2018届高中数学北师大版 导数的应用(理科) 单元测试 Word版 含答案

合集下载

2018届高中数学北师大版 变化率与导数 单元测试 Word版 含答案

2018届高中数学北师大版 变化率与导数 单元测试 Word版 含答案

题组层级快练(十五)1.y =ln(-x)的导函数为( ) A .y ′=-1xB .y ′=1xC .y ′=ln(x)D .y ′=-ln(-x)答案 B2.(2017·广东五校协作体联考)曲线y =x +1x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12,故选D. 3.曲线f(x)=2e x sinx 在点(0,f(0))处的切线方程为( ) A .y =0 B .y =2x C .y =x D .y =-2x答案 B解析 ∵f(x)=2e x sinx ,∴f(0)=0,f ′(x)=2e x (sinx +cosx),∴f ′(0)=2,∴所求切线方程为y =2x.4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末C .2秒末D .1秒末和2秒末 答案 D解析 ∵s =13t 3-32t 2+2t ,∴v =s ′(t)=t 2-3t +2.令v =0,得t 2-3t +2=0,t 1=1或t 2=2.5.设正弦函数y =sinx 在x =0和x =π2附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系为( ) A .k 1>k 2 B .k 1<k 2 C .k 1=k 2D .不确定答案 A解析 ∵y =sinx ,∴y ′=(sinx)′=cosx.k 1=cos0=1,k 2=cos π2=0,∴k 1>k 2.6.(2017·湖南雅礼中学月考)曲线y =a x 在x =0处的切线方程是xln2+y -1=0,则a =( ) A.12 B .2 C .ln2 D .ln 12答案 A解析 由题知,y ′=a x lna ,y ′|x =0=lna ,又切点为(0,1),故切线方程为xlna -y +1=0,∴a =12,故选A.7.若函数f(x)=x 2+bx +c 的图像的顶点在第四象限,则函数f ′(x)的图像是( )答案 A解析 由题意知⎩⎨⎧-b2>0,4c -b 24<0,即⎩⎪⎨⎪⎧b <0,b 2>4c.又f ′(x)=2x +b ,∴f ′(x)的图像为A.8.f(x)与g(x)是定义在R 上的两个可导函数,若f(x),g(x)满足f ′(x)=g ′(x),则f(x)与g(x)满足( ) A .f(x)=g(x)B .f(x)=g(x)=0C .f(x)-g(x)为常数函数D .f(x)+g(x)为常数函数答案 C9.设a ∈R ,函数f(x)=e x +a·e -x的导函数是f ′(x),且f ′(x)是奇函数,则a 的值为( )A .1B .-12C.12 D .-1答案 A解析 因为f ′(x)=e x -ae -x ,由奇函数的性质可得f ′(0)=1-a =0,解得a =1.故选A.10.(2017·《高考调研》原创题)设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f ′(2 017)=( )A .1B .2 C.12 017 D.2 0182 017答案 D解析 令e x =t ,则x =lnt ,所以f(t)=lnt +t ,故f(x)=lnx +x. 求导得f ′(x)=1x +1,故f ′(2 017)=12 017+1=2 0182 017.故选D.11.若P 为曲线y =lnx 上一动点,Q 为直线y =x +1上一动点,则|PQ|min =( ) A .0 B.22C. 2 D .2答案 C解析 如图所示,直线l 与y =lnx 相切且与y =x +1平行时,切点P 到直线y =x +1的距离|PQ|即为所求最小值.(lnx)′=1x ,令1x =1,得x =1.故P(1,0).故|PQ|min =22= 2.故选C. 12.y =x·tanx 的导数为y ′=________. 答案 tanx +xcos 2x解析 y ′=(x·tanx)′=x ′tanx +x(tanx)′=tanx +x·(sinxcosx )′=tanx +x·cos 2x +sin 2x cos 2x =tanx+xcos 2x. 13.已知y =13x 3-x -1+1,则其导函数的值域为________.答案 [2,+∞)14.已知函数f(x)=x(x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________. 答案 -120解析 f ′(x)=(x -1)(x -2)(x -3)(x -4)(x -5)+x[(x -1)(x -2)(x -3)(x -4)(x -5)]′,所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120.15.已知函数f(x)=f ′(π4)cosx +sinx ,所以f(π4)的值为________.答案 1解析 因为f ′(x)=-f ′(π4)sinx +cosx ,所以f ′(π4)=-f ′(π4)sin π4+cos π4,所以f ′(π4)=2-1.故f(π4)=f ′(π4)cos π4+sin π4=1.16.(1)(2015·广东,文)若曲线y =ax 2-lnx 在点(1,a)处的切线平行于x 轴,则a =________. 答案 12解析 因为y ′=2ax -1x ,依题意得y ′|x =1=2a -1=0,所以a =12.(2)若曲线f(x)=ax 3+lnx 存在垂直于y 轴的切线,则实数a 的取值范围是________. 答案 (-∞,0)解析 由题意,可知f ′(x)=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x =0,即a =-13x 3(x>0),故a ∈(-∞,0). 17.设f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=2x 2. (1)求x<0时,f(x)的表达式;(2)令g(x)=lnx ,问是否存在x 0,使得f(x),g(x)在x =x 0处的切线互相平行?若存在,求出x 0的值;若不存在,请说明理由. 答案 (1)f(x)=-2x 2(x<0) (2)存在,x 0=12解析 (1)当x<0时,-x>0,f(x)=-f(-x)=-2(-x)2=-2x 2. ∴当x<0时,f(x)的表达式为f(x)=-2x 2.(2)若f(x),g(x)在x 0处的切线互相平行,则f ′(x 0)=g ′(x 0),当x>0时,f ′(x 0)=4x 0=g ′(x 0)=1x 0,解得,x 0=±12.故存在x 0=12满足条件.18.已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且直线l 与曲线C 相切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. 答案 y =-14x 切点为(32,-38)解析 ∵直线过原点,则k =y 0x 0(x 0≠0).由点(x 0,y 0)在曲线C 上,则y 0=x 03-3x 02+2x 0, ∴y 0x 0=x 02-3x 0+2.又y ′=3x 2-6x +2, ∴在(x 0,y 0)处曲线C 的切线斜率应为k ==3x 02-6x 0+2. ∴x 02-3x 0+2=3x 02-6x 0+2. 整理得2x 02-3x 0=0. 解得x 0=32(x 0≠0).这时,y 0=-38,k =-14.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)(4)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试卷(含答案解析)(4)

一、选择题1.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( ) A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞2.已知函数()22ln 3f x x ax x =+-在2x =处取得极小值,则()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值为( ) A .52-B .92ln 32-C .1-D .2ln 24-3.已知函数()()ln 1xxf x x e e -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( ) A .()(),11,-∞-+∞B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()(),21,-∞-⋃+∞4.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .25.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<6.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f >D .(2020)(2021)ef f <7.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π8.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-9.函数()()()()22ln 00x x x f x x e x -⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()2240f x af x a a -+-=有四个不等的实数根,则实数a 的取值范围为( ) A .()0,4 B .()(),44,-∞⋃+∞C .(){}4,04- D .(){},44-∞-10.函数()212x f x x -=+的值域是( ) A .30,3⎡⎤⎢⎥⎣⎦B .33⎛⎫∞ ⎪ ⎪⎝⎭,+ C .()0,3D .)3,⎡+∞⎣11.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.已知函数()()()22ln 0f x a e x xa =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( ) A .eB .1e 2- C .1 D .2e e - 二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.15.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.16.如图,两条距离为4的直线都与y 轴平行,它们与抛物线()22014y px p =-<<和圆()2249x y -+=分别交于A ,B 和C ,D ,且抛物线的准线与圆相切,则22AB CD ⋅的最大值为______.17.已知函数()21ln 2f x a x x bx =-+存在极小值,且对于b 的所有可能取值,()f x 的极小值恒大于0,则a 的最小值为__________.18.已知函数f (x )=2,(,0],(0,)xx x e x +∈-∞⎧⎨∈+∞⎩,若存在x 1,x 2(x 2>x 1)满足f (x 1)=f (x 2),则x 2﹣2x 1的取值范围为_____.19.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',且()()32xxf x f x x e'-=,()339f e =,则关于x 的方程()>f x e 的解集为_____________.20.已知随机变量X 的分布列为:随机变量X 的数学期望为E X ,则满足E X k <的最大正整数k 的值是_____. (参考数据:ln 20.6931≈,ln3 1.0986≈,ln5 1.6094≈)三、解答题21.已知函数()ln f x x x e =--. (1)求函数()f x 的单调区间;(2)若关于x 的不等式()xe f x mx ⋅在(0,)+∞上恒成立,求实数m 的取值范围.22.已知()()2log 1f x x =+.(1)若()()0121f x f x <--<,求x 的取值范围; (2)若关于x 的方程()40xf x m -+=有解,求实数m 的取值范围.23.设函数()(1)ln(1)f x x x x =-++ (1)若方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,求t 的取值范围; (2)证明:当0m n >>时,(1)(1)n mm n +<+.24.已知函数()ln(1)f x x a =++,()x a g x e -=,a R ∈.(1)若0a =,曲线()y f x =在点()()00,x f x 处的切线也是曲线()y g x =的切线,证明:()0001ln 1x x x ++=; (2)若()()1g x f x -≥,求a 的取值范围. 25.已知函数()22ln f x x a x =-,其中a ∈R . (1)当1a =时,求函数()f x 在1,e e⎡⎤⎢⎥⎣⎦上的最值;(2)(i )讨论函数()f x 的单调性;(ii )若函数()f x 有两个零点,求a 的取值范围.26.设函数1()ln ,f x a x a x=+∈R .(Ⅰ)设l 是()y f x =图象的一条切线,求证:当0a =时,l 与坐标轴围成的三角形的面积与切点无关;(Ⅱ)若函数()()g x f x x =-在定义域上单调递减,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x'=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x≤-, 令1()4g x x x =-,由于114,y x y x ==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=, 所以33a ≤,又0a >,解得1a ≥. 故选:D. 【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.2.B解析:B 【分析】由()20f '=求出a 的值,然后利用导数可求得函数()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值.【详解】()22ln 3f x x ax x =+-,则()223f x ax x=+-', 由题意可得()2420f a '=-=,解得12a =,则()212ln 32f x x x x =+-, ()22323x x f x x x x-+'=+-=,令()0f x '=,可得1x =或2x =,列表如下:所以,函数()f x 的极大值为()12f =-,极小值为()22ln 24f =-, 又1112ln 228f ⎛⎫=-- ⎪⎝⎭,()932ln 32f =-,()()()95312ln 32ln 322ln 31022f f -=-+=-=->,则()()13f f <,所以,()()max 932ln 32f x f ==-. 故选:B. 【点睛】思路点睛:利用导数求函数()y f x =在[],a b 上的最大值和最小值的步骤如下: (1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()f a 、f b 比较,其中最大的一个是最大值,最小的一个是最小值.3.D解析:D 【分析】先判断函数的奇偶性和单调性,从而可得关于x 的不等式,求出其解后可得正确的选项. 【详解】()f x 的定义域为()(),11,-∞-+∞,且()()()ln 1x x f x x e e f x --=--++=,又当1x >时,()()ln 1xxf x x e e -=-++,()11001x x f x e e e x e-'=+->+->-,故()f x 在()1,+∞为增函数, 故()()12f x f x +<即为11211112121x xx x x x ⎧<+<⎪+-+⎨⎪-⎩或或,解得2x <-或1x >,故选:D. 【点睛】方法点睛:解函数不等式,往往需要考虑函数的奇偶性和单调性,前者依据定义,后者可利用导数,注意定义域的要求.4.A解析:A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可. 【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-, 整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.5.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.6.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()xg x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立, 所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()xf x F x e =. 7.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.8.D解析:D 【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 9.C解析:C 【分析】作出函数()f x 的大致图象,令()t f x =,则原问题可转为关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t ,结合()f x 的图象可确定1t 和2t 符合两种情形:10t =,24t =或()10,4t ∈,()()2,04,t ∈-∞+∞,最后分两类讨论即可求得a 的取值范围. 【详解】当0x ≥时,()22xf x x e-=,∴()()222xf x x xe-'=-,∴当02x <<时,()0f x '>,()f x 单调递增; 当2x >时,()0f x '<,()f x 单调递减, 函数()f x 的大致图象如图所示:令()t f x =, 当0t =或4时,方程()t f x =有2个实根; 当()(),04,t ∈-∞+∞,方程()t f x =有1个实根.当t ∈(0,4)时,方程t =f (x )有3个实根; 则关于x 的方程()()2240fx af x a a -+-=有四个不等的实数根可等价于关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t .∴1t 和2t 可符合两种情形:10t =,24t =或1t ∈(0,4),()()2,04,t ∈-∞+∞.若10t =,24t =,则124a t t =+=; 若1t ∈(0,4),()()2,04,t ∈-∞+∞,设g (t )=t 2﹣at +4a ﹣a 2,则g (0)•g (4)<0,∴()()22416440a aa a a -⋅-+-<,解得40a .综上,实数a 的取值范围为(){}4,04-.故选:C .【点睛】本题考查方程根的问题,利用导数研究函数的单调性与最值,考查学生的数形结合思想、转化与化归思想、逻辑推理能力和运算能力,属于中档题.10.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤, 22222(2)121()(2)1xx x x f x x x -⋅+---'==+-当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max1134()322f x -==-+(1)(1)0f f -==, 所以()f x 的值域是30,3⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1=,x 223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.D解析:D 【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a . 【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦,因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=-⎪⎝⎭, 解得2ea e =-, 故选:D . 【点睛】本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--.故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.15.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果. 【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦ 【点睛】关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.16.【分析】先设直线的方程为再利用直线与圆锥曲线的位置关系将用表示再利用导数求函数的最值即可得解【详解】解:由抛物线的准线与圆相切得或7又∴设直线的方程为则直线的方程为则设令得;令得即函数在为增函数在为解析:【分析】先设直线AB 的方程为()03x t t =-<<,再利用直线与圆锥曲线的位置关系将AB CD ⋅用t 表示,再利用导数求函数的最值即可得解. 【详解】解:由抛物线的准线与圆相切得12p=或7,又014p <<,∴2p =. 设直线AB 的方程为()03x t t =-<<,则直线CD 的方程为4x t =-,则)03AB CD t ⋅==<<.设()()()2903f t t tt =-<<,()2'93f t t=-,令()'0f t >,得0t <<()'0f t <3t <<.即函数()f t 在(为增函数,在)为减函数,故()maxf t f ==22AB CD ⋅的最大值为28⨯=故答案为: 【点睛】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.17.【解析】因故有解即有解令取得极小值点为则则函数的极小值为将代入可得由题设可知令则由即当时函数取最小值即也即所以即应填答案点睛:本题是一道较为困难的试题求解思路是先确定极小值的极值点为则进而求出函数的解析:3min a e =-【解析】 因()a f x x b x -'=+,故()0af x x b x-+'==有解,即20x bx a --=有解.令取得极小值点为t ,则2bt t a =-,则函数的极小值为21()ln 2f t a t t bt =-+,将2bt t a =-代入可得21()ln 2f t a t t a =+-,由题设可知21ln 02a t t a +->,令21()ln 2h t a t t a =+-,则()a h t t t =+',由2()0ah t t t a t=+'=⇒=-,即当2t a =-时,函数21()ln 2h t a t t a =+-取最小值1()02h a a a =--≥,即3322a a ≥-⇒≤,也即13ln()ln()322a a -≤⇒-≤,所以33a e a e -≤⇒≥-,即3min a e =-,应填答案3min a e =-.点睛:本题是一道较为困难的试题.求解思路是先确定极小值的极值点为t ,则2bt t a =-,进而求出函数的极小值21()ln 2f t a t t bt =-+,通过代入消元将未知数b 消掉,然后求函数21()ln 2h t a t t a =+-的最小值为1()02h a a a =--≥,从而将问题转化为3322a a ≥-⇒≤,然后通过解不等式求出即3min a e =-.18.ln22)【分析】用表示出得出关于的函数根据的范围判断函数单调性得出值域即可【详解】显然由题意可知故由可得故设则在上单调递减又故答案为:【点睛】本题主要考查利用导数研究函数的单调性和最值意在考查学生解析:[ln 2,2) 【分析】用2x 表示出1x ,得出212x x -关于2x 的函数2()g x ,根据2x 的范围,判断函数单调性得出值域即可. 【详解】显然10x ,20x >,由题意可知212x x e +=,故212x x e =-,2212224x x x x e ∴-=-+,由2121x x e +=>可得110x -<,故2120x e -<-,202x ln ∴<, 设()24(02)x g x x e x ln =-+<,则()120x g x e '=-<,()g x ∴在(0,2]ln 上单调递减, 又(0)2g =,(2)2g ln ln =, 2()2ln g x ∴<.故答案为:[2ln ,2). 【点睛】本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.19.【分析】由所给等式变形可得则令可求得c 从而求出的解析式利用导数研究函数的单调性利用函数单调性解不等式即可【详解】因为所以即所以因为所以解得则当时函数在上单调递增又所以的解集为故答案为:【点睛】本题考 解析:()1,+∞【分析】由所给等式变形可得()2[]x f x e x'=,则()2x f x e c x=+,令3x =可求得c 从而求出()f x 的解析式,利用导数研究函数()f x 的单调性,利用函数单调性解不等式即可. 【详解】因为()()32x xf x f x x e '-=,所以()()242xx f x xf x e x'-=,即()2[]x f x e x '=, 所以()2x f x e c x =+,因为()339f e =,所以33e e c =+,解得0c,则()2x f x e x=,()()20xf x x e x =>,当0x >时,()()22220x x x f x x e x e e x x '=⋅+⋅=+>,函数()f x 在()0,∞+上单调递增,又()1f e =,所以()()1f x e f >=的解集为()1,+∞. 故答案为: ()1,+∞ 【点睛】本题考查导数的运算法则、利用导数研究函数的单调性、利用函数的单调性解不等式,属于中档题.20.【分析】根据期望的定义先得到将不等式化为构造函数利用导数的方法判断其单调性计算即可得出结果【详解】由题意所以可化为即其中显然成立;两边同时取以为底的对数得令则当时即函数单调递增;当时即函数单调递减; 解析:4【分析】根据期望的定义,先得到()31kE X ke k -=-++,将不等式()E X k <化为ln 3kk >,构造函数()ln ,03kf k k k =->,利用导数的方法判断其单调性,计算()4f ,()5f ,即可得出结果. 【详解】 由题意,()()333111k k k E X ek e ke k ---⎛⎫=++-=-++ ⎪⎝⎭,所以()E X k <可化为310kke --+<,即3kk e >,其中0k >显然成立; 两边同时取以e 为底的对数,得ln 3k k >, 令()ln ,03k f k k k =->,则()11333k f k k k-'=-=, 当()0,3k ∈时,()303k f k k -'=>,即函数()ln 3kf k k =-单调递增; 当()3,k ∈+∞时,()303k f k k -'=<,即函数()ln 3kf k k =-单调递减; 因此()()max 33ln 3ln 3103f k f ==-=->, 又()444ln 42ln 2 1.3862 1.3333033f =-≈-=->, ()55ln 5 1.6094 1.666603f =-≈-<,因此满足ln 3kk >的最大正整数k 的值是4, 即满足()E X k <的最大正整数k 的值是4.故答案为:4. 【点睛】本题主要考查导数的方法研究不等式能成立的问题,涉及离散型随机变量的期望,属于常考题型.三、解答题21.(1)函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)(1,e e -⎤-∞-⎦.【分析】(1)解不等式()0f x '>与()0f x '<即可得单调区间; (2)先分离参数再利用导数研究函数最值即可得结果. 【详解】(1)依题意11(0,),()1x x f x x x'-∈+∞=-=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<,故函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)因为0x >,故不等式化为(ln )x x x e e m x --⋅,令(ln )()xx x e e h x x--⋅=,故min [()]m h x ,因为2(1)(ln 1)()xx x x e h x e x---+'=, 令11()ln 1,()1x x x x e x x xϕϕ'-=--+=-=,由(1)可知,当(0,1)x ∈时,()0x ϕ'>,当(1,)x ∈+∞时,()0x ϕ'<,又221130,(1)20,()0e e e e e ϕϕϕ⎛⎫=--<=->=⎪⎝⎭, 所以()ϕx 在(0,1)上存在唯一零点0x ,在(1,)+∞上存在唯一零点x e =,当00x x <<时,()0()0x h x ϕ'<<,,当01x x <<时,()0()0x h x ϕ'>>,,当1x e <<时,()0()0x h x ϕ'><,,当x e >时,()0,()0x h x ϕ'<>,所以函数()h x 在()00,x 和(1,)e 上为减函数,在()0,1x 和(,)e +∞上为增函数, 所以min [()]h x 是()0h x 与()h e 中的较小者,而1()e h e e -=-,因为()000ln 10x x x e ϕ=--+=,故010x e x e +-=, 故()()00100ln x x e x x e e h x e e x x ---=⋅=-=-,故1e m e --,综上所述,实数m 的取值范围为(1,e e -⎤-∞-⎦.【点晴】参变分离利用导数求解函数最值是解参数范围的关键. 22.(1)10,3⎛⎫ ⎪⎝⎭;(2)(],1-∞-. 【分析】(1)利用对数的运算法则化简,求解对数不等式. 注意化简前保证真数大于零.(2)分离参数,利用方程()2log 41xx m +-=-有解,构造函数()()2log 41x g x x =+-,求导,分析函数单调性,求出最值,得到m 的取值范围.【详解】(1)()()212log 22f x x -=-()()()()222lo 2212log 22g 1log 11f x x x x x xf ----+-=<+= 1220110222x x x x ⎧⎪->⎪+>⎨⎪-<+⎩<⎪ 则103x <<故x 的取值范围为10,3⎛⎫ ⎪⎝⎭.(2)()40xf x m -+=则()()2log 4104xxf x m m x =+-++=- ()2log 41xx m +-=- 设()()2log 41xg x x =+-()()'ln 444111441ln 2x x x x g x ⋅-=-=++⋅当(),0x ∈-∞时,'0gx当()0,x ∈+∞时,()'0g x > 且x →-∞时,()g x →+∞()2min log 21g x ==故1m -≥ 则1m ≤-故m 的取值范围为:(],1-∞- 【点睛】利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域. 23.(1)11ln 2,022⎡⎫-+⎪⎢⎣⎭;(2)证明见解析. 【分析】(1)方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,等价于函数()f x 在区间1,12⎡⎤-⎢⎥⎣⎦上的图像与直线y t =有两个交点,所以利用导数求出()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,再比较出(1)f 和12f ⎛⎫ ⎪⎝⎭的大小即可得答案;(2)由0m n >>,要证(1)(1)n mm n +<+,只需证ln(1)ln(1)n m m n +<+,只需证ln(1)ln(1)m n m n ++<,构造函数ln(1)(),(0)x g x x x +=>,然后利用导数证明()g x 是减函数即可 【详解】解:(1)由()(1)ln(1)f x x x x =-++,定义域为()1,-+∞,()ln(1)f x x '=-+,()ln(1)00f x x x '=-+=⇒=,当102x -≤<时,()()0,f x f x '>单调递增, 当01x <≤时,()()0,f x f x '<单调递减, 则()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减, 又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+, 135(1)()ln 20,222∴--=-<f f 1(1)2f f ⎛⎫∴< ⎪⎝⎭∴ 当11ln 2,022⎡⎫∈-+⎪⎢⎣⎭t 时,方程()f x t =有两解. (2)∵ 0m n >>.∴ 要证:(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+, 只需证:ln(1)ln(1)m n m n++<.设ln(1)(),(0)x g x x x+=>, 则22ln(1)(1)ln(1)1()(1)xx x x x x g x x x x -+-+++=+'=. 由(1)知()(1)ln(1)f x x x x =-++在(0,)+∞单调递减, 又()00=f ,∴ (1)ln(1)0x x x -++<, 即()g x 是减函数,而m n >. ∴ ()()g m g n <,故原不等式成立. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,考查数学转化思想,解题的关键是把(1)(1)n mm n +<+,转化为ln(1)ln(1)m n m n++<,再构造函数,再利用导数判断此函数为减函数即可,属于中档题 24.(1)证明见解析;(2)(,0]-∞. 【分析】(1)求出导函数()'f x ,()'g x ,求出()f x 在00(,())x f x 切线方程,利用切线斜率求得()y g x =的切点坐标,得切线方程,由两条切线方程是相同的,可证结论;(2)令()()()ln(1)x a h x g x f x e x a -=-=-+-,求得()h x ',确定单调性,最小值,由最小值不小于1可得a 的范围. 【详解】(1)若0a =,则()ln(1)f x x =+,()xg x e =.所以1()1f x x '=+,()xg x e '=, 曲线()y f x =在点()()00,x f x 处的切线方程为()()0001ln 11y x x x x =-+++, 令01()1xg x e x '==+,则01ln 1x x =+, 曲线()y g x =在点0011ln,11x x ⎛⎫⎪++⎝⎭处的切线方程为()00011ln 111y x x x x ⎡⎤=+++⎣⎦++, 由题意知()()()000000111ln 1ln 1111x x x x x x x x ⎡⎤-++=+++⎣⎦+++,整理可得()000ln 111x x x +=+,00x =显然不满足, 因此()0001ln 1x x x ++=. (2)令()()()ln(1)x ah x g x f x e x a -=-=-+-若0a >,0(0)01ah ea e -=-<-=,不符合条件;若0a =,()ln(1)xh x e x =-+,1()1x h x e x '=-+, 当(1,0)x ∈-时,()0h x '<,()h x 单调递减, 当(0,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以()(0)1h x h ≥=,符合条件; 若0a <,则()ln(1)ln(1)1x ax h x ex a e x -=-+->-+≥,符合条件.所以a 的取值范围是(,0]-∞. 【点睛】思路点睛:本题考查导数的几何意义,考查用导数研究不等式恒成立问题.求切线方程时要注意是函数图象在某点处的切线,还是过某点的切线,由导数得斜率得切线方程,若不知切点时一般需设出切点坐标,写出切线方程,代入所过点的坐标求出切点,再得切线方程,不能弄错.25.(1)最大值为22e -,最小值为1;(2)(i )见详解;(ii )a e >. 【分析】(1)由1a =得()22ln f x x x =-,对其求导,利用导数的方法判定其在1,e e⎡⎤⎢⎥⎣⎦上单调性,即可求出最值;(2)(i )先对函数求导,分别讨论0a ≤和0a >两种情况,利用导数的方法,即可判定函数单调性;(ii )由(i )中函数单调性,先判断0a ≤时不满足题意,再由0a >时函数的单调性,得到()min ln f x a a a =-,由函数零点个数,必有()min 0f x <,求出a 的范围,再进行验证,即可得出结果. 【详解】(1)由1a =得()22ln f x x x =-,所以()()()21122x x f x x x x+-'=-=, 当1,1x e ⎛⎫∈ ⎪⎝⎭时,()()()2110x x f x x+-'=<,则()f x 单调递减;当()1,x e ∈时,()()()2110x x f x x+-'=>,则()f x 单调递增;所以()()min 11f x f ==;又2211112ln 2f e e e e ⎛⎫=-=+ ⎪⎝⎭,()22122f e e e =->+,所以()()2max 2f x f e e ==-;即()f x 在1,e e⎡⎤⎢⎥⎣⎦上的最大值为22e -,最小值为1;(2)(i )()()2222x a a f x x x x-'=-=, 当0a ≤时,()0f x '≥恒成立;即()f x 在定义域()0,∞+上单调递增;当0a >时,若0x <<,则()()220x a f x x-'=<;若x >()()220x a f x x-'=>,所以()f x 在(上单调递减;在)+∞上单调递增;综上,当0a ≤时,()f x 在()0,∞+上单调递增;当0a >时,()f x 在(上单调递减;在)+∞上单调递增;(ii )由(i )知,当0a ≤时,()f x 在定义域()0,∞+上单调递增;不可能有两个零点;当0a >时,()min 2ln f x fa a a a a ==-=-;为使()f x 有两个零点,必有()min ln 0f x a a a =-<,即a e >; 又()()2242ln 222ln 2f a a a a a a a =-=-,令()ln g x x x =-,2x e >,则()1110x g x x x-'=-=>在()2,e +∞上恒成立, 即()ln g x x x =-在()2,e +∞上单调递增,所以()()22ln 20g x g e e e >=->,即()()222ln 20f a a a a =->,所以根据零点存在性定理可得,存在)1x a ∈,使得()10f x =;又442ln 0f aa a aa =-=+>,根据零点存在性定理可得,存在2x ∈,使得()20f x =, 综上,当a e >时,函数()f x 有两个零点. 【点睛】 思路点睛:利用导数的方法求解由函数零点个数求参数范围问题时,一般需要先对函数求导,利用导数的方法判定函数单调性,求出极值,进而可求出零点个数.(有时也需要分离参数,构造新的函数,将问题转化为两函数图象交点个数问题进行求解)26.(Ⅰ)证明见解析;(Ⅱ)(,2]-∞. 【分析】(Ⅰ)设切点为001(,)P x x ,求出切线方程并计算l 与坐标轴围成的三角形的面积为2,故可得相应的结论.(Ⅱ)由题设可得()0g x '≤,利用参变分离可得a 的取值范围. 【详解】(Ⅰ)当0a =时,1(),0f x x x =>,21()f x x'=-,设()f x 图象上任意一点001(,)P x x ,切线l 斜率为0201()k f x x =-'=. 过点001(,)P x x 的切线方程为020011()y x x x x -=--. 令0x =,解得02y x =;令0y =,解得02x x =. 切线与坐标轴围成的三角形面积为0012|||2|22S x x =⋅=. 所以l 与坐标轴围成的三角形的面积与切点无关. (Ⅱ)由题意,函数()g x 的定义域为(0,)+∞. 因为()g x 在(0,)+∞上单调递减, 所以21()10a g x x x'=--≤在(0,)+∞上恒成立, 即当(0,)x ∈+∞,1a x x≤+恒成立, 所以min 1()a x x≤+ 因为当(0,)x ∈+∞,12x x+≥,当且仅当1x =时取等号. 所以当1x =时,min 1()2x x+= 所以2a ≤.所以a 的取值范围为(,2]-∞. 【点睛】结论点睛:一般地,若()f x 在区间(),a b 上可导,且()()()00f x f x ''><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()00f x f x ''≥≤.。

2018版高考数学理北师大版大一轮复习配套讲义:第三章

2018版高考数学理北师大版大一轮复习配套讲义:第三章

基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·西安调研)定积分⎠⎛01(2x +e x )d x 的值为( )A.e +2B.e +1C.eD.e -1解析 ⎠⎛01(2x +e x)d x =(x 2+e x)⎪⎪⎪10)=1+e 1-1=e.故选C.答案 C2.若⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则a 的值是( )A.2B.3C.4D.6解析 ⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =(x 2+ln x )⎪⎪⎪a1=a 2+ln a -1,∴a 2+ln a -1=3+ln 2,则a =2. 答案 A3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( ) A.12gB.gC.32gD.2g解析 电视塔高h =⎠⎛12gt d t =⎪⎪⎪⎝ ⎛⎭⎪⎫12gt 221=32g .答案 C4.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( ) A.⎠⎛02|x 2-1|d xB.⎪⎪⎪⎪⎠⎛02(x 2-1)d x C.⎠⎛02(x 2-1)d x D.⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x 解析 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下图形的面积相等,即⎠⎛02|x 2-1|d x .答案 A5.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D.S 3<S 2<S 1解析S 2=⎠⎛121x d x =ln 2,S 3=⎠⎛12e x d x =e 2-e ,∵e 2-e =e(e -1)>e >73>ln 2, ∴S 2<S 1<S 3. 答案 B 二、填空题6.已知t >0,若⎠⎛0t (2x -2)d x =8,则t =________.解析 由⎠⎛0t(2x -2)d x =8得,(x 2-2x ) ⎪⎪⎪t0=t 2-2t =8,解得t =4或t =-2(舍去).答案 47.已知二次函数y =f (x )的图像如图所示,则它与x 轴所围成的面积为________.解析 根据f (x )的图像可设f (x )=a (x +1)·(x -1)(a <0). 因为f (x )的图像过(0,1)点, 所以-a =1,即a =-1. 所以f (x )=-(x +1)(x -1)=1-x 2. 所以S =⎠⎛-11(1-x 2)d x =2⎠⎛01(1-x 2)d x=2⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10=2⎝ ⎛⎭⎪⎫1-13=43. 答案 438.(2017·合肥模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析 封闭图形如图所示,则⎠⎛0a x d x ==23a 32-0=a 2,解得a =49.答案 49 三、解答题 9.计算下列定积分: (1)⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x ;(2)⎠⎛02-x 2+2x d x ;(3)2sin ⎝⎛⎭⎪⎫x +π4d x ;(4)⎠⎛-11(x 2tan x +x 3+1)d x ; (5)⎠⎛-22|x 2-2x |d x . 解 (1)原式=⎝ ⎛⎭⎪⎫12x 2-ln x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫12×22-ln 2-⎝ ⎛⎭⎪⎫12-ln 1=32-ln 2; (2)由定积分的几何意义知,所求定积分是由x =0,x =2,y =-x 2+2x ,以及x 轴围成的图像的面积,即圆(x -1)2+y 2=1的面积的一半,∴⎠⎛02-x 2+2x =π2;(3)原式=(sin x +cos x )d x =(-cos x +sin x )=⎝⎛⎭⎪⎫-cos π2+sin π2-(-cos 0+sin 0)=2;(4)原式=⎠⎛-11(x 2tan x +x 3)d x +⎠⎛-111d x =0+x ⎪⎪⎪1-1=2;(5)∵|x 2-2x |=⎩⎨⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2,∴⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫13x 3-x 2⎪⎪⎪0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2⎪⎪⎪20=8.10.求曲线y =x 2,直线y =x ,y =3x 围成的图形的面积. 解 作出曲线y =x 2,直线y =x ,y =3x 的图像,所求面积为图中阴影部分的面积.解方程组⎩⎨⎧y =x 2,y =x ,得交点(1,1),解方程组⎩⎨⎧y =x 2,y =3x ,得交点(3,9),因此,所求图形的面积为 S =⎠⎛01(3x -x )d x +⎠⎛13(3x -x 2)d x =⎠⎛012x d x +⎠⎛13(3x -x 2)d x =x 2⎪⎪⎪1+⎝ ⎛⎭⎪⎫32x 2-13x 3⎪⎪⎪31=1+⎝ ⎛⎭⎪⎫32×32-13×33-⎝ ⎛⎭⎪⎫32×12-13×13=133.能力提升题组 (建议用时:20分钟)11.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A.-1B.-13C.13D.1解析 由题意知f (x )=x 2+2⎠⎛01f (x )d x ,设m =⎠⎛01f (x )d x ,∴f (x )=x 2+2m ,⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝ ⎛⎭⎪⎫13x 3+2mx ⎪⎪⎪10 =13+2m =m ,∴m =-13. 答案 B12.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A.1+25ln 5B.8+25ln 113C.4+25ln 5D.4+50ln 2解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )⎪⎪⎪40 =28-24+25ln 5=4+25ln 5(m). 答案 C13.(2017·郑州调研)⎠⎛-11(1-x 2+e x -1)d x =________.解析 ⎠⎛-11(1-x 2+e x -1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x -1)d x .因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积, 则⎠⎛-111-x 2d x =π2,又⎠⎛-11(e x -1)d x =(e x -x )|1-1 =(e 1-1)-(e -1+1)=e -1e -2,所以⎠⎛-11(1-x 2+e x -1)d x =π2+e -1e -2.答案 π2+e -1e -214.在区间0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值. 解 S 1面积等于边长分别为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-⎠⎛0t x 2d x =23t 3.S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形边长分别为t 2,1-t 的面积,即S 2=⎠⎛t 1x 2d x -t 2(1-t )=23t 3-t 2+13.所以阴影部分的面积S (t )=S 1+S 2=43t 3-t 2+13(0≤t ≤1). 令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0,得t =0或t =12.t =0时,S (t )=13;t =12时,S (t )=14;t =1时,S (t )=23.12时,S(t)最小,且最小值为1 4.所以当t=。

2018版高考数学文北师大版全国一轮复习练习 第三章 导

2018版高考数学文北师大版全国一轮复习练习 第三章 导

第2讲导数在研究函数中的应用第1课时导数与函数的单调性基础巩固题组(建议用时:40分钟)一、选择题1.函数f(x)=x-ln x的单调递减区间为() A.(0,1) B.(0,+∞)C.(1,+∞) D.(-∞,0)∪(1,+∞)解析函数的定义域是(0,+∞),且f′(x)=1-1x=x-1x,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).答案 A2.(2015·陕西卷)设f(x)=x-sin x,则f(x)() A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数解析因为f′(x)=1-cos x≥0,所以函数为增函数,排除选项A和C.又因为f(0)=0-sin 0=0,所以函数存在零点,排除选项D,故选B.答案 B3.已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图所示,则下列叙述正确的是()A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析 依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ). 答案 C4.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )A .(-∞,2)B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,52 D.⎝ ⎛⎦⎥⎤-∞,52 解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x 恒成立. 令g (x )=x +1x ,g ′(x )=1-1x 2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52. 答案 D5.(2017·上饶模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C.(-∞,-1) D.(-∞,+∞)解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增.又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.答案 B二、填空题6.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.解析因为f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间为(-2,2).答案(-2,2)7.已知函数f(x)=-12x2+4x-3ln x在区间[t,t+1]上不单调,则t的取值范围是________.解析由题意知f′(x)=-x+4-3x=-(x-1)(x-3)x,由f′(x)=0得函数f(x)的两个极值点为1和3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,由t<1<t+1或t<3<t+1,得0<t<1或2<t<3.答案(0,1)∪(2,3)8.(2017·武汉模拟)已知f(x)=2ln x+x2-5x+c在区间(m,m+1)上为递减函数,则m的取值范围为________.解析由f(x)=2ln x+x2-5x+c,得f′(x)=2x+2x-5,又函数f(x)在区间(m,m+1)上为递减函数,∴f′(x)≤0在(m,m+1)上恒成立,∴⎩⎪⎨⎪⎧2m +2m -5≤0,2m +1+2(m +1)-5≤0,解得12≤m ≤1.答案 ⎣⎢⎡⎦⎥⎤12,1三、解答题9.已知函数f (x )=ln x +ke x (k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间.解 (1)由题意得f ′(x )=1x -ln x -ke x ,又f ′(1)=1-ke =0,故k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x.设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x <0, 即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞). 10.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.解 (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1,解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),列表如下:所以f (x )的单调递增区间是⎝ ⎭⎪⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.(3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x , 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立,只要h (2)≥0,解得c ≥11, 所以c 的取值范围是[11,+∞).能力提升题组 (建议用时:20分钟)11.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析 依题意得,当x <1时,f ′(x )>0, 则f (x )在(-∞,1)上为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .答案 C12.(2016·全国Ⅰ卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0.在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13. 答案 C13.(2017·合肥质检)设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.解析 令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增.又g (-x )=f (-x )-x =-f (x )-x =f (x )x =g (x ),则g (x )是偶函数,g (-2)=0=g (2).则f (x )=xg (x )>0⇔⎩⎨⎧ x >0,g (x )>0或⎩⎨⎧x <0,g (x )<0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞). 答案 (-2,0)∪(2,+∞)14.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围. 解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数,∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立,∴x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞), ∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(1)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(1)

一、选择题1.已知1a e =,ln33b =,ln 44c =,则a 、b 、c 的大小关系为( )A .b c a <<B .c b a <<C .c a b <<D .a c b <<2.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<3.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( ) A .4B .26C .27D .64.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e5.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .6.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b <8.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点9.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .10.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>11.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f12.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+二、填空题13.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.14.已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a的最小值为______.15.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.16.已知函数()()()2ln f x x x x x a a R =+-∈,若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得()()f x xf x '>成立,则实数a 的取值范围是______________.17.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.18.已知函数()(0)x f x ae a =>与2()2(0)g x x m m =->的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为______________. 19.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为______. 20.函数()2sin f x x ax =-在0,2π⎡⎤⎢⎥⎣⎦上的单调递减,则实数a 的取值范围为______. 三、解答题21.已知函数()xf x e ax =-.(1)讨论()f x 的单调性;(2)当1a =-,若关于x 的不等式()f x mx ≥在()0,∞+上恒成立,求实数m 的取值范围.22.已知函数()21x f x ae x =-+. (1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数. 23.已知函数()()331f x x ax a R =--∈.(1)当1a =时,求函数()f x 的极大值; (2)讨论函数()f x 的单调性. 24.已知函数1()2ln 2f x x x x x=--+. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)设函数()'()g x f x =('()f x 为()f x 的导函数),若方程()g x a =在1,e⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,求实数a 的取值范围.25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 构造函数()ln xf x x=,利用导数分析函数()f x 在区间[),e +∞上的单调性,由此可得出a 、b 、c 的大小关系.【详解】 构造函数()ln x f x x =,则()21ln xf x x -'=, 当x e ≥时,()0f x '≤,所以,函数()f x 在区间[),e +∞上为减函数,34e <<,则()()()34>>f e f f ,即a b c >>.故选:B. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.2.B解析:B 【分析】构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.3.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立因为16x x +≥16x x =即x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.4.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象, 再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.5.A解析:A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.7.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围;【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax a a xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫<⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a ab -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.8.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误.【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误; 对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C.【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.9.B解析:B【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项.【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增,又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减,又0ac <,()00f c ∴=>,排除C 选项.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;(2)从函数的值域,判断图象的上下位置.(3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性;(5)函数的特征点,排除不合要求的图象.10.C解析:C【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可.【详解】构造函数'()(2)()(1)x x f x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增. 因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<, 所以642()()()753f f f >>,即c b a >>. 故选:C【点睛】 关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键. 11.A解析:A【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -. 故选:A .【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题. 12.A解析:A【分析】设()()2x x F x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x x F x e f x e =-,则[]()()()2()()2x x x x F x e f x e f x e e f x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦, 所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-, 故(3)2(2)2ef f e +<+.故选:A.【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.二、填空题13.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果.【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭,令22x e t x =,则4e t e ≤≤, 所以()12x f x 24t et =-()2224t e e =--, 所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦.故答案为:24,0e ⎡⎤-⎣⎦【点睛】 关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.14.【分析】不等式等价变形利用同构函数的单调性得解【详解】令∴在上单调递增∵∴∴恒成立令只需∴单调递增∴单调递减时的最大值为∴∴的最小值为故答案为:【点睛】不等式等价变形同构函数是解题关键 解析:3e【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()lnf x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=, ∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞, ∴[)3,1,x e x a ∈+∞,∴33x x eae x x a ⇔≤⇔≤恒成立, 令()3x x g x e =,只需max ()a g x ≥,()33xx g x e -'=, ∴1[,1),()0,()3x g x g x ∈'>单调递增, ∴(1,),()0,()x g x g x ∈+∞'<单调递减, 1x ∴=时,()g x 的最大值为3e,∴3a e ≥,∴a 的最小值为3e. 故答案为:3e 【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键.15.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22x f x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即 ()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根, 也即()2220x a x a ++++=有2个不相等的实根, 所以()()22420a a ∆=+-+>,即()()2240a a ++->,解得:2a >或2a <-,故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题. 16.【分析】求得导函数后代入不等式则可将不等式化为根据能成立的思想可得利用基本不等式可求得最小值进而得到结果【详解】即为整理得到即使得成立(当且仅当即时取等号)即实数的取值范围为故答案为:【点睛】本题考解析:)+∞ 【分析】 求得导函数后,代入不等式则可将不等式化为12a x x>+,根据能成立的思想可得min 12a x x ⎛⎫>+ ⎪⎝⎭,利用基本不等式可求得最小值,进而得到结果. 【详解】()()()2ln 12f x x x a x x a '=++-+-,()()f x xf x '∴>即为()()()222ln ln 2x x x x a x x x x x a x x a +->++-+-, 整理得到22210x ax -+<,即1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得221122x a x x x +>=+成立,12x x +≥=12x x =,即2x =时取等号),a ∴>,即实数a 的取值范围为)+∞.故答案为:)+∞. 【点睛】 本题考查利用导数解决能成立的问题,关键是能够通过分离变量的方式将问题转化为变量和函数最值之间大小关系的比较问题,进而通过求解函数最值得到结果.17.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0y t x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解.【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x --⎛⎫==-⋅ ⎪⎝⎭ 设0y t x =>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t '=-+-⋅=-+-, ()221110t g t t t t+''=--=-<恒成立, 所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增,当()1,t ∈+∞,()0g t '<,函数单调递减,所以()g t 在1t =时,取得最大值,()10g =,即10m<, 解得:0m <,故答案为:(),0-∞【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题. 18.【分析】设切点为根据已知得求出得构造函数求出的范围即可【详解】设切点为则整理得由解得由上可知令则因为所以在上单调递减所以即故答案为:【点睛】本题考查导数的几何意义利用导数求参数的范围考查计算求解能力 解析:280,a e ⎛⎫∈ ⎪⎝⎭【分析】设切点为()00,A x y ,根据已知得0000()(),()()f x g x f x g x ='=',求出02x >,得04x x a e =,构造函数4(),2x x h x x e =>,求出()h x 的范围即可. 【详解】 设切点为()00,A x y ,(),()4xf x aeg x x '='= 则0020024x x ae x m ae x ⎧=-⎪⎨=⎪⎩,整理得20004200x x m x m ⎧=-⎪>⎨⎪>⎩, 由200240m x x =->,解得02x >. 由上可知004x x a e =,令4()xx h x e =,则4(1)()x x h x e -'=. 因为2x >,所以4(1)4()0,()x x x x h x h x e e -'=<=在(2,)+∞上单调递减, 所以280()h x e <<,即280,a e ⎛⎫∈ ⎪⎝⎭. 故答案为:280,e ⎛⎫ ⎪⎝⎭. 【点睛】本题考查导数的几何意义、利用导数求参数的范围,考查计算求解能力,属于中档题. 19.【分析】求函数的导数根据利用参数分离法进行转化然后构造函数转化为求函数的最值即可【详解】解:函数的导数由在上恒成立得在上恒成立即得在上恒成立设则当时恒成立即在上是增函数则当时取得最小值则即实数的取值 解析:(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【详解】 解:函数的导数2()21f a x x x '=+-, 由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立, 即221a x x +, 得322x x a +在1x 上恒成立,设32()2g x x x =+,则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数,则当1x =时,()g x 取得最小值()1213g =+=,则3a ,即实数a 的取值范围是(],3-∞,故答案为:(],3-∞【点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.20.【分析】首先求出函数的导数依题意可得在上恒成立参变分离根据余弦函数的性质求出参数的取值范围;【详解】解:因为所以因为函数在上的单调递减所以在上恒成立即在上恒成立因为在上单调递减所以所以即故答案为:【 解析:[2,)+∞【分析】首先求出函数的导数,依题意可得()2cos 0f x x a '=-≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立,参变分离,根据余弦函数的性质求出参数的取值范围;【详解】解:因为()2sin f x x ax =-,0,2x π⎡⎤∈⎢⎥⎣⎦, 所以()2cos f x x a '=-,因为函数()2sin f x x ax =-在0,2π⎡⎤⎢⎥⎣⎦上的单调递减, 所以()2cos 0f x x a '=-≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立, 即2cos a x ≥在0,2x π⎡⎤∈⎢⎥⎣⎦上恒成立,因为()2cos g x x =在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()max 02cos02g x g === 所以2a ≥,即[)2,a ∈+∞故答案为:[)2,+∞【点睛】 本题考查根据函数的单调性求参数的取值范围,利用导数研究函数的单调性,属于中档题.三、解答题21.(1)答案见解析;(2)(],1e -∞+.【分析】(1)求得()xf x e a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调性;(2)利用参变量分离法得出1xe m x≤+在()0,∞+上恒成立,利用导数求出函数()1xe g x x=+在()0,∞+上的最小值,由此可求得实数m 的取值范围. 【详解】解:(1)()x f x e ax =-,()x f x e a '∴=-.当0a ≤时,则()0f x '>在(),-∞+∞上恒成立,所以()f x 在(),-∞+∞上单调递增; 当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递增;当0a >时,函数()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)由题意知xe x mx +≥在()0,∞+上恒成立,即1xe m x ≤+恒成立, 令()1x e g x x =+,其中0x >,则()()21x x e g x x -'=. 当01x <<时,则()0g x '<;当1x >时,则()0g x '>.所以()g x 在()0,1上单调递减,在()1,+∞上单调递增,则()()min 11g x g e ==+. 所以实数m 的取值范围为(],1e -∞+.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.22.(1)答案见解析;(2)答案见解析.【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数. 【详解】解:(1)函数()f x 的定义域为R ,()2x f x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减;②当0a >时,令()0f x '=得2lnx a =. 若2,ln x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln ,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>; 所以()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21x g x ae x x x =+-+ 设函数()1()ln 2x g x ae h x x x x x==++- ()2221(1)(1)11()x x ae x ae x h x x x x x +--'=+-= 因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减.当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增.所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-. 若1a e =时,(1)0h =,所以函数()h x 只有1个零点; 若1a e >时,()(1)0h x h ≥>,所以函数()h x 无零点;若10a e <<时,(1)0h <,()222222240e e h e a e e e ---=-+->->, ()22221220e e h e a e e=++->,故()2(1)0h h e -<,()2(1)0h h e <; 所以函数()h x 在()21,e -和()21,e 各有一个零点,所以函数()h x 有两个零点. 综上所述,当1a e =时,函数()g x 只有1个零点;当1a e >时,函数()g x 无零点; 当10a e<<时,函数()g x 有两个零点 【点睛】 方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()a g x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.23.(1)极大值为1;(2)答案见解析.【分析】(1)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极大值;(2)求得()233f x x a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调区间.【详解】(1)当1a =时,()331f x x x =--,该函数的定义域为R ,且233f x x , 令()0f x '>,得1x <-或1x >;令()0f x '<,得11x -<<,()f x ∴在(),1-∞-,()1,+∞上递增,在()1,1-上递减,故()f x 的极大值为()11f -=;(2)()()22333f x x a x a '=-=-. ①当0a ≤时,()0f x '≥在R 上恒成立,()f x ∴在R 上单调递增;②当0a >时,令()0f x '>,得x <x >令()0f x '<,得x <所以,函数()f x 在(,-∞,)+∞上单调递增,在(上单调递减. 【点睛】 方法点睛:利用导数求解函数单调区间的基本步骤:(1)求函数()f x 的定义域;(2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.24.(1)220x y --=;(2)2(2,1]e -.【分析】(1)求出()'f x ,计算(1)f '得切线斜率,从而得切线议程;(2)对()g x 求导,确定()g x 的单调性,极值,得()g x 的变化趋势,从而可得结论.【详解】(1)由已知2211()2ln 212ln 1f x x x x x'=+-+=++, 所以(1)2f '=,又(1)0f =,所以切线议程为2(1)y x =-,即220x y --=;(2)由(1)21()2ln 1g x x x=++,定义域为(0,)+∞,33222(1)(1)()x x g x x x x -+'=-=, 所以在(0,1)x ∈时,()0g x '<,()g x 递减,(1,)x ∈+∞时,()0g x '>,()g x 递增, 所以1x =时,()g x 取得极小值也是最小值(1)2g =,211g e e ⎛⎫=- ⎪⎝⎭,x →+∞时,()g x →+∞, 所以方程()g x a =在1,e ⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,则实数a 的取值范围是2(2,1]e -. 【点睛】方法点睛:本题考查导数的几何意义,考查用导数研究方程根的分布.根据方程根的个数求参数范围问题,一般方法是数形结合思想,把问题转化为函数图象与直线的交点问题,可利用导数研究出函数的性质,如单调性,极值,确定函数的变化趋势,然后利用函数的图象得出参数范围.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞.【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可.【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+,()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值.(2)由2ln a x x x x x -->-,得2ln a x x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--, 令()23ln 1h x x x =--,则()21616x h x x x x -'=-=, 由1x >,知2610x ->,即()0h x '>, 所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=,由()a g x <在()1,+∞上恒成立,所以1a ≤.【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.26.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解.(2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-, 所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

北师大版高三理科数学课后习题(含答案)单元质检卷三导数及其应用

北师大版高三理科数学课后习题(含答案)单元质检卷三导数及其应用

单元质检卷三导数及其应用(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2019山东聊城三模,5)函数f(x)=-2x+ln x的图像在x=1处的切线方程为( )A.2x+y-1=0B.2x-y+1=0C.x-y+1=0D.x+y+1=0x=1时,f(1)=-2+0=-2,所以切点为(1,-2),由题得f'(x)=-2+1x,∴k=f'(1)=-2+11=-1,所以切线方程为y+2=-1·(x-1),即x+y+1=0.故选A.2.函数f(x)=x2+x-ln x的零点的个数是()A.0B.1C.2D.3f'(x)=2x+1-1x =2x2+x-1x=0,得x=12或x=-1(舍去).当0<x<12时,f'(x)<0,f(x)递减;当x>12时,f'(x)>0,f(x)递增.则f(x)的最小值为f(12)=34+ln 2>0,所以f(x)无零点.3.函数f(x)=x2-1e x的图像大致为()解析函数f(x)=不是偶函数,可以排除C,D,=0,得极值点为x1=1-√2,x2=1+√2,所以排除又令f'(x)=-x2+2x+1e xB,选A.x3+(a+1)x2-(a2+a-3)x 4.(2019辽宁丹东质检)若x=1是函数f(x)=13的极值点,则a的值为()A.-2B.3C.-2或3D.-3或2x3+(a+1)x2-(a2+a-3)x,得f'(x)=x2+2(a+1)x-(a2+a-3), f(x)=13由题意可知f'(1)=0,即1+2(a+1)-(a2+a-3)=0,得a=3或a=-2, 当a=3时,f'(x)=x2+2(a+1)x-(a2+a-3)=x2+8x-9=(x+9)(x-1),当x>1或x<-9时,f'(x)>0,函数递增;当-9<x<1时,f'(x)<0,函数递减,显然x=1是函数f(x)的极值点;当a=-2时,f'(x )=x 2+2(a+1)x-(a 2+a-3)=x 2-2x+1=(x-1)2≥0, 所以函数f(x)是R 上的增函数,没有极值,不切合题意,舍去.故a=3.故选B.5.(2019广东揭阳二模,10)以下四个数中,最大的是( ) A.ln √33B .1eC .lnππD .√15ln1530f (x )=lnxx,则ln √33=f (3),1e=f (e),lnππ=f (π),√15ln1530=f (√由f'(x )=1-lnx x 2知函数f (x )在(0,e)上递增,在(e,+∞)上递减,所以当x=e 时,f (x )有最大值.故选B .6.(2019河北石家庄模仿二,10)已知当m,n∈[-1,1]时,sin-sin<n3-m3,则以下判断正确的是( ) A.m>n B.|m|<|n| C.m<nD.m 与n 的大小关系不确定剖析由题意,设f(x)=x3+sin,则f'(x)=3x2+cos,当x ∈[-1,1]时,f'(x )>0,f (x )单调递增,又由m 3+sin πm2<n 3+sin πn2,所以f (m )<f (n ),即m<n.故选C .7.“a ≤-1”是“函数f (x )=ln x+ax+1x 在[1,+∞)上为单调函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(x )=1x+a-1x2=ax 2+x -1x 2,∴ax 2+x-1≥0对x ∈[1,+∞)恒成立,或ax 2+x-1≤0对x ∈[1,+∞)恒成立,a ≥(1-x x2)max或a ≤(1-xx2)min,记g (x )=1-xx 2,则g'(x )=-x 2-2x (1-x )x 4=x (x -2)x 4,则递减区间为[1,2],递增区间为[2,+∞), 当x>1时,g (x )<0, ∴(1-xx 2)max=g (1)=0,(1-xx2)min=g (2)=-14,∴a ≥0或a ≤-14.故选A .8.(2019安徽皖南八校联考三,12)已知函数f(x)=当x∈[m,+∞)时,f(x)的取值范围为(-∞,e+2],则实数m 的取值范围是( ) A.-∞,1-e 2B.(-∞,1]C.1-e 2,1D.[ln 2,1]解析当x≥ln 2时,f'(x)=-(x-1)(ex-2),令f'(x)>0,则ln2<x<1;f'(x)<0,则x>1,∴函数f(x)在(ln 2,1)上是增长的,在(1,+∞)上是淘汰的.∴函数f(x)在x=1处取得极大值为f(1)=e+2,在x=ln 2处取得极小值为f(ln 2)=3+(ln 2-2)2,当x<ln 2时,f(x)=3-2x≤e+2,∴x,综上所述,m的取值范畴为,1.9.(2019四川内江一模,12)设函数f(x)在R上存在导数f'(x),对任意的x∈R,有f(-x)-f(x)=0,且x∈[0,+∞)时,f'(x)>2x.若f(a-2)-f(a)≥4-4a,则实数a的取值范围为( )A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)G(x)=f(x)-x2,则G'(x)=f'(x)-2x,x∈(0,+∞)时,G'(x)=f'(x)-2x>0,G(-x)=f(-x)-(-x)2=f(x)-x2=G(x),∴G(x)为偶函数,∴G(x)在[0,+∞)上是增长的,在(-∞,0)上是淘汰的.所以f(a-2)-f(a)≥4-4a,可得f(a-2)-4+4a-a2≥f(a)-a2,∴f(2-a)-(a-2)2≥f(a)-a2,即G(a-2)≥G(a),∴|a-2|≥|a|,∴a ≤1.故实数a 的取值范围为(-∞,1].10.(2019河南郑州三模,12)设函数f(x)在R 上存在导函数f'(x),任意x∈R,有f(x)-f(-x)=x3,在(0,+∞)上有2f'(x)-3x2>0,若f(m-2)-f(m)≥-3m2+6m-4,则实数m 的取值范围为( ) A.[-1,1]B.(-∞,1]C.[1,+∞)D.(-∞,-1]∪[1,+∞)g (x )=f (x )-12x 3,∴g (x )-g (-x )=f (x )-12x 3-f (-x )-12x 3=0, ∴函数g (x )为偶函数,∵x ∈(0,+∞)时,g'(x )=f'(x )-32x 2>0,∴函数g(x)在(0,+∞)上是增长的, ∴函数g(x)在(-∞,0)上是淘汰的,∴f (m-2)-f (m )=g (m-2)+12(m-2)3-g (m )-12m 3=g (m-2)-g (m )-3m 2+6m-4≥-3m 2+6m-4,∴g(m-2)≥g(m),∴|m-2|≥|m|,解得m≤1,∴实数m的取值范围为(-∞,1].11.(2019安徽合肥市一模,12)已知函数f(x)=ax2-2x+ln x有两个不同的极值点x1,x2,若不等式λ>f(x1)+f(x2)恒成立,则实数λ的取值范围是( )A.[-3,+∞)B.(3,+∞)C.[-e,+∞)D.(e,+∞)f(x)=2ax-2+1x =2ax2-2x+1x,结合x>0,令h(x)=2ax2-2x+1,要使得f(x)存在两个不同的极值点x1,x2,则要求h(x)=0有两个差别的根,且x1+x2=>0,x1x2=>0,则Δ=4-8a>0,解得0<a<,而f(x1)+f(x2)=a-2x1+ln x1+a-2x2+ln x2=a(x1+x2)2-2ax1x2-2(x1+x2)-lnx1x2=--ln 2a-1,构造新函数g(a)=--ln 2a-1,计算导数得到g'(a)=,结合前面提到的a的范围可知g(a)在0,单调递增,故g(a)<g=-3,因而λ≥-3.故选A.12.(2019山西晋城二模,12)已知函数f(x)=x2-3x+5,g(x)=ax-ln x,若对任意x∈(0,e),存在x1,x2∈(0,e)且x1≠x2,使得f(x)=g(xi)(i=1,2),则实数a的取值范围是( )A .(1e,6e )B.1e,e 74C.0,1e∪6e,e 74 D.6e,e 74f (x )=x 2-3x+5,x ∈(0,e),∴f (x )min =f (32)=114,f (x )<f (0)=5.当x ∈(0,e)时,函数f (x )的值域为114,5.由g'(x )=a-1x =ax -1x可知:当a≤0时,g'(x)<0,与题意不符,故a>0. 令g'(x )=0,得x=1a,则1a ∈(0,e),所以g(x)min=g=1+ln a,作出函数g(x)在(0,e)上的大抵图像如图所示,观察可知解得6e ≤a<e 74.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019广东适应性考试)已知函数f (x )=a e x +b (a ,b ∈R )在点(0,f (0))处的切线方程为y=2x+1,则a-b= .f(x)=a e x+b,得f'(x)=a e x,因为函数f(x)在点(0,f(0))处的切线方程是y=2x+1,所以{f(0)=1=a+b,f'(0)=2=a,解得{a=2,b=-1,所以a-b=3.14.(2019天津南开模拟)已知函数f(x)=ex--2cos-x,其中e为自然对数的底数,若f(2a2)+f(a-3)+f(0)<0,则实数a的取值范围为.答案-32,1解析∵f(x)=e x-1e x -2cosπ2-x=e x-1e x-2sin x,∴f(-x)=e-x-1e-x -2sin(-x)=-e x-1e x-2sin x=-f(x),f(x)是奇函数,且f(0)=0,又∵f'(x)=e x+1e x -2cos x,e x+1e x≥2,2cos x≤2,∴f'(x)≥0,∴f(x)在(-∞,+∞)上递增,∴f(2a2)+f(a-3)+f(0)<0,化为f(2a2)<-f(a-3)=f(3-a),∴2a2<3-a⇒-32<a<1.15.(2019河北武邑中学期末,16)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是.-6,-2]ax 3-x 2+4x+3≥0变形为ax 3≥x 2-4x-3.当x=0时,0≥-3,故实数a 的取值范围是R . 当x ∈(0,1]时,a ≥x 2-4x -3x 3,记f (x )=x 2-4x -3x 3,f'(x )=-x 2+8x+9x 4=-(x -9)(x+1)x 4>0,故函数f (x )递增,则f (x )max =f (1)=-6,故a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,记f (x )=x 2-4x -3x 3,令f'(x )=0,得x=-1或x=9(舍去),当x ∈(-2,-1)时,f'(x )<0;当x ∈(-1,0)时,f'(x )>0, 故f (x )min =f (-1)=-2,则a ≤-2. 故实数a 的取值范围是[-6,-2].16.设边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,此中一块是梯形,记S=,则S 的最小值是 .剖析如图所示,设AD=x m(0<x<1),则DE=AD=x m,∴梯形的周长为x+2(1-x )+1=(3-x )(m),又S △ADE =√34x 2 m 2,∴梯形的面积为√34−√34x 2m 2,∴S=4√33×x 2-6x+91-x 2(0<x<1),∴S'=-8√33×(3x -1)(x -3)(1-x 2).令S'=0,得x=13或x=3(舍去).当x ∈0,13时,S'<0,S 递减;当x ∈13,1时,S'>0,S 递增.故当x=13时,S 的最小值是32√33.三、解答题(本大题共5小题,共70分)17.(14分)(2019河北衡水第一中学调研)已知函数f (x )=e x +ax-a (a ∈R ,且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f(x)不存在零点,求实数a 的取值范畴.由题意知,函数f (x )的定义域为R ,又f (0)=1-a=2,得a=-1,f(x)=ex-x+1,求导得f'(x)=ex-1.知f(x)在[-2,0]上是淘汰的,在[0,1]上是增长的,所以当x=0时,f (x )在[-2,1]上取得最小值2. (2)由(1)知f'(x )=e x +a ,由于e x >0,①当a>0时,f'(x)>0,f(x)在R 上是增函数,当x>1时,f(x)=ex+a(x-1)>0;当x<0时,取x=-,则f-<1+a--1=-a<0.所以函数f(x)存在零点,不满意题意.②当a<0时,令f'(x )=0,得x=ln(-a ).在(-∞,ln(-a ))上,f'(x )<0,f (x )递减, 在(ln(-a ),+∞)上,f'(x )>0,f (x )递增, 所以当x=ln(-a )时,f (x )取最小值.函数f(x)不存在零点,等价于f(ln(-a))=+aln(-a)-a=-2a+aln(-a)>0,解得-e2<a<0.综上所述,所求实数a 的取值范围是(-e 2,0).18.(14分)(2019湖南六校联考,21)已知f(x-1)=2ln(x-1)-+k(x>1).(1)判断当-1≤k ≤0时f (x )的单调性;(2)若x1,x2(x1≠x2)为f(x)两个极值点,求证:x[f(x1)+f(x2)]≥(x+1)[f(x)+2-2x].f (x-1)=2ln(x-1)+k (x -1)x(x>1),所以f (x )=2ln x+kx x+1(x>0). f'(x )=2x +k (x+1)2=2x 2+(4+k )x+2x (x+1)2,当-1≤k ≤0时,Δ=(4+k )2-16=k (k+8)≤0,2x 2+(4+k )x+2>0恒成立. 于是,f(x)在定义域上为单调增函数.f'(x )=2x +k (x+1)2=2x 2+(4+k )x+2x (x+1)2,由题设知,f'(x )=0有两个不相等的正实数根x 1,x 2,则{x 1+x 2=-4+k 2>0,x 1x 2=1>0,Δ=(4+k )2-16>0,得k<-8,而f (x 1)+f (x 2)=2ln x 1+kx 1x 1+1+2ln x 2+kx 2x 2+1=2ln(x 1x 2)+kx 1x 1+1+x 2x 2+1=2ln(x 1x 2)+k ·2x 1x 2+x 1+x 2x 1x 2+x 1+x 2+1=k ,又(x+1)[f (x )-2lnx ]x=k ,故欲证原不等式等价于证明不等式(x+1)[f (x )-2lnx ]x≥x+1x[f (x )-2(x-1)],也就是要证明:对任意x>0,有ln x ≤x-1.令g (x )=ln x-x+1(x>0),由于g (1)=0,并且g'(x )=1x -1,当x>1时,g'(x )<0,则g (x )在(1,+∞)上为减函数; 当0<x<1时,g'(x)>0,则g(x)在(0,1)上为增函数. 则g(x)在(0,+∞)上有最大值g(1)=0,即g(x)≤0,故原不等式建立.19.(14分)(2019浙江,22)已知实数a ≠0,设函数f (x )=a ln x+√1+x ,x>0.(1)当a=-34时,求函数f (x )的单调区间;(2)对任意x∈,+∞均有f(x),求a 的取值范畴. 注:e=2.718 28…为自然对数的底数.当a=-34时,f (x )=-34ln x+√1+x ,x>0.f'(x )=-34x+1√=(√1+x -2)(2√1+x+1)√,所以,函数f (x )的递减区间为(0,3),递增区间为(3,+∞). (2)由f (1)≤12a ,得0<a ≤√24.当0<a ≤√24时,f (x )≤√x2a等价于√x a2−2√1+x a-2ln x ≥0.令t=1a,则t ≥2√2.设g (t )=t 2√x -2t √1+x -2ln x ,t ≥2√2,则 g (t )=√x t-√1+1x 2-1+x√-2ln x.①当x ∈17,+∞时,√1+1x ≤2√2,则g (t )≥g (2√2)=8√x -4√2√1+x -2ln x. 记p (x )=4√x -2√2√1+x -ln x ,x ≥17,则p'(x )=2√−√2√−1x=2√x √x+1-√2x -√x+1√ =√√√√√√故17,11 )- 0)p 17单调递减所以,p (x )≥(1)=0.因此,g (t )≥g (2√2)=2p (x )≥0.②当x ∈1e2,17时,g(t)≥g√1+1x =-2√xlnx-(x+1)√.令q(x)=2√x ln x+(x+1),x∈1e2,17,则q'(x)=lnx+2√+1>0,故q(x)在上是增长的,所以q(x)≤q17.由①得,q17=-2√77p17<-2√77p(1)=0.所以,q(x)<0.因此,g(t)≥g√1+1x =-q(x)√>0.由①②知,对任意x∈1e2,+∞,t∈[2√2,+∞),g(t)≥0,即对任意x∈1e2,+∞,均有f(x)≤√x2a.综上所述,所求a的取值范围是0,√24.20.(14分)(2019山东青岛二模,21)已知函数f(x)=(x2+a)ekx,e=2.718…为自然对数的底数.(1)若k=-1,a∈R,判断函数f(x)在(0,+∞)上的单调性;(2)令a=0,k=1,若0<m≤2e,求证:方程f(x)-m(x+1)ln x=0无实根.由已知k=-1,所以f(x)=(x2+a)e-x=x2+ae x,所以f'(x)=x2+ae x '=2xe x-(x2+a)e xe2x=-x2+2x-ae x.①若a≥1,则在R上恒有u(x)=-(x-1)2+1-a≤0,所以f'(x)=0,所以f(x)在(0,+∞)上是淘汰的.②若a<1,则u(x)=-(x-1)2+1-a图像与x轴有两个差别交点.设u(x)=-(x-1)2+1-a=0的两根分别为x1=1-√1-a,x2=1+√1-a.(i)若0<a<1,0<x1<1,x2>1,所以当0<x<x1时,u(x)<0;当x1<x<x2时,u(x)≥0;当x>x2时,u(x)<0.所以,此时f(x)在(0,x1)上和(x2,+∞)上是淘汰的,在(x1,x2)上是增长的.(ii)若a≤0,x1=1-√1-a≤0,x2=1+√1-a≥2.所以,x∈(0,x2)上总有u(x)>0;在当x>x2上,u(x)<0.所以此时f(x)在(0,x2)上是增长的,在(x2,+∞)上是淘汰的.综上:若a≥1,f(x)在(0,+∞)上是减少的;若0<a<1,f(x)在(0,x1)上和(x2,+∞)上是减少的;在(x1,x2)上是增加的;若a≤0,f(x)在(0,x2)上是增长的,在(x2,+∞)上是淘汰的.(2)由题知a=0,k=1,所以f(x)=x2e x,令g(x)=e x-(x+1),对任意实数x>0,g'(x)=e x-1>0恒成立,所以g(x)=e x-(x+1)>g(0)=0,即e x>x+1>0.则x2e x-m(x+1)ln x>x2(x+1)-m(x+1)ln x=(x+1)(x2-m ln x).令h(x)=x2-m ln x,所以h'(x)=(x2-m ln x)'=2x-mx =2x2-mx.因为0<m≤2e,所以h'(x)=(x2-m ln x)'=2x-mx =2x2-mx=2(x+√m2)(x-√m2)x.所以当x∈0,√m2时,h'(x)<0,h'√m2=0;当x∈√m2,+∞时,h'(x)>0.所以h(x)=x2-mln x在(0,+∞)上有最小值.所以h√m2=m2-m ln√m2=m21-ln m2.因为0<m2≤e,所以ln m2<1,所以1-ln m2>0,所以m21-ln m2>0,即当0<m≤2e时,对任意x>0,h(x)=x2-m ln x>0.所以x2e x-m(x+1)ln x>0.所以方程f(x)-m(x+1)ln x=0无实根.21.(14分)(2019山东济宁二模,21)已知函数f(x)=x-a(ln x)2,a∈R.(1)当a=1,x>1时,试比较f(x)与1的大小,并说明理由;(2)若f(x)有极大值,求实数a的取值范围;(3)若f(x)在x=x0处有极大值,证明1<f(x0)<当a=1,x>1时,f(x)=x-(ln x)2,x>1.f'(x)=1-2(ln x)×1x =x-2lnxx.令g(x)=x-2ln x,x>1,则g'(x)=1-2x =x-2x.当x∈(1,2)时,g'(x)<0,g(x)递减,当x∈(2,+∞)时,g'(x)>0,g(x)递增.∴g(x)≥g(2)=2-2ln 2>0,即f'(x)>0,∴f(x)在(1,+∞)上是增长的.∴f(x)>f(1)=1.故当a=1,x>1时,f(x)>1.(2)f'(x)=1-2alnxx =x-2alnxx(x>0),令h(x)=x-2a ln x(x>0),则h'(x)=1-2ax =x-2ax.①当a=0时,f(x)=x无极大值.②当a<0时,h'(x)>0,h(x)在(0,+∞)上是增长的, h(1)=1>0,h(e12a)=e12a-1<0,存在x1∈(e12a,1),使得h(x1)=0.∴当x∈(0,x1)时,f'(x)<0,f(x)递减,当x∈(x1,+∞)时,f'(x)>0,f(x)递增,∴f(x)在x=x1处有极小值,f(x)无极大值.③当a>0时,h(x)在(0,2a)上是淘汰的,在(2a,+∞)上是增长的,∵f(x)有极大值,∴h(2a)=2a-2a ln(2a)=2a(1-ln 2a)<0,即a>e2,又h(1)=1>0,h(e)=e-2a<0,∴存在x0∈(1,e),使得h(x0)=x0-2a ln x0=0,即a ln x0=x02,∴当x∈(0,x0)时,f'(x)>0,f(x)递增,当x∈(x0,e)时,f'(x)<0,f(x)递减,∴f(x)有极大值.综上所述,a>e2.(3)由(2)可知,a ln x0=x02,∴f(x0)=x0-a(ln x0)2=x0-x0ln x02(1<x0<e),设p(x)=x-xlnx2(1<x<e),则p'(x)=1-1+lnx2=1-lnx2>0,∴p(x)在(1,e)上是增长的,∴p(1)<p(x)<p(e),即1<p(x)<,故1<f(x0)<。

2018届北师大版 导数及其应用 检测卷

2018届北师大版   导数及其应用     检测卷

分类汇编导数及其应用2017.02一、选择、填空题1、(赣州市2017届高三上学期期末考试)设函数'()f x 是函数()()f x x R ∈的导函数,(0)1f =,且1()'()13f x f x =-,则4()'()f x f x >的解集为( )A .ln 4(,)3+∞ B .ln 2(,)3+∞ C. )+∞ D .)+∞2、(上饶市2017届高三第一次模拟考试)已知()f x 是定义域为(0,)+∞的单调函数,若对任意的(0,)x ∈+∞,都有13()log 4f f x x ⎡⎤+=⎢⎥⎣⎦,且方程32|()3|694f x x x x a-=-+-+在区间[]0,3上有两解,则实数a 的取值范围是( ) A .05a <≤B .5a <C .05a <<D .5a ≥3、(江西省师大附中、临川一中2017届高三1月联考)已知()332f x x x m =-++()0m >,在区间[]0,2上存在三个不同的实数,,a b c ,使得以()()(),,f a f b f c 为边长的三角形是直角三角形,则m 的取值范围是 ( )A. 4m >+02m <<+C. 44m -<<+D. 04m <<+ 4、(新余市2017高三上学期期末考试)曲线2'(1)1()(0)2x f f x e f x x e =-+在点(1,(1))f 处的切线方程为 。

5、(南昌市八一中学2017届高三2月测试)已知定义在R 上的函数)(x f 和)(x g 分别满足222'(1)()2(0)2x f f x e x f x -=⋅+-⋅, 0)(2)('<+x g x g ,则下列不等式成立的是( ) A.(2)(2015)(2017)f g g ⋅< B.(2)(2015)(2017)f g g ⋅> C.(2015)(2)(2017)g f g <⋅D.(2015)(2)(2017)g f g >⋅二、解答题 1、(红色七校2017届高三第二次联考)已知函数f (x )=a x +x 2﹣xln a (a >0,a ≠1).(1)求函数f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.2、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))已知()()2ln 1f x a x bx =++存在两个极值点12 x x ,. (1)求证:122x x +>;(2)若实数λ满足等式()()120f x f x a b λ+++=,试求λ的取值范围.3、(赣中南五校2017届高三下学期第一次联考)设函数()1,xf x e ax =--对(),0x R f x ∀∈≥恒成立.(1)求a 的取值集合; (2)求证:()()1111ln 1.23n n N n*++++>+∈ .4、(赣州市2017届高三上学期期末考试)已知函数()ln 2,f x x ax a R =-∈. (1)若函数()y f x =存在与直线20x y -=平行的切线,求实数a 的取值范围; (2)设21()()2g x f x x =+,若()g x 有极大值点1x ,求证:1212ln 1x a x x +>.5、(上饶市2017届高三第一次模拟考试)已知函数()ln f x x mx =+(m 为常数). (1)讨论函数()f x 的单调区间;(2)当m ≤时,设21()()2g x f x x =+的两个极值点1x ,2x (12x x <)恰为2()2ln h x x ax x =--的零点,求1212()'()2x x y x x h +=-的最小值.6、(江西省师大附中、临川一中2017届高三1月联考)已知函数()212f x x =,()ln g x a x =.(1)若曲线()()y f x g x =-在1x =处的切线的方程为6250x y --=,求实数a 的值; (2)设()()()h x f x g x =+,若对任意两个不等的正数12x x ,,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;(3)若在[]1,e 上存在一点0x ,使得()()()()00001f x g x g x f x ''+<-'成立,求实数a 的取值范围.7、(新余市2017高三上学期期末考试)已知函数()()sin 3,cos f x x mx g x mx x mx =-=-.(1)讨论()f x 在区间[]0,π上的单调性;(2)若对任意0x ≥,都有()()f x g x ≤,求实数m 的取值范围.8、(江西省重点中学协作体2017届高三下学期第一次联考)若,x D ∀∈总有()()(),f x F x g x <<则称()F x 为()f x 与()g x 在D 上的一个“严格分界函数”.(1)求证:xy e =是1y x =+和212x y x =++在(1,0)-上的一个“严格分界函数”;(2)函数1(2)21x h x e x +=-+,若存在最大整数M 使得()10M h x >在(1,0)x ∈-恒成立,求M 的值.(2,718e =131.414,2 1.260≈≈)9、(江西师范大学附属中学2017届高三12月月考)已知函数()ln (,f x a x bx a b R =+∈),211()() (0)2g x x m x m m=-+>,且()y f x =在点(1,(1))f 处的切线方程为10x y --=. (Ⅰ)求,a b 的值;(Ⅱ)若函数()()()h x f x g x =+在区间(0,2)内有且仅有一个极值点,求m 的取值范围; (Ⅲ)设1(,) ()M x y x m m>+为两曲线() ()y f x c c R =+∈,()y g x =的交点,且两曲线在交点M 处的切线分别为12,l l .若取1m =,试判断当直线12,l l 与x 轴围成等腰三角形时c 值的个数并说明理由.10、(南昌市八一中学2017届高三2月测试)已知函数2()ln (,,1)x f x a x x a b a b R a =+--∈>,e 是自然对数的底数.(1)当,4a e b ==时,求整数k 的值,使得函数()f x 在区间(,1)k k +上存在零点; (2)若存在12,[1,1],x x ∈-使得12|()()|1f x f x e -≥-,试求a 的取值范围.11、(九江市十校2017届高三第一次联考)已知函数()()ln af x x a R x=+∈. (1)判断函数)(x f 在区间[),2+∞-e 上的零点个数; (2)若函数)(x f 在1x =处的切线平行于直线20x y -=.且在[]()1, 2.71828...e e =上存在一点0x ,使得()0001x mf x x +<成立.求实数m参考答案一、选择、填空题1、B 提示:观察3()()3f x f x '=-,由已知可设函数3()2e 1xf x =-.2、A3、D4、y =21-ex 5、D二、解答题1、解:(1)∵f (x )=a x +x 2﹣xlna , ∴f ′(x )=a x lna +2x ﹣lna ,∴f ′(0)=0,f (0)=1即函数f (x )图象在点(0,1)处的切线斜率为0, ∴图象在点(0,f (0))处的切线方程为y=1; (2)由于f'(x )=a x lna +2x ﹣lna=2x +(a x ﹣1)lna①当a >1,y=2x 单调递增,lna >0,所以y=(a x ﹣1)lna 单调递增,故y=2x +(a x ﹣1)lna 单调递增,∴2x +(a x ﹣1)lna >2×0+(a 0﹣1)lna=0,即f'(x )>f'(0),所以x >0故函数f (x )在(0,+∞)上单调递增;②当0<a <1,y=2x 单调递增,lna <0,所以y=(a x ﹣1)lna 单调递增,故y=2x +(a x ﹣1)lna 单调递增,∴2x +(a x ﹣1)lna >2×0+(a 0﹣1)lna=0,即f'(x )>f'(0),所以x >0故函数f (x )在(0,+∞)上单调递增; 综上,函数f (x )单调增区间(0,+∞);(3)因为存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1, 所以当x ∈[﹣1,1]时,|(f (x ))max ﹣(f (x ))min |=(f (x ))max ﹣(f (x ))min ≥e ﹣1,由(2)知,f (x )在[﹣1,0]上递减,在[0,1]上递增, 所以当x ∈[﹣1,1]时,(f (x ))min =f (0)=1,(f (x ))max =max {f (﹣1),f (1)},而f (1)﹣f (﹣1)=(a +1﹣lna )﹣(+1+lna )=a ﹣﹣2lna ,记g (t )=t ﹣﹣2lnt (t >0),因为g ′(t )=1+﹣=(﹣1)2≥0(当t=1时取等号),所以g (t )=t ﹣﹣2lnt 在t ∈(0,+∞)上单调递增,而g (1)=0, 所以当t >1时,g (t )>0;当0<t <1时,g (t )<0,也就是当a >1时,f (1)>f (﹣1); 当0<a <1时,f (1)<f (﹣1)①当a >1时,由f (1)﹣f (0)≥e ﹣1⇒a ﹣lna ≥e ﹣1⇒a ≥e ,②当0<a <1时,由f (﹣1)﹣f (0)≥e ﹣1⇒+lna ≥e ﹣1⇒0<a ≤,综上知,所求a 的取值范围为a ∈(0,]∪[e ,+∞).2、.解:(1)∵()22222'11ax bx ax bf x b x x ++=+=++, ∴结合题意,12 x x ,为一元二次方程220bx ax b ++=的两根,…………………………2分 于是,22440a b ∆=->且0b ≠,可得:211a a b b ⎛⎫>⇒> ⎪⎝⎭,∴12122 22a a x x x x b b+=-+=>,.………………………………5分 (2)由(1)可得121x x =,∵()()()()22121122ln 1ln 1f x f x a a x bx a x bx a ++=++++++()()2222121212ln 1a x x x x b x x a ⎡⎤=++++++⎣⎦()21212ln 121a x x x x a ⎡⎤=++-+-⎣⎦212122ln 2ln 2lnaa x x a a x x a a a b=+-=+-=-, ∴由()()120f x f x a b λ+++=得22ln0aa ab bλ-+=,整理可得 22lna a ab b bλ=-,……………………………………7分 令,1ln 2t t t λ=-.设函数()1ln 221ln 22x x x x y x x x x ⎧->⎪⎪=⎨⎪--<-⎪⎩,,,求导得:()1ln 22'1ln 22x x x y x x ⎧-->⎪⎪=⎨⎪---<-⎪⎩,,,所以'0y <,函数()1ln 221ln 22x x x y x x x x ⎧->⎪⎪=⎨⎪--<-⎪⎩,,在() 2-∞-,和()2 +∞,上为减函数,………………11分 该函数的值域为()() 12ln 212ln 2 -∞--++∞ ,,, 因此λ的取值范围为()() 12ln 212ln 2 -∞--++∞ ,,.……………………12分 3、(解: (1)1)(--=ax e x f x ,a e x f x -=')(①当0<a 时,0)(≥'x f (不恒为0),)(x f 在R 上单调递增,又0)0(=f ,所以当0)(),0,(<-∞∈x f x ,不合题意,舍去;②当≥a 时,)(,0)(),ln ,(x f x f a x <'-∞∈单调递减,)(,0)(),,(ln x f x f a x >'+∞∈单调递增,1ln )(ln )(min --==a a a a f x f ,则需01ln ≥--a a a 恒成立.令1ln )(--=a a a a g ,a a g ln )(-=',当)1,0(∈a 时,)(,0)(a g a g >'单调递增, 当),1(+∞∈a 时,)(,0)(a g a g <'单调递减,而0)1(=g ,所以01ln ≤--a a a 恒成立.所以a的取值集合为{}1. …………………………………………………………7分(2)由(1)可得)0(01>>--x x e x ,)0)(1ln(>+>x x x ,令nx 1=,则 n n n n n n ln )1ln(1ln )11ln(1-+=+=+>,所以 ))(1ln()ln )1(ln()2ln 3(ln )1ln 2(ln 131211*∈+=-+++-+->++++N n n n n n………………………………………………………………………………12分4、(1)因为1()2,0f x a x x'=->………………………………………………………1分 因为函数()y f x =存在与直线20x y -=平行的切线,所以()2f x '=在(0,)+∞上有解……………………………………………………………2分 即122a x -=在(0,)+∞上有解,也即122a x+=在(0,)+∞上有解, 所以220a +>,得1a >-故所求实数a 的取值范围是(1,)-+∞………………………………………………………4分 (2)因为2211()()ln 222g x f x x x x ax =+=+- 因为2121()2x ax g x x a x x-+'=+-=……………………………………………………5分①当11a -≤≤时,()g x 单调递增无极值点,不符合题意………………………………6分 ②当1a >或1a <-时,令()0g x '=,设2210x ax -+=的两根为1x 和2x , 因为1x 为函数()g x 的极大值点,所以120x x <<, 又12121,20x x x x a =+=>,所以11,01a x ><<,所以211111()20g x x ax x '=-+=,则21112x a x +=………………………………………8分 要证明1211ln 1x a x x +>,只需要证明2111ln 1x x ax +> 因为332111111111111ln 1ln 1ln 1222x x x x x ax x x x x x ++-=-+=--++,101x <<, 令31()ln 122x h x x x x =--++,(0,1)x ∈……………………………………………9分所以231()ln 22x h x x '=--+,记231()ln 22x p x x =--+,(0,1)x ∈,则2113()3x p x x x x-'=-+=当0x <<时,()0p x '>1x <<时,()0p x '<,所以max ()1ln 0p x p ==-+<,所以()0h x '<……………………………11分 所以()h x 在(0,1)上单调递减,所以()(1)0h x h >=,原题得证……………………12分5、解:(1)11'()mxf x m x x+=+=,0x >, 当0m <时,由10mx +>,解得1x m <-,即当10x m<<-时,'()0f x >,()f x 单调递增;由10mx +<解得1x m >-,即当1x m>-时,'()0f x <,()f x 单调递减;当0m =时,1'()0f x x=>,即()f x 在(0,)+∞上单调递增;当0m >时,10mx +>,故'()0f x >,即()f x 在(0,)+∞上单调递增. 所以当0m <时,()f x 的单调递增区间为1(0,)m -,单调递减区间为1(,)m-+∞; 当0m ≥时,()f x 的单调递增区间为(0,)+∞.(2)由21()ln 2g x x mx x =++得211'()x mx g x m x x x ++=++=,由已知210x mx ++=有两个互异实根1x ,2x , 由根与系数的关系得12x x m +=-,121x x =,因为1x ,2x (12x x <)是()h x 的两个零点,故21111()2ln 0h x x x ax =--=①22222()2ln 0h x x x ax =--= ②由②-①得:222212112ln()()0x x x a x x x ----=, 解得2121212ln()x x a x x x x =-+-,因为2'()2h x x a x =--,得1212124'()222x x x x h a x x ++=-⋅-+, 将2121212ln()x x a x x x x =-+-代入得2121212112212ln 4'()2()22x x x x x x h x x x x x x ⎡⎤⎢⎥++⎢⎥=-⋅--++-⎢⎥⎢⎥⎣⎦2121122ln 4x x x x x x =-+-+ 2221212211122111(1)2()22ln ln 21x x x x x x x x x x x x x x x x ⎡⎤-⎢⎥⎡⎤-⎢⎥=--=--⎢⎥-+-⎢⎥⎣⎦+⎢⎥⎣⎦, 所以21221122111()'()2ln 221x x x x xy x x h x x x ⎡⎤-⎢⎥+⎢⎥=-=-⎢⎥+⎢⎥⎣⎦, 设211x t x =>,因为22221212129()22x x x x x x m +=++=≥,所以221252x x +≥,所以221212122152x x x x x x x x +=+≥,所以152t t +≥,所以2t ≥. 构造1()ln 21t F t t t -=-+,得22214(1)'()0(1)(1)t F t t t t t -=-=>++, 则1()ln 21t F t t t -=-+在[2,)+∞上是增函数, 所以min2()(2)ln 23F x F ==-,即1212()'()2x x y x x h +=-的最小值为42ln 23-.6、(1)由()()21ln 2y f x g x x a x =-=-,得a y x x'=-, 由题意,13a -=,所以2a =-. ………………………………(1分) (2)()()()21ln 2h x f x g x x a x =+=+, 因为对任意两个不等的正数12x x ,,都有()()12122h x h x x x ->-,设12x x >,则()()()12122h x h x x x ->-,即()()112222h x x h x x ->-恒成立,问题等价于函数()()2F x h x x =-,即()21ln 22F x x a x x =+-在()0,+∞为增函数.……(3分)所以()20a F x x x '=+-≥在()0,+∞上恒成立,即22a x x -≥在()0,+∞上恒成立,所以()2max21a x x -=≥,即实数a 的取值范围是[)1,+∞.……………………………(5分)(3)不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-,整理得0001ln 0a x a x x +-+<.设()1ln a m x x a x x +=-+,由题意知,在[]1,e 上存在一点0x ,使得()00m x <.………(6分)由()2222(1)(1)(1)11x ax a x a x a a m x x x x x --+--++'=--==.因为0x >,所以10x +>,即令()0m x '=,得1x a =+.………………………………(7分) ① 当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增,只需()120m a =+<,解得2a <-. ………………………………………………(8分) ② 当11e a <+≤,即0e 1a <-≤时,()m x 在1x a =+处取最小值.令()11ln(1)10m a a a a +=+-++<,即11ln(1)a a a ++<+,可得11ln(1)a a a ++<+.考查式子1ln 1t t t +<-,因为1e t <≤,可得左端大于1,而右端小于1,所以不等式不能成立.……………(10分) ③ 当1e a +>,即e 1a >-时,()m x 在[]1,e 上单调递减,只需()1e e 0ea m a +=-+<,解得2e 1e 1a +>-.综上所述,实数a 的取值范围是()()2,2e 1,e 1-∞-++∞- . …………………………(12分)7、【解析】(1)()cos 3f x x m '=-,当13m ≥时,()f x 在区间[]0,π上为减函数; 当13m ≤-时,()f x 在区间[]0,π上为增函数;当1133m -<<时,则存在()00,x π∈使得0cos 3x m =,因此()f x 在区间[)00,x 上为增函数,在区间(]0,x π上为减函数.(2)0,0cos 2sin 0),()(≥≤--⇔≥≤x x mx mx x x x g x f()sin 2cos 0,02cos x x mx x x ⎛⎫⇔+-≤≥ ⎪+⎝⎭,(*)设()()sin 02cos xh x mx x x=-≥+,则()()222cos 111322cos 2cos 2cos x h x m m x x x +⎛⎫⎛⎫'=-=-+- ⎪ ⎪++⎝⎭⎝⎭+211132cos 33m x ⎛⎫=--+- ⎪+⎝⎭①当103m -≤即13m ≥时,()0h x '≤,即()h x 在[)0,+∞递减,所以()()00h x h ≤=,因此(*)恒成立; ②当0m ≤时,取2x π=,则有()1022h x m π=->,因此(*)不恒成立; ③当103m <<时,则由(1)可知存在()00,x π∈使得()f x 在()00,x 递增, 所以()()00f x f >=,即sin 3x mx >, 因此当()00,x x ∈时,()sin 03xh x mx >->,因此(*)不恒成立, 综上,实数m 的取值范围是),31[+∞. 8、解:(1)证明:令()1,x x e x ϕ=--,'()1x x e ϕ=-.当0x <时,'()0x ϕ<,故()g x 在区间(1,0)-上为减函数, 因此()(0)0x ϕϕ>=,故1x e x >+.···················2(分)再令2()12xx t x e x =---,当0x <时,'()10x t x e x =-->,故()t x 在区间(1,0)-上为增函数.()(0)0t x t <=,所以212xx e x <++,故xy e =是1y x=+和212x y x =++在(1,0)-上的一个“严格分界函数”···················5(分)(2)由(1)知11222(1)220.82(11)8x e x x h xx +->++-≥-≈+=+. 又22111222(1)22121)1(xx e x x x x x h x x+-<+++-=+++=++,···················7分) 令22'2111()2(1)1,()2(1),11(1)m x x x x m x x x x x =++=++-=+-+++'()0,m x =解得13011()2x =-+,易得()m x 在131(1,1())2--+单调递减,在131(1(),0)2-+单调递增,则121333min11(())(1())()2110.89022m x m =-+=+-=-≈···················9(分) 又2'()12(1)x x h e x -+=在(1,0)x ∈-存在0x 使得'0()0h x =,故()h x 在(1,0)x ∈-上先减后增,则有1133min 11()(1())(1())0.89022h x h m ≤-+<-+≈,则min 0.828()0.890h x <<,所以min ()10Mh x >,则8M =····················12(分) 9、解:(Ⅰ)()af x b x '=+,∴(1)1f a b '=+=,又(1)0f b ==,∴1,0a b ==.(Ⅱ)211()ln ()2h x x x m x m =+-+; ∴11()()h x x m x m'=+-+由()0h x '=得1()()0x m x m --=, ∴x m =或1x m=.∵0m >,当且仅当102m m <<≤或102m m<<≤时,函数()h x 在区间(0,2)内有且仅有一个极值点.若102m m <<≤,即102m <≤,当(0,)x m ∈时()0h x '>;当(,2)x m ∈时()0h x '<,函数()h x 有极大值点x m =,若102m m <<≤,即2m ≥时,当1(0,)x m ∈时()0h x '>;当1(,2)x m∈时()0h x '<,函数()h x 有极大值点1x m =, 综上,m 的取值范围是1|022m m m ⎧⎫<≤≥⎨⎬⎩⎭或. (Ⅲ)当1m =时,设两切线12,l l 的倾斜角分别为,αβ,则1tan ()()2f x g x x xαβ''===-,t an =, ∵2x >, ∴,αβ均为锐角,当αβ>,即21x <<+时,若直线12,l l 能与x 轴围成等腰三角形,则2αβ=;当αβ<,即1x >+时,若直线12,l l 能与x 轴围成等腰三角形,则2βα=.由2αβ=得,22tan tan tan 21tan βαββ==-,得212(2)1(2)x x x ---=, 即23830xx -+=,此方程有唯一解(2,1x =+,12,l l 能与x 轴围成一个等腰三角形.由2βα=得, 22tan tan tan 21tan αβαα==-,得212211x x x⋅-=-,即322320x x x --+=,设32()232F x x x x =--+,2()343F x x x '=--,当(2,)x ∈+∞时,()0F x '>,∴()F x 在(2,)+∞单调递增,则()F x在(1)+∞单调递增,由于5()02F <,且512+<,所以(10F +<,则(1(3)0F F +<,即方程322320x x x --+=在(2,)+∞有唯一解,直线12,l l 能与x 轴围成一个等腰三角形. 因此,当1m =时,有两处符合题意,所以12,l l 能与x 轴围成等腰三角形时,c 值的个数有2个.10、解:2()4x f x e x x =+--,'()21x f x e x ∴=+-,'(0)0f ∴=当0x >时,1x e >,'()0f x ∴>,故()f x 是(0,)+∞上的增函数, 同理()f x 是(,0)-∞上的减函数,2(0)30,(1)40,(2)20f f e f e =-<=-<=->,且2x >时,()0f x >,故当0x >时,函数()f x 的零点在(1,2)内,1k ∴=满足条件. 同理,当0x <时,函数()f x 的零点在(-2,-1)内,2k ∴=-满足条件, 综上1,2k =-.....................5分(2)问题⇔当[1,1]x ∈-时,max min max min |()()|()()1f x f x f x f x e -=-≥-,'()ln 2ln 2(1)ln x x f x a a x a x a a =+-=+-①当0x >时,由1a >,可知10,ln 0,'()0x a a f x ->>∴>; ②当0x <时,由1a >,可知10,ln 0,'()0x a a f x -<>∴<; ③当0x =时,'()0f x =,()f x ∴在[1,0]-上递减,[0,1]上递增,∴当[1,1]x ∈-时,min max ()(0),()max{(1),(1)}f x f f x f f ==-,而1(1)(1)2ln f f a a a --=--,设1()2ln (0),g t t t t t=--> 22121'()1(1)0g t t t t=+-=-≥ (仅当1t =时取等号), ()g t ∴在(0,)+∞上单调递增,而(1)0g =,∴当1t >时,()0g t >即1a >时,12ln 0a a a-->, (1)(1),(1)(0)1f f f f e ∴>-∴-≥-即ln 1ln a a e e e -≥-=-,构造()ln (1)h a a a a =->,易知'()0h a >,()h a ∴在(1,)+∞递增,a e ∴≥,即a 的取值范围是[,)e +∞.....................12分11、【解析】(1)令=)(x f 0ln =+xa x , [),2+∞∈-e x 得x x a ln =- 记∈=x x x x H ,ln )([),2+∞-e ,,ln 1)('x x H +=由此可知)(x H 在[]12,--e e 上递减,在),(1+∞-e 上递增,且,2)(22---=e e H ,)(11---=e e H +∞→x 时+∞→)(x H故e a 1>时,)(x f 在[),2+∞-e 无零点 221e a e a <=或时,)(x f 在[),2+∞-e 恰有一个零点e a e 122<≤时,)(x f 在[),2+∞-e 有两个零点……5分(2))(x f 的定义域为),,0(+∞()()210,,'af x x x+∞=- ,函数)(x f 在1x =处的切线平行于直线20x y -=.()112,1f a a '∴=-=∴=-. 若在[]()1, 2.71828...e e =上存在一点0x ,使得()0001x mf x x +<成立,构造函数()()11ln m h x x mf x x m x x x x=+-=+-+在[]1,e 上的最小值小于零.()()()222221111'1x x m m m x mx m h x x x x x x+-----=---==, ①当1m e +≥时,即1m e ≥-时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为()h e ,由()10m h e e m e +=+-<可得211e m e +>-,22111,11e e e m e e ++>-∴>-- ; ②当11m +≤时,即0m ≤时,()h x 在[]1,e 上单调递增,所以()h x 的最小值为()1h ,由()1110h m =++<可得2m <-;③当11m e <+<时,即01m e <<-时,可得()h x 的最小值为()()()()()1,0ln 11,0ln 1,12ln 12h m m m m m h m m m m +<+<∴<+<+=+-+< ,此时,()10h m +<不成立.综上所述:可得所求m 的范围是211e m e +>-或2m <-.…12分。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(5)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(5)

一、选择题1.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充分必要条件2.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( ) A .1B .2C .3D .3323.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e4.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .5.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f >D .(2020)(2021)ef f <6.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞ B .()2e ,+∞C .()20,eD .()0,e7.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( )A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭8.已知定义域为R 的函数 f x () 的导函数为'f x () ,且满足'24f x f x ()﹣()> ,若 01f =()﹣ ,则不等式22x f x e +()> 的解集为( )A .∞(0,+)B .1+∞(﹣,)C .0∞(﹣,)D .1(﹣,﹣)∞ 9.已知函数22(1)2,0()log 0x x f x x x ⎧-++≤⎪=⎨>⎪⎩,,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则23423121()x x x x x +⋅+⋅的取值范围是( ) A .71(,]42-- B .37[,]24--C .71[,)42--D .313(,]42-- 10.函数()327f x x kx x =+-在区间[]1,1-上单调递减,则实数k 的取值范围是( ) A .(],2-∞-B .[]22-,C .[)2,-+∞D .[)2,+∞11.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞12.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞二、填空题13.已知a R ∈,对于任意的实数[]1,2x ∈,不等式()110x x e a x a e ⎛⎫+---≤ ⎪⎝⎭恒成立,则实数a 的取值范围是________________.14.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.15.已知函数()()()x f x e x b b R =-∈.若存在1,22x ⎡∈⎤⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是____.16.已知函数()2cos sin 2f x x x =+,则()f x 的最小值是______.17.已知a R ∈,设函数232,1()1,1x x a x f x x a nx x ⎧-+=⎨->⎩,若关于x 的不等式()0f x ≥在R上恒成立,则a 的取值范围是_________.18.已知函数()()ln ,11,1x x x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.19.函数31()3f x x ax =-的极大值为a =__________. 20.已知函数()xf x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.三、解答题21.已知函数()ln ()=+∈f x x x ax a R . (Ⅰ)当0a =,求()f x 的最小值;(Ⅱ)若函数()()ln g x f x x =+在区间[1,)+∞上为增函数,求实数a 的取值范围; 22.已知函数()21x f x ae x =-+.(1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数. 23.已知函数()()21xf x x ae=-+.(1)讨论()f x 的单调性;(2)若()f x 存在零点,求a 的取值范围.24.已知函数())ln f x a x a =∈R . (1)当1a =-时,求()f x 的单调区间; (2)求()f x 在[1,4]上的最小值. 25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数21()ln (1)12f x a x x a x =+-++. (I )当0a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(Ⅱ)若函数()f x 在1x =处取得极小值,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项. 【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D 【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.2.C解析:C 【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可. 【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06ax <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max 2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.3.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥), 则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t a f t t t t-'=-=≥,①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤;②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈. 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下: 1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.4.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.5.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()x g x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立,所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()x f x F x e=. 6.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.7.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】 已知函数321()13f x x ax x =+++, 则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.8.A解析:A 【解析】 设()()22xf x F x e +=,则()()()224xf x f x F x e '--'=,∵f (x )−2f ′(x )−4>0,∴F ′(x )>0,即函数F (x )在定义域上单调递增, ∵f (0)=−1,∴F (0)=1,∴不等式f(x)+2>e2x等价为不等式()221e xf x+>等价为F(x)>F(0),解得x>0,故不等式的解集为(0,+∞),本题选择A选项.9.D解析:D【分析】画出图形,数形结合解答.注意到122x x+=-,2324log logx x-=,化简结论得32312xx-,311,42x⎛⎤∈ ⎥⎝⎦,构造函数21()2f x xx=-,11,42x⎛⎤∈ ⎥⎝⎦,利用导数判断出函数的单调性即可.【详解】已知函数图象如下:方程()f x a=有四个不同的解1x,2x,3x,4x,且1234x x x x<<<,则122x x+=-,2324log logx x-=,所以341x x⋅=,且311,42x⎛⎤∈ ⎥⎝⎦,所以234322312311()2x x xx x x x⋅=+⋅+-,令21()2f x xx=-,11,42x⎛⎤∈ ⎥⎝⎦,则31()1f xx=+'在11,42⎛⎤⎥⎝⎦上恒大于0,故()f x在11,42x⎛⎤∈ ⎥⎝⎦上单调递增,所以313(),42f x⎡⎫∈--⎪⎢⎣⎭,故选:D.【点评】本题考查了函数的图像运用,利用数形结合判断函数交点问题,属于中档题.10.B解析:B 【分析】由题意得出()0f x '≤对于任意的[]1,1x ∈-恒成立,由此得出()()1010f f ⎧-≤⎪⎨≤''⎪⎩,进而可求得实数k 的取值范围. 【详解】()327f x x kx x =+-,()2327f x x kx '∴=+-,由题意可知,不等式()0f x '≤对于任意的[]1,1x ∈-恒成立,所以,()()12401240f k f k ⎧-='--≤⎪⎨='-≤⎪⎩,解得22k -≤≤.因此,实数k 的取值范围是[]22-,. 故选:B. 【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,考查运算求解能力,属于中等题.11.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数, f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.12.D解析:D 【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解. 【详解】 令2()()xg x ef x =,则2()[2()()]xg x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D . 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.二、填空题13.【分析】当时证明出由题意可得出可得出结合函数的单调性可求得实数的取值范围【详解】当时先证明出构造函数则则函数在区间上单调递增所以所以函数在区间上单调递增当时所以由可得所以当时即令则所以函数在区间上单解析:11,e e ⎡⎤+⎢⎥⎣⎦【分析】当[]1,2x ∈时,证明出11xx e x e +>-,由题意可得出11xxx a e e-≤≤+,可得出()max min11xx x a e e ⎛⎫-≤≤+⎪⎝⎭,结合函数的单调性可求得实数a 的取值范围. 【详解】当[]1,2x ∈时,先证明出11xx e x e +>-,构造函数()11xxf x e x e =+-+, 则()11xx f x e e'=--,则函数()f x '在区间[]1,2上单调递增, 所以,()()1110f x f e e''≥=-->,所以,函数()f x 在区间[]1,2上单调递增,当[]1,2x ∈时,()()110f x f e e ≥=+>,所以,11x x e x e+>-. 由()110x x e a x a e ⎛⎫+---≤ ⎪⎝⎭,可得11xx x a e e -≤≤+,所以,()max min11xx x a e e ⎛⎫-≤≤+⎪⎝⎭. 当[]1,2x ∈时,011x ≤-≤,即()max 11x -=, 令()1xx g x e e =+,则()10xxg x e e'=->,所以,函数()g x 在区间[]1,2上单调递增, 当[]1,2x ∈时,()()min 11g x g e e ==+,所以,11a e e≤≤+. 因此,实数a 的取值范围是11,e e⎡⎤+⎢⎥⎣⎦. 故答案为:11,e e⎡⎤+⎢⎥⎣⎦.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.14.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率,因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内,不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立, 由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立, 设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.15.【详解】解答:∵f(x)=ex (x−b)∴f′(x)=ex(x−b+1)若存在x ∈2使得f(x)+xf′(x)>0则若存在x ∈2使得ex(x−b)+xex(x−b+1)>0即存在x ∈2使得b<成立令解析:83b <【详解】 解答: ∵f(x)=e x (x−b), ∴f′(x)=e x (x−b+1), 若存在x ∈[12,2],使得f(x)+xf′(x)>0, 则若存在x ∈[12,2],使得e x (x−b )+xe x (x−b+1)>0, 即存在x ∈[12,2],使得b<221x x x ++ 成立, 令()221,,212x x g x x x +⎡⎤=∈⎢⎥+⎣⎦,则()()222201x x g x x ++'=>+ ,g(x)在1,22⎡⎤⎢⎥⎣⎦递增,∴g(x)最大值=g(2)=83, 则实数b 的取值范围是83b <16.【分析】由解析式可分析得到的一个周期为则只需考虑在上的值域即可利用导函数求得其最值即可【详解】由题的一个周期为故只需考虑在上的值域令解得或可得此时或或所以的最小值只能在点或或和边界点中取到因为所以的解析: 【分析】由解析式可分析得到()f x 的一个周期为2T π=,则只需考虑()f x 在[)0,2π上的值域即可,利用导函数求得其最值即可. 【详解】由题,()f x 的一个周期为2T π=, 故只需考虑()f x 在[)0,2π上的值域,()()()()22sin 2cos 22sin 212sin 22sin 1sin 1f x x x x x x x '=-+=-+-=--+,令()0f x '=,解得1sin 2x =或sin 1x =-, 可得此时6x π=或56π或π, 所以()2cos sin 2f x x x =+的最小值只能在点6x π=或56π或π和边界点0x =中取到,因为62f π⎛⎫=⎪⎝⎭,562f π⎛⎫=- ⎪⎝⎭()2f π=-,()02f =,所以()f x 的最小值为故答案为:【点睛】本题考查导数的运算,考查利用导函数求最值,考查运算能力.17.【分析】根据分段函数当时将恒成立转化为恒成立令利用二次函数的性质求得其最大值当时将转化为恒成立令用导数法求得其最小值然后两种情况取交集【详解】当时等价于恒成立令其中则所以当时等价于恒成立令则当时递增 解析:[]1,e【分析】根据分段函数,当1x ≤时,将()2320f x x x a =-+≥恒成立,转化为232x x a -恒成立,令23()2x x g x -=,利用二次函数的性质求得其最大值,当1x >时,将()ln 0f x x a x =-≥,转化为1xanx 恒成立,令()ln x h x x=,用导数法求得其最小值,然后两种情况取交集. 【详解】当1x ≤时,()2320f x x x a =-+≥等价于232x x a -恒成立,令()22231139()322228x x g x x x x -⎛⎫==--=--+ ⎪⎝⎭,其中1x ≤,则()max 1g x =, 所以1a ≥,当1x >时,()ln 0f x x a x =-≥等价于1xanx恒成立, 令()ln xh x x=,则221ln ln 1()(ln )(ln )x x x x h x x x -⋅-'==, 当x e >时,()()0,h x h x '>递增, 当1x e <<时,()()0,h x h x '<递减, ∴x e =时,()h x 取得最小值()h e e =, ∴()min a h x e ≤=, 综上:a 的取值范围是[]1,e . 故答案为:[]1,e . 【点睛】本题主要考查二次函数的最值,函数的最值与导数以及导数与不等式恒成立问题,还考查了运算求解的能力,属于中档题.18.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示:解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-,所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增,当01x <<时,()0f x '<,()f x 递减, 所以当0x =时, ()f x 取得最大值1, 又当1≥x 时,()ln f x x =, 所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t , 且()()2121,(0,1),,t f x t f t x t ==∈各有3个根, 方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩,解得104a -<<.故答案为:1,04⎛⎫- ⎪⎝⎭【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.19.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3 【分析】求导数,取导数为0,计算x =. 【详解】函数31()3f x x ax =-的极大值为 2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a = 故答案为3 【点睛】本题考查了函数的极大值,意在考查学生的计算能力.20.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()xf x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x-≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥. 故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔三、解答题21.(1)11()f e e=-;(2)2a ≥- 【分析】(1)对函数求导,令'()ln 1=0=+f x x ,讨论函数的单调性即可求出结果.(2)由()g x 在区间[1,)+∞单调递增,可得'()0≥g x 在[1,)+∞恒成立,分离参数可得:1ln (1)+≥-+x a x ,构造函数即可求出结果. 【详解】(1)()ln 1,'()ln 1=+=+f x x x f x x 令'()ln 1=0=+f x x ,解得1=x e当x 变化时,(),()f x f x '的变化情况如下:所以min ()()f x f ee ==-(2)1'()ln 1=+++g x x a x, ()g x 在区间[1,)+∞单调递增,所以'()0≥g x 在[1,)+∞恒成立,即1ln (1)+≥-+x a x在[1,)+∞恒成立 设221111()ln ,'()0-=+∴=-=>x h x x h x x x x x1()ln ∴=+h x x x[1,)+∞单调递增,min ()=(1)=1h x h 只需1(1)≥-+a 即可,解得2a ≥-【点睛】方法点睛:()g x 在区间[1,)+∞单调递增'()0⇔≥g x 在[1,)+∞恒成立,分离参数,构造函数是常用方法.本题考查了运算求解能力和逻辑推理能力,属于中档题目.. 22.(1)答案见解析;(2)答案见解析. 【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数.【详解】解:(1)函数()f x 的定义域为R ,()2xf x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减; ②当0a >时,令()0f x '=得2ln x a=. 若2,ln x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>; 所以()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21xg x ae x x x =+-+设函数()1()ln 2x g x ae h x x x x x==++-()2221(1)(1)11()xx ae x ae x h x x x x x +--'=+-=因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减. 当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增. 所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-.若1a e=时,(1)0h =,所以函数()h x 只有1个零点; 若1a e>时,()(1)0h x h ≥>,所以函数()h x 无零点; 若10a e <<时,(1)0h <,()222222240ee h e a e e e---=-+->->,()22221220e e h e a e e=++->,故()2(1)0h h e -<,()2(1)0h h e <;所以函数()h x 在()21,e -和()21,e各有一个零点,所以函数()h x 有两个零点.综上所述,当1a e =时,函数()g x 只有1个零点;当1a e>时,函数()g x 无零点; 当10a e<<时,函数()g x 有两个零点 【点睛】方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()ag x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.23.(1)()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增;(2)(][),11,-∞-+∞.【分析】(1)先求导并解得()0f x '=的根,再判断根附近导数值的正负,即得单调性; (2)先判断极小值即最小值,再结合()210f a =>可知()min0f x ≤,解不等式即得结果. 【详解】解:(1)()()21xf x x a e '=-+,定义域为R ,由()0f x '=,得21x a =-,当21x a <-时,()0f x '<;当21x a >-时,()0f x '>, 故()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增;(2)由(1)知()f x 在21x a =-处取得极小值,也是最小值, 则()()221min 11a f x f a e-=-=-,因为()f x 存在零点,且()210f a =>,故只需()21min 10af x e -=-≤,即2101ae e -≥=,故210a -≥,解得1a ≤-或1a ≥,所以a 的取值范围为(][),11,-∞-+∞.【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.24.(1)单调递增区间为(4,)+∞;单调递减区间为(0,4);(2)min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩. 【分析】 (1)当1a =-时,2()2f x x '=,进而得4x >时,()0f x '>, 04x <<时,()0f x '<,进而得函数的单调区间;(2)()f x '=,故分1a ≤-,112a -<<-,12a ≥-三种情况讨论即可得答案. 【详解】解:(1)()f x 的定义域为(0,)+∞,当1a =-时,12()2f x x x-'=-= 当4x >时,()0f x '>,则()f x 的单调递增区间为(4,)+∞;当04x <<时,()0f x '<,则()f x 的单调递减区间为(0,4).(2)()a f x x '== 当1a ≤-时,()0,()f x f x '≤在[1,4]上单调递减,此时,()min (4)2ln 22f x f a ==+ 当12a ≥-时,()0,()f x f x '≥在[1,4]上单调递增, 此时,()min (1)1f x f ==当112a -<<-时,若214x a <<,则()0,()f x f x '<单调递减; 若244a x <<,则()0,()f x f x '>单调递增此时,()()22min ()4ln 42ln(2)2f x f a a a a a a ==+=--. 综上所述:min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩【点睛】本题考查利用导数求解函数的最小值问题,考查分类讨论思想和运算求解能力,其中第二问解题的关键在于求导得2()2a f x x '=,进而分1a ≤-,112a -<<-,12a ≥-三种情况讨论求解,是中档题.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞.【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可.【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+, ()()()2222212121x x x x f x x x x x -+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值.(2)由2ln a x x x x x -->-,得2ln a x x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--, 令()23ln 1h x x x =--,则()21616x h x x x x -'=-=, 由1x >,知2610x ->,即()0h x '>,所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=,由()a g x <在()1,+∞上恒成立,所以1a ≤.【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.26.(I )1y x =-;(Ⅱ)1a <.【分析】(Ⅰ)当0a =时,利用导数的几何意义求切线方程;(Ⅱ)首先求函数的导数,2(1)()10a x a x a f x x a x x'-++=+--==时,11x =和2x a =,并讨论a 与0,1的大小关系,求实数a 的取值范围.【详解】 (I )当0a =时,21()12f x x x =-+. 所以()1f x x '=-, 所以(2)1k f '==, 因为21(2)22112f =⨯-+=. 所以切线方程为1y x =-. (Ⅱ)函数()f x 的定义域为(0,)+∞. 因为21()ln (1)12f x a x x a x =+-++ 所以2(1)()1a x a x a f x x a x x'-++=+--=. 令()0f x '=,即2(1)0x a x a -++=,解得1x =或x a =.(1)当0a 时,当x 变化时,(),()f x f x '的变化状态如下表:所以当时,取得极小值所以0a 成立.(2)当01a <<时,当x 变化时,(),()f x f x '的变化状态如下表:所以01a <<成立.(3)当1a =时,()0f x '在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞上单调递增,没有板小值,不成立.(4)当1a >时,当x 变化时,(),()f x f x '的变化状态如下表:所以1a >不成立.综上所述,1a <.【点睛】关键点点睛:本题考查根据极值点求a 的取值范围,本题容易求出导函数的零点1和a ,但需讨论a 的范围,这是易错的地方,容易讨论不全面,需注意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 导数的应用
题型33 利用导数研究函数的单调性
1.(2013江苏20)设函数ax x x f -=ln )(,()e x
g x ax =-,其中a 为实数.
(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 2.(2015湖南理5)设函数()()()ln 1ln 1f x x x =+--,则()f x 是( ).
A.奇函数,且在
()0,1上是增函数 B. 奇函数,且在()0,1上是减函数 C. 偶函数,且在
()0,1上是增函数 D. 偶函数,且在()0,1上是减函数
2. 解析 由已知()f x 的定义域为()1,1-,关于原点对称. 又因为()ln(1)ln(1)()f x x x f x -=--+=-,所以()f x 为奇函数. 求导()2
112
'111f x x x x
=+=+--,当()0,1x ∈时,()'0f x >,即()f x 在()0,1上为增函数.故选A.
评注 单调性也可以利用复合函数“同增异减”处理.
3.(2015全国2理12)设函数()'f x 是奇函数()f x 的导函数,()10f -=,当0x >时,()()'0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ). A. ()(),10,1-∞- B. ()()1,01,-+∞ C. ()(),11,0-∞-- D. ()()0,11,+∞ 3. 解析 题意,设函数()()f x g x x =
,则2
()()
()xf x f x g x x '-'=,因为当0x >时, ()()0xf x f x '-<,故当0x >时,()0g x '<,所以()g x 在(0,)+∞单调递减;
又因为函数()()f x x ∈R 是奇函数,故函数()g x 是偶函数, 所以()g x 在(,0)-∞上单调递增,且有(1)(1)0g g -==. 当01x <<时,()0g x >,则()0f x >;
当1x <-时,()0g x <,则()0f x >.
综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞- .故选A .
评注 本题用导数来研究函数的性质,注意构造函数()g x ,然后用其对称性和奇偶性对单调性的影响,必要时可以用图像来辅助说明. 4.(2015福建理10)若定义在R 上的函数
()f x 满足()01f =-,其导函数()f x '满足
()1f x k '>>,则下列结论中一定错误的是( ).
A .11
f k k ⎛⎫<
⎪⎝⎭ B .111f k k ⎛⎫
>
⎪-⎝⎭
C .1111
f k k ⎛⎫
<

--⎝⎭ D .111
k f k k ⎛⎫
> ⎪
--⎝⎭ 4. 解析 由已知条件,构造函数()()g x f x kx =-,则()()0g x f x k ''=->, 故函数()g x 在R 上单调递增,且
101k >-,故()101g g k ⎛⎫> ⎪-⎝⎭
, 所以11f k ⎛⎫
-
⎪-⎝⎭
11k k >--,
1111
f k k ⎛⎫
> ⎪
--⎝⎭,所以结论中一定错误的是C ,选项D 不确定;构造函数()()h x f x x =-,则()()10h x f x ''=->,所以函数()h x 在R 上单调递增,且
10k >,所以()10h h k ⎛⎫> ⎪⎝⎭
,即11
1f k k ⎛⎫->- ⎪⎝⎭,11
1f k k
⎛⎫>- ⎪⎝⎭,选项A ,B 无法判断.故选C .
5.(2015广东理19(1))设1a >,函数2()(1)e x
f x x a =+-.求()f x 的单调区间.
5. 解析 函数()f x 的定义域为R ,()()(
)()()
2
22
1e 1e 1e 0x x
x f x x x x '''=+++=+…,
所以()f x 在(),-∞+∞上是单调增函数.
6.(2015湖北理22(1))已知数列{}n a 的各项均为正数,*1(1)()n n n b n a n n
=+∈N ,e 为自
然对数的底数.求函数()1e x f x x =+-的单调区间,并比较1
(1)n n +与e 的大小.
6. 解析 ()f x 的定义域为(,)-∞+∞,()1e x f x '=-.
当()0f x '>,即0x <时,()f x 单调递增; 当()0f x '<,即0x >时,()f x 单调递减.
故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e x x +<.
令1x n
=,得1
1
1e n n +<,即1(1)e n n +<.
7.(2015江苏19(1))已知函数()32f x x ax b =++(),a b ∈R .
试讨论
()f x 的单调性.
7. 解析 由题意,()232f x x ax '=+233x x a ⎛
⎫=+
⎪⎝

, 1︒当2
03
a -
=,即0a =时,()230f x x '=…对x ∈R 恒成立, 故()f x 的单调递增区间为(),-∞+∞;
2︒当2
03
a -
>,即0a <时, 令()2303f x x x a ⎛⎫'=+> ⎪
⎝⎭
,则0x <或23x a >-, 所以()f x 的单调递增区间为(),0-∞和,23a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为30,2a ⎛
⎫- ⎪⎝
⎭;
3︒当2
03
a -
<,即0a <时, 令
()2303f x x x a ⎛⎫
'=+> ⎪⎝⎭
,则23x a <-或0x >,
所以()f x 的单调递增区间为23,a ⎛
⎫-∞-
⎪⎝
⎭和()0,+∞,单调递减区间为023,a ⎛⎫- ⎪⎝⎭
. 8.(2015全国2理21(1))设函数()2e
mx
f x x mx =+-.
证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增.
8. 分析(1)先对函数进行求导,然后再应用单调性和函数的导数的关系进行求解; 解析(1)证明:因为()2e
,mx
f x x mx =+-,则求导得,()e 2,mx f x m x m '=+-
()()e 12mx f x m x '=-+.
若0m …
,则当(),0x ∈-∞时,e 10mx
-…,()0f x '<;
当()0,x ∈+∞时,e
10mx
-…,()'0f x >.
若0m <,则当(),0x ∈-∞时,e 10mx
->>,()0f x '<;
当()0,x ∈+∞时,e
10mx
-<<,()'0f x >.
所以()f x 在(),0-∞上单调递减,在()0,+∞上单调递增.
9.(2015四川理21(1))已知函数()()22
2ln 22f x x a x x ax a a =-++--+,其中0a >.
设()g x 为()f x 的导函数,讨论()g x 的单调性;
9. 分析 首先对函数()f x 求导,得()()222ln 21a g x f x x a x x ⎛
⎫'==---+
⎪⎝⎭
, 然后再求导得()2
22112222242x a a g x x x x
⎛⎫⎛
⎫-+- ⎪ ⎪
⎝⎭⎝⎭'=-+=. 利用导数的符号即得其单调性.此题分1204a ⎛
⎫-
< ⎪⎝⎭和1204a ⎛
⎫- ⎪⎝⎭
…两种情况讨论.
解析 由已知可得函数()f x 的定义域为()0,+∞.
()()222ln 21a g x f x x a x x ⎛⎫
'==---+ ⎪⎝⎭,
所以()2
22
112222242x a a g x x x x ⎛⎫⎛
⎫-+- ⎪ ⎪
⎝⎭⎝⎭'=-+=. 当1
04a <<时,()g x
在区间⎛ ⎝⎭
,⎫+∞⎪⎪⎝⎭
上单调递增;
在区间⎝⎭
上单调递减. 当1
4
a …时,()g x 在区间()0,+∞上单调递增. 10.(2015天津理20(1))已知函数(),n f x nx x x =-∈R ,其中*n ∈N ,2n ….
讨论
()f x 的单调性.
10. 分析 求导,分n 为奇数与偶数讨论其导数的符号及函数单调性即可.。

相关文档
最新文档