,),(2,2),(1+,4﹣)使△NMC 为等腰三角形CM =,CN =,MN =①当CM =NC 时,,解得x 1=,x 2=1(舍去)此时N (,)②当CM =MN 时,,解得x 1=1+,x 2=1﹣(舍去),此时N (1+,4﹣)③当CN =MN 时,=解得x =2,此时N (2,2).13.解:(1)由题意知,∵点A(﹣1,0),B(4,0)在抛物线y=x2+bx+c上,∴解得:∴所求抛物线的解析式为(2)由(1)知抛物线的解析式为,令x=0,得y=﹣2∴点C的坐标为C(0,﹣2)∵点D与点C关于x轴对称∴点D的坐标为D(0,2)设直线BD的解析式为:y=kx+2且B(4,0)∴0=4k+2,解得:∴直线BD的解析式为:∵点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q∴可设点M,∴MQ=∵四边形CQMD是平行四边形∴QM=CD=4,即解得:m1=2,m2=0(舍去)∴当m=2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)∴BQ2=DQ2=BD2=20①当∠BDQ=90°时,则BD2+DQ2=BQ2,∴20+=解得:m 1=8,m 2=﹣1,此时Q 1(8,18),Q 2(﹣1,0) ②当∠DBQ =90°时,则BD 2+BQ 2=DQ 2,∴20+=解得:m 3=3,m 4=4,(舍去)此时Q 3(3,﹣2)∴满足条件的点Q 的坐标有三个,分别为:Q 1(8,18)、Q 2(﹣1,0)、Q 3(3,﹣2).14.解:(1)将点B 坐标代入y =x +c 并解得:c =﹣3,故抛物线的表达式为:y =x 2+bx ﹣3,将点B 坐标代入上式并解得:b =﹣,故抛物线的表达式为:y =x 2﹣x ﹣3; (2)过点P 作PH ∥y 轴交BC 于点H ,设点P (x , x 2﹣x ﹣3),则点H (x , x ﹣3),S 四边形ACPB =S △AOC +S △PCB ,∵S △AOC 是常数,故四边形面积最大,只需要S △PCB 最大即可,S △PCB =×OB ×PH =×2(x ﹣3﹣x 2+x +3)=﹣x 2+3x ,∵﹣<0,∴S △PCB 有最大值,此时,点P (2,﹣);(3)过点B 作∠ABC 的角平分线交y 轴于点G ,设∠MBC =∠ABC =2α,过点B 分别在x 轴之上和BC 之下作角度数为α的两个角,分别交y 轴于点N 交抛物线于点M ′,交抛物线于点M ,过点G 作GK ⊥BC 交BC 于点K ,延长GK 交BM 于点H ,则GH =GN ,BC 是GH 的中垂线,OB=4,OC=3,则BC=5,设:OG=GK=m,则CK=CB﹣HB=5﹣4=1,由勾股定理得:(3﹣m)2=m2+1,解得:m=,则OG=ON=,GH=GN=2OG=,点G(0,﹣),在Rt△GCK中,GK=OG=,GC=OC﹣OG=3﹣=,则cos∠CGK==,sin∠CGK=,则点K(,﹣),点K是点GH的中点,则点H(,﹣),则直线BH的表达式为:y=x﹣…②,同理直线BN的表达式为:y=﹣x+…③联立①②并整理得:27x2﹣135x+100=0,解得:x=1或4(舍去4),则点M(1,﹣);联立①③并解得:x=﹣,故点M′(﹣,);故点M(1,﹣)或(﹣,).15.解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).。
(R)九年级上学期期末基础知识复习题目7

O A B
D C (R)九年级上学期期末基础知识复习题目7
1.若3:4:=b a ,则下列各式中正确的式子是( ).
A .b a 34=
B .3
1-=-b b a C .34=a b D .b a 43= 2、如图,AB 是O 的弦,半径2,120OA AOB =∠=
,则弦AB 的长
是( )
A 、22
B 、23
C 、32
D 、5 3、两个圆的半径分别是2cm 和7cm ,圆心距是8cm ,则这两个
圆的位置关系是( )
A .外离
B .外切
C .相交
D .内切
4. 经过点P (2-,4
1)的双曲线的解析式是( ) A. 2y x = B. 12y x =- C. 2x y =- D. 2y x
=- 5. 一个袋子中装有6个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到红球的概率为( )
A . 12
B .19
C . 13
D .23
6.下列图形中,是中心对称图形的是( )
A B C D
7. 如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,
则∠C 的度数为( )
A .116°
B .58°
C .42°
D .32°
8.已知关于x 的一元二次方程有一个根为0.请你写出一个符
合条件的一元二次方程是 .
9.解方程:
.
22410x x --=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(R)九年级上学期期末基础知识复习题目6
1. 要使二次根式1-x 有意义,字母x 的取值必须满足的条件是 ( )
A .x ≥1
B .x ≤1
C .x >1
D .x <1 2.方程032=-x 的根是 ( )
(A )3=x (B )3,321-==x x (C )3=x (D )3,321-==x x
3.在一个不透明的口袋中有若干个只有颜色不同的球,如果口袋中装有4个黄球,且摸出黄球的概率为31,那么袋中共有球的个数为 (
)
A .6个
B .7个
C .9个
D .12个 4. 当a _______ 时,二次根式a -3在实数范围内有意义. 5、如图所示的几何体是由一些相同的小立方块搭成的,则这个几何体的俯视图是( )
6.下列图形中,中心对称图形有
A .4个
B .3个
C .2个
D .1个
7.如图,⊙O 是△ABC 的外接圆,若∠OCB =40°,则∠A= °.
8.已知关于x
的方程x 2-p x +q =0的两个根是0和-3,则P =______ , q = __ . 9.解方程:
(1))5(2)
5(2-=-x x (2)x 2 - 4x -2=0。