硫化钠脱砷机理

合集下载

砷的处理方法

砷的处理方法

神的处理方法砷的处理方法废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20〜40°C下进行处理,所得的硫化砷用硫酸铜在70°C进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在〉70 C通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。

在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90 C加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3ASO4可以用20%的NR3 (R = C8〜16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97〜98%,可以回用于氨基蒽酯的生产。

而出水中砷的最终浓度可降至0.005〜0.007mg/L[2]。

5.3沉淀及混凝沉降法砷的主要处理方法有硫化物沉淀法,或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。

第二种方法是水处理技术中常采用的传统混凝沉降法。

此外也可采用活性炭和矶土吸附或离子交换。

5.3.1铁盐法铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。

由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。

如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10〜30倍[16]。

结合铁盐处理,出水中的砷含量可以降至0.05〜0.1mg/L[17]。

铁盐法可以用在饮用水的净化中去[18]废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中的砷的去除率可达99.7%,克服了传统的含砷废水处理工艺投资高,占地大,运行成本高,处理后水质不稳定的弱点,滤清液无色,清澈,透明,可以达标排放或降级回用[19]。

硫化钠分离贵贱金属的方法和意义

硫化钠分离贵贱金属的方法和意义

硫化钠分离贵贱金属的方法和意义
氢氧化钠(NaOH)通常用于分离贵金属和贱金属。

硫化钠(Na2S)也可以用
作此用途,该物质具有高熔点、较低的比重和能够在温度较低的情况下还原氧化物的性质,因此可以完全熔化硫化物,可更有效地使贵金属从其中获得。

硫化钠的分离特性可以用来有效地将贵金属和贱金属分离。

它可以将硫化氢和
硫化氢分离并将硫化氢合成为硫化钠,该物质可以用来还原硫化氢和硫化氢氧化物。

因此硫化钠具有将硫化物和氧化物混合分离的作用。

在这种情况下,金属元素就可以在混合物中分离出来,从而把贵金属从贱金属中分离出来。

分离贵贱金属的优势在于,它不仅可以有效地提高贵金属收率,而且可以最大
限度地减少不必要的污染,从而实现贵金属的最大利用效率。

另外,由于硫化钠可以在低温条件下迅速还原贵金属,不仅可以提高贵金属的收益比,而且还可以减少银、金等贵金属损耗,从而获取更多的收入。

因此,硫化钠可以很好地满足贵金属回收工艺中对贵贱金属分离的需要。

它在
降低污染、降低能耗和提高利用效率等方面有着非常大的优势,可以减少贵金属损耗,降低它们的成本,提高利用效率,从而为贵金属回收技术营造一个良好的环境。

含砷废水的处理办法

含砷废水的处理办法

1.砷的处理办法废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。

在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。

而出水中砷的最终浓度可降至0.005~0.007mg/L[2]。

1.1.沉淀及混凝沉降法砷的主要处理方法有硫化物沉淀法,或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。

第二种方法是水处理技术中常采用的传统混凝沉降法。

此外也可采用活性炭和矾土吸附或离子交换。

1.1.1.铁盐法铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。

由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。

如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。

结合铁盐处理,出水中的砷含量可以降至0.05~0.1mg/L[17]。

铁盐法可以用在饮用水的净化中去[18]。

废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中的砷的去除率可达99.7%,克服了传统的含砷废水处理工艺投资高,占地大,运行成本高,处理后水质不稳定的弱点,滤清液无色,清澈,透明,可以达标排放或降级回用[19]。

砷的处理方法

砷的处理方法

砷的处理方法废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。

在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃℃℃加热灼烧,可以使沉淀稳定,砷不易渗出[60]。

如结合其它方法,可以使出水中的砷含量降至<0.3mg/L[61]。

也可以用电石糊,如一含490mgAs/L的废水,先用次氯酸钠溶液进行氧化,再用电石糊将pH调至≥9.5,经过滤后,滤液中的砷含量可以降至6.4mg/L[62]。

如用硫酸镁作为沉淀剂,pH应控制在8.5左右[63]。

可在用氯化镁时,加入石灰,使pH调整至10.0~10.5[64],使用硫酸镁可以使砷的浓度降至5mg/L[65],当镁/砷比为200:1时,出水中砷浓度可以降至≤0.5mg/L[66]。

废水中的三价砷也可以先用微生物Pseudomonas Putida 及Alcaligenes eutrophus 处理,再用磷酸盐及石灰处理的方法去除[67]。

5.3.5 其它沉淀法含砷废水如与能水解产生钛酸的化合物作用,则可以共沉淀的原理将砷除去。

如在pH2~8的范围内将含97.08的合成含砷废水用钛酸四异丙酯作用,并在40℃搅拌16小时,经过滤后,废水中的砷含量可以降至0.026~0.054μgAs/ml[68]。

废水中砷还可以用有机胺进行离子浮选法进行处理,如可以用十六烷胺醋酸盐或十八烷胺醋酸盐,与砷反应生成疏水性的沉淀而被去除,当pH值为4.7~5.1时,出水中砷的含量可以降至<0.5mg/L,但如有氯离子及硫酸根离子存在时,会影响砷的去除[69]。

5.4吸附法用稀土属物质来去除废水中的有害阴离子, 如F, As及Se等。

锑冶炼砷碱渣水热硫化沉淀脱砷过程的动力学

锑冶炼砷碱渣水热硫化沉淀脱砷过程的动力学

q u a t i o n mo d e l wi t h以一0 . 4 2 6 1 :一 I n( 1 一 z) :1 0 5 7 . 3 3 C A。 ・ 4 9 6 3 t
e x p( 一1 . 5 9 1× 1 0 / RT) .I t s a p p a r e n t
有色金属 ( 冶炼 部分 ) ( h t t p : / / y s y 1 . b g r i mm. c n )
d o i : 1 0 . 3 9 6 9 / J . i s s n . 1 0 0 7 - 7 5 4 5 . 2 0 1 4 . 0 1 . 0 0 3
2 0 1 4年 第 1 期
对 沉 砷 净 化 过 程都 有 一 定 的 影 响 , 其 中反 应 温 度 对 净 化 率 影 响 的 敏 感 度 较 低 ; 沉 砷 净 化 动 力 学 模 型 符 合
" 一0 . 4 2 6 1 时的 A v r a mi 方程 : 一l n ( 1 一z ) 一1 0 5 7 . 3 3 C A 。 t e x p ( 一1 . 5 9 1 ×1 0 / RT) ; 表 观 活 化 能 为1 5 . 9 1 k J / oo t l , 反应级数为一0 . 4 9 6 3 , 脱 砷 过 程 反应 较 快 , 属扩散控制 。 关键词 : 砷碱渣 ; 硫化沉淀 ; 水热浸取 ; 动力学 ; 净 化 率 中图分类号 : TF 8 1 8 文献标志码 : A 文章编号 : 1 0 0 7 — 7 5 4 5 ( 2 0 1 4 ) 0 1 — 0 0 0 8 — 0 4
r a t i o n a n d p u r i f i c a t i o n r a t e we r e i n v e s t i g a t e d u n d e r d i f f e r e n t t e mp e r a t u r e a n d d o s a g e o f s o d i u m s u l p h i d e . Dy n a mi c mo d e l wa s e s t a b l i s h e d . Th e r e s u l t s s h o w t h a t b o t h r e a c t i o n t e mp e r a t u r e a n d c o n c e n t r a t i o n o f S O — d i u m s u l f i d e h a v e c e r t a i n e f f e c t o n a r s e n i c p u r i f i c a t i o n p r o c e s s wh i l e t h e e f f e c t o f r e a c t i o n t e mp e r a t u r e o n p u r i f i c a t i o n r a t e i s l e s s s e n s i t i v e e f f e c t . Ar s e n i c p r e c i p i t a t i o n p u r i f i c a t i o n d y n a mi c s mo d e l f i t s f o r o v a l Ki n e t i c s o f Hy d r o t h e r ma l Su l f i d e Pr e c i pi t a t i o n f o r

锌冶炼废渣浸出液硫化法除砷

锌冶炼废渣浸出液硫化法除砷
采用硫化剂如 Na2 S,在一定的酸度条件下,As 以 As2 S3 的形式从溶液中沉淀下来,由于该沉淀反 应是放热 反 应[10],升 高 温 度 不 利 于 沉 淀 反 应 的 进 行,因此本 方 法 沉 淀 除 砷 是 在 常 温 常 压 下 进 行 的。 试验时取 100 mL 浸出液( 加入浓 H2 SO4 调至一定 酸度) 于三颈烧瓶中。将一定质量 Na2 S·9H2 O( 配
H2 SO4
浓度
( mol / L) 2. 0 2. 0 2. 0 3. 0 3. 0 3. 0 4. 0 4. 0 4. 0
时间
( min)
20 40 30 30 20 40 40 30 20
Na2 S·9H2 O
加入量
( g /L) 16. 1 13. 8 11. 5 13. 8 11. 5 16. 1 11. 5 16. 1 13. 8
阳离子也可以与硫化剂形成硫化物沉淀。在此酸度 条件 下,溶 液 中 的 As 主 要 以 AsO + 和 HAsO2 存 在[9]。
试剂: Na2 S·9H2 O; 浓 H2 SO4 ; 二乙基二硫代氨 基甲酸银( C5 H10 NS2 Ag) ; 均为市售分析纯。
仪器: T6 新世纪紫外可见分光光度计( 北京普 析通用仪器有限责任公司) ; 测砷仪器装置( 自制) ; X-射线能量色散谱仪( 荷兰帕纳科公司) 。 1. 2 实验方法
通过正交实验结果以及各因素极差可以看出各 度和时间。
因素对除砷效果的影响: Na2 S·9H2 O 加入量是最 主要的,其次分别为 H2 SO4 浓度和时间。
表 1 硫化沉淀正交实验结果 Table 1 Results of the orthogonal experiments

砷处理办法

砷处理办法

砷的处理办法废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。

在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。

而出水中砷的最终浓度可降至0.005~0.007mg/L[2]。

5.3沉淀及混凝沉降法砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。

第二种方法是水处理技术中常采用的传统混凝沉降法。

此外也可采用活性炭和矾土吸附或离子交换。

5.3.1 铁盐法铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。

由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。

如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。

结合铁盐处理,出水中的砷含量可以降至0.05~0.1mg/L[17]。

铁盐法可以用在饮用水的净化中去[18]。

废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中的砷的去除率可达99.7%,克服了传统的含砷废水处理工艺投资高,占地大,运行成本高,处理后水质不稳定的弱点,滤清液无色,清澈,透明,可以达标排放或降级回用[19]。

硫化钠除砷反应机理

硫化钠除砷反应机理

硫化钠除砷反应机理
硫化钠除砷反应的机理如下:
1. 钠、硫化钠和砷基团的形成:首先,在反应溶液中加入一定量的硫化钠(Na2S),硫化钠会在水中解离为Na+和S2-离子。

然后,将含有砷的化合物(如AsCl3、As2O3等)加入溶液中,砷基团(如AsCl2-, AsS3-等)与Na+和S2-离子发生反应,形
成钠砷基团(如NaAsS2-)。

2. 硫化钠和砷基团的反应:钠砷基团(NaAsS2-)与硫化钠中
的S2-离子发生反应,形成稳定的硫化砷中间体(如AsS2-)。

3. 硫化钠的进一步反应:硫化砷中间体(AsS2-)与硫化钠中
的其他S2-离子发生反应,形成更稳定的硫化砷(如AsS3-)。

总体反应方程式为:
2Na2S + AsCl3 → Na3AsS3 + 2NaCl
需要注意的是,以上机理仅为一种可能的机理,硫化钠除砷反应的具体机理可能会受到反应条件(如温度、溶剂等)的影响而有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

THE TREATMENT OF ARSENIC BEARING ORES, CONCENTRATESAND MATERIALS WITH ALKALINE SULFIDE HYDROMETALLURGYC. G. AndersonThe Center for Advanced Mineral and Metallurgical Processing, Montana Tech of the University of Montana, Room 221 ELC Building; Butte, Montana, USA 59701Tel: 406-496-4794, Fax: 406-496-4512Author e-mail: CAnderson@Web: /CAMPAbstractThroughout the world, there are many orebodies or materials which have significant value but also contain arsenic. As regulations on the transport, exposure, disposition and emission of arsenic have become more stringent; it has become increasingly more difficult to derive the values from these resources. This paper will outline the fundamentals of alkaline sulfide hydrometallurgy and its successful application to arsenic bearing ores, concentrates and materials.Alkaline Sulfide HydrometallurgyHydrometallurgical methods can be employed for treatment of arsenic containing materials, concentrates and ores as well as complex ones containing any number of metals. The alkaline sulfide system is essentially a mixture of sodium sulfide and sodium hydroxide. This is a unique hydrometallurgical system as it is a very selective lixiviant for the exclusive and selective leaching of tin, gold, antimony, arsenic and mercury. Worldwide, it is employed industrially in the CIS, China and the United States for the production of antimony. (1,2,3,4)When the system is applied to orpiment, As2S3, a solution of sodium thioarsenite is formed. This can be illustrated as:Na2S + As2S3Æ 2NaAsS2 (1)NaAsS2+ Na2S Æ Na3AsS3(2) When applied to arsenic trioxide, As2O3, the reaction is as follows:1.5 H2O + 2 Na2S + ½ As2O3Æ NaAsS2+ 3 NaOH (3)NaAsS2+ Na2S Æ Na3AsS3(4) Dissolution of elemental sulfur in sodium hydroxide is also used as a lixiviant for alkaline sulfide leaching of arsenic. The combination of sodium hydroxide and elemental sulfurresults in the formation of species other than just sulfide (S-2). Both sodium polysulfide (Na2S X) and sodium thiosulfate (Na2S2O3) are created along with sulfide. Figure 1 illustrates the equilibrium diagram for sulfur while Figure 2 illustrates the more commonly encountered meta stable sulfur diagram.Figure 1: Equilibrium Eh-pH diagram for Sulfur.Figure 1. Equilibrium Eh-pH diagram for Sulfur.Figure 2: Meta-stable Eh-pH diagram for Sulfur.Figure 2. Meta-stable Eh-pH diagram for Sulfur.The generation of these predominant meta stable species is illustrated simplistically in the following scenario.4S o + 6NaOH Æ 2Na2S + Na2S2O3 + 3H2O (5)(X-1)S o + Na2SÆ Na2S X (where X= 2 to 5) (6) Due to the oxidizing power of polysulfide on sodium thioantimonite, the major species in solution is normally sodium thioarsenate (Na3AsS4). This can be viewed as follows:Na2S X+ (X-1)Na3AsS3Æ (X-1)Na3AsS4+ Na2S (7) Applications of Alkaline Sulfide Hydrometallurgy to Arsenic LeachingThe rest of this paper deals with the specific leaching application of the alkaline sulfide system to arsenic bearing materials. And, due to space constraints only the leach results will be shown in this paper except for results of a novel selective gold recovery technique. The proven techniques and accompanying industrial flowsheets used to recover and stabilize arsenic with, for example, iron from the solutions is beyond the scope of this paper. And other papers in this symposium have addressed this issue in detail as well.Alkaline Sulfide Hydrometallurgical Treatment of Lead Smelter SpeissThe formation of speiss in lead smelters is a common occurrence and poses process problems in that significant levels of precious metals are accumulated in the resultant arsenides and antimonides. An example of hydrometallurgical treatment follows:Table I. Lead Smelter Speiss Head Sample AssayCu,% Ni,% Sn,% Cd,% As,% Sb, % Pb,% Fe,% Zn,% Au g/T, Ag, g/T43.5 1.4 0.5 0.1 12.2 3.3 14.8 1.7 0.9 45.0 9000Table II. Leach Testing ConditionsLeach Time = 6 Hr.Percent Solids = 25%Leach Temperature = 105O CTotal Sulfur Concentration = 100 g/LFree Hydroxide Concentration = 25 g/LTable III. Leach Test Results% of Metal LeachedCu,% Ni,% Sn,% Cd,% As,% Sb, % Pb,% Fe,% Zn,% Au %, Ag, %0.0 0.0 2.0 0.0 99.1 99.4 0.0 0.0 0.0 9.1 0.0Selective Recovery of Gold from Alkaline Sulfide SolutionsIn the examples cited above, it is essential in that any gold leached in the alkaline sulfide solutions be recovered. As shown in Figure 3, gold is soluble in the alkaline sulfide system. Gold lixiviation is the result of leaching by polysulfides and sulfides as shown in equation 8.2Au + S22- + 2S2- Æ 2AuS- +2S2- (8)Figure 3. Equilibrium Species Eh-pH Diagram for Sulfur and Alkaline Sulfide Gold Currently, studies are underway on the actual kinetics and mechanism of the alkaline sulfide system (64,65,66). A rotating electrochemical quartz crystal microbalance (REQCM) is being utilized to study the system.Gold leached by the alkaline sulfide system is readily recoverable by several means including electrowinning, gaseous precipitation, chemical precipitation, cementation, solvent extraction and ion exchange. Conventional methods of gold recovery such as zinc or aluminum cementation are not applicable to this type of solution because of the dangers associated with stibine or arsine gas generation. As well, the conventional method of direct collection of gold by activated carbon does not work in these solutions as it does for gold cyanide solutions.A novel gold recovery practice(11) has been adopted to quantitatively and selectively recover gold from complex alkaline sulfide solutions containing a mixture of metals such as arsenic, tin, mercury and antimony. This is illustrated by selectively removing gold from an alkaline sulfide leach solution containing these impurities. The assay of thesolution tested is shown in Table IV, and the assays of the final products is shown in tableV. The overall results are presented in Table VI.Table IV. Alkaline Sulfide Leach Head Solution AssayHg SnAu Sb AsLVolume0.5 88.7 ppm 21.0 g/L 5.31 g/L 274 ppm 1.84 g/LTable V. Alkaline Sulfide Solution Final AssayHg SnAu Sb AsVolume,L0.5 14.4 ppm 21.1 g/L 5.21 g/L 274 ppm 1.89 g/LFinal Au Solid Sorbent Assay = 1330.4 g/TTable VI. Overall Gold Selectivity and RecoveryLiquid SolidGold 16.5% 83.5%Antimony 100.0% 0.0%Arsenic 100.0% 0.0%Tin 100.0% 0.0%Mercury 100.0% 0.0%Further stages of gold recovery treatment on this solution indicate that almost 100% ofthe gold can be selectively recovered from the mercury, arsenic, tin and antimony in thesolution. In addition, the substrate solids which have been employed to load the goldconsist of several cheap and readily available materials and direct processing of thematerial is probably the cheapest and most effective method of refining the gold.Also the waste alkaline sulfide solutions can be recycled for further gold leaching orfurther processed with low temperature oxidation to sodium sulfate, Na2SO4. This alsooxidizes the arsenic to soluble sodium arsenate which can then be precipitated byconventional means using iron compounds. This oxidation process has been practiced inindustry (69). The resultant sodium sulfate, after arsenic removal, is further treated bypurification and crystallization to produce high grade, marketable sodium sulfate. Thisprocess is illustrated simplistically in the following scenario.O2 + Na2S Æ Na2SO4 (9)2O2 + 2NaOH + Na2S2Æ 2Na2SO4 + H2O (10) 3.5O2 + 8NaOH + Na2S5Æ 5Na2SO4 + 4H2O (11) 82NaOH + 2 O2 + Na2S2O3Æ2Na2SO4 + H2O (12)Na3AsS4+ 2 O2ÆNa3AsO4 (13) This versatile and environmentally benign chemical is then be sold to and utilized in industries such as pulp and paper, glass, ceramics, detergents, textile dyes, mineral feed supplements, bleach and photography. As such, there is no environmental or toxicological issue in the use of alkaline sulfide gold recovery as the waste products become value added, marketable by-products.As well the sodium sulfate produced can be used to regenerate the sodium hydroxide needed in the process in a manner analogous to industrial dual alkali scrubbing systems (70). This is as follows:2Na2SO4 + Ca(OH)2Æ CaSO4 + 2NaOH (14)The clean gypsum product can then be marketed and used in such applications as agricultural soil amendments or as an additive in primary cement manufacture. In addition, initial efforts are underway and have been successful in regenerating the necessary H2SO4 and NaOH reagents from the Na2SO4 by-product. The details of this process will be given in future publications and may be illustrated as follows:Na2SO4 + 2H2O ÅÆ H2SO4 + 2NaOH (15) Alkaline Sulfide Hydrometallurgical Treatment of Lead SmelterCopper Dross Flue DustThe formation of arsenic and antimony laden dusts in the processing of lead is commonly encountered. An example of hydrometallurgical treatment of this arsenic trioxide bearing materials follows:Table VII. Copper Dross Flue Dust Head Sample AssayIn, % Pb,% Sb,% As,% Zn,%0.3 46.0 9.0 12.0 11.0Table VIII. Leach Testing Conditions.Leach Time = 6 Hr.Percent Solids = 25%Leach Temperature = 105O CSulfide Concentration = 100 g/LFree Hydroxide Concentration = 10 g/LTable VIIII. Leach Test Results% of Metal LeachedIn, % Pb,% Sb,% As,% Zn,%0.0 0.0 95.0 99.0 0.0Alkaline Sulfide Hydrometallurgical Treatment of Copper Enargite Concentrates In many parts of the world, enargite, Cu3AsS4, occurs as a primary copper mineral. Alkaline sulfide hydrometallurgy can be effective in treating these types of ores and concentrates. This is illustrated as follows:Table X. Copper Enargite Concentrate Head Sample AssayCu, % As, % Sb, % Au, g/T30.1 10.7 1.2 35.1Table XI. Leach Testing ConditionsLeach Time = 1 Hr.Percent Solids = 25%Leach Temperature = 105O CSulfide Concentration = 100 g/LFree Hydroxide Concentration = 10 g/LTable XII. Leach Test Results.% of Metal LeachedCu, % As, % Sb, % Au, %0.0 99.2 99.7 14.3In this case, a high grade, 38% copper , concentrate with minimal arsenic was produced for treatment by smelting. The gold in solution was recovered with the technology portrayed earlier in the paper and the arsenic was precipitated and stabilized with iron after oxidation of the alkaline waste solutions.SummaryFrom the cited examples in the paper, which utilized fundamental principles of alkaline sulfide hydrometallurgy as well as its industrially proven applications for the selective arsenic removal, it is obvious that arsenic bearing ores, concentrates and materials can be effectively treated.References1.Anderson, C. G., Nordwick, S. M., and Krys, L.E., "Processing of Antimony at the Sunshine Mine", Residues and Effluents - Processing and Environmental Considerations, ed. R.G. Reddy, W. P. Imrie, P.B. Queneau (San Diego, CA: AIME-TMS, 1992), 349-366.2.Anderson, C. G. and Krys, L. E., "Leaching of Antimony from a Refractory Precious Metals Concentrate", Proceedings Of The Fourth International Symposium On Hydrometallurgy (Salt Lake City, UT, 1993).3.Nordwick, S. M. and Anderson, C. G., "Advances In Antimony Electrowinning At The Sunshine Mine", Proceedings Of The Fourth International Symposium On Hydrometallurgy, (Salt Lake City, UT, 1993).4.Anderson, C. G., et. al., “Antimony Separation Process", U.S. Patent No. 5,290,338, March 1, 1994.5. C.G. Anderson, E. Dahlgren and D. Stacey, Unpublished research, 2004.6. H.H. Huang, StabCal Modeling Software, September 2002.7. M. Jeffrey, and C.G. Anderson, “A Fundamental Study of the Alkaline Sulfide Leaching of Gold”, The European Journal of Mineral Processing and Environmental Protection, October 2002.8. C.G. Anderson, “The Chemical Analysis of Industrial Alkaline Sulfide Hydrometallurgical Processes”, The Society of Mineral Analysts and the Canadian Mineral Analysts Annual Meeting, Spokane, Washington, April 2002.9. C.G. Anderson, “Industrial Nitrogen Species Catalyzed Pressure Leaching and Alkaline Sulfide Gold Recovery from Refractory Gold Concentrates”, Precious Metals 2001, 25th Annual IPMI Meeting, Tucson, Arizona, June 2001.10. C. R. Edwards, 1985 “Engineering the Equity Concentrate Leach Process”, In: Complex Sulfides: Processing of Ores, Concentrates and By-Products, A.D Zunkel, et al, eds. Proceedings of a symposium sponsored by the Metallurgical Society of AIME and the CIMM, TMS-AIME Fall Extractive Meeting, San Diego CA, Nov. 10-13 1985, p. 197-219.11. R.R Lunt, D.K. Modrow and G.K. Roset, “Adaption of Dilute Mold Lime Dual Alkali Scrubbing at Stillwater Mining Company’s PGM Smelter”, Hydrometallurgy 2003, Vancouver, B.C. October 2003.12. Nadkarni, R.M., and Kusik, C.L., “Hydrometallurgical Removal of Arsenic from Copper Concentrates” Arsenic Metallurgy Fundamentals and Applications, Edited byR.G. Reddy, J.L. Hendrix and P.B. Queneau, Phoenix, Arizona, 1988.13. H. Glazkov and A. L. Tseft, "Solubility of Sulfide Minerals of antimony and arsenic in metal salts at elevated pressure", Sb. Nauch Tr. Irkutsk. Gos. Nauch-Issled. lnst._Redk. Met^l, 9 (1961), 2Q4-B.14. E. I. Agladze, et al., "Production of arsenic tcisulfide", Tr. Inst. Prikl. Khiro. i Electrokliini,_Akad. Nauk_Gruz. SSg.l (1959) 125-30.15. P. U. van Stein, "Selective Separation of Antimony from Concentrates", German Offen. No. 2,020,656 (25 Feb. 1971).16. W. C. Holmes, "How electrolytic antimony is made at Sunshine Plant", Ens. Mining J. 145 (3) (1944), 54-8.17. W. C. Holmes, "Electrolytic recovery of antimony from Letrahedrite concentrates", U. S. Patent. No. 2,331,375 (12 Oct. 1944).18.G. F. Gnatyshenko and T. R. Polyvyanni, "Arsenic leaching from Cottrell dusts by sodium sulfide", lav. Ahad. Naub. Kaz. SSR. Ser. Met. Qboaashch. Ogneuporov.. 3 (1961), 35-9.19. J. Kaloc, et al., "Alkaline leaching of tetrahedrite concentrates", Hutn. Listy. Z2 (9) (1967). 626-9.20. I. R. Polyvyanni, et al., "Leaching arsenic from arsenic-containing dust by means of sodium sulfide", Tr. Jlnst. Met- Oboeashck. Akad. Mauk Kaz. SSR, 6 (1963) 77-90.21. R. M. Nadkarni, C. L. Kusik and H. P. Heissner, "Method of removing arsenic and antimony from Copper Ore Concentrate", U. S. Patent 3, 911,073, Oct. 7, 1975.。

相关文档
最新文档