高中数学导数及其应用电子教案

合集下载

高二数学导数的应用教案

高二数学导数的应用教案

高二数学导数的应用教案
教学目标:
1. 理解导数的概念和性质;
2. 掌握导数的计算方法;
3. 熟练应用导数解决实际问题。

教学步骤:
一、导入(10分钟)
1. 引入导数的概念,与学生讨论导数的意义和应用;
2. 提出今天的学习目标:掌握导数的计算方法,并能够在实际问题中灵活应用。

二、理论讲解与示范(15分钟)
1. 介绍导数的定义:函数在某一点的切线斜率;
2. 解释导数的符号表示和计算方法,如使用极限的概念计算导数;
3. 给出一些导数计算的例题,并详细讲解解题思路和步骤。

三、练习与巩固(20分钟)
1. 给学生分发练习题,并要求他们独立完成;
2. 针对练习题中的难点和疑惑,进行答疑和解释;
3. 鼓励学生互相交流和讨论,加深对导数的理解和应用。

四、拓展应用(15分钟)
1. 引导学生思考导数在实际问题中的应用;
2. 分组讨论,找到不同领域中可以使用导数解决的问题,并汇报给全班;
3. 提出一些挑战性的导数应用问题,激发学生的思维和创造力。

五、综合评价(10分钟)
1. 进行简单的导数应用综合评价;
2. 针对学生的表现,给予及时的反馈和指导;
3. 总结本节课的重点内容和学习方法。

总结:
通过本节课的学习,学生应该对导数的概念和应用有了更深入的理解,能够熟练计算导数,并能够应用导数解决实际问题。

在后续的学习中,我们将进一步拓展导数的应用领域,并提高解题的灵活性和创造性。

导数及其应用教案

导数及其应用教案

导数及其应用教案一、引言在高中数学课程中,导数是一个非常重要的概念。

本教案旨在介绍导数及其应用,帮助学生理解导数的概念和基本性质,并学习如何在实际问题中运用导数进行分析和计算。

二、导数的概念1. 导数的定义:导数表示函数在某一点上的变化率,即函数值随自变量变化而变化的快慢程度。

2. 导数的几何意义:导数等于函数曲线在某一点切线的斜率。

3. 导数的符号表示:通常用f'(x)或dy/dx表示函数f(x)的导数。

三、导数的基本性质1. 常数的导数为0:若f(x) = a(a为常数),则f'(x) = 0。

2. 幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。

3. 和差的导数:若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。

4. 乘积的导数:若f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。

5. 商的导数:若f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x) - u(x)v'(x)] /v(x)^2。

四、导数的应用1. 切线和法线:导数可以用于求函数曲线在某一点的切线和法线方程。

2. 极值问题:导数可以帮助我们判断函数的极值,并求出极值点和极值。

3. 函数图像的画法:导数可以提供函数图像的一些特征,如拐点、极值、单调性等。

4. 物理问题中的应用:导数可以帮助解决一些物理问题,如速度、加速度等。

五、教学活动1. 导数的计算练习:通过给出具体函数的表达式,让学生计算其导数。

2. 导数在几何中的应用:通过给出函数的图像,让学生判断函数的增减性、拐点、极值等。

3. 实际问题解析:将一些实际问题转化为数学模型,并运用导数进行分析和求解。

六、教学反思通过本教案的讲解和练习,学生应能掌握导数的概念和基本性质,具备运用导数进行实际问题分析和计算的能力。

高中数学导数应用问题教案

高中数学导数应用问题教案

高中数学导数应用问题教案
主题:导数的应用问题
教学目标:
1.了解导数的定义及其应用;
2.掌握常见的导数应用问题求解方法;
3.能够运用导数解决实际问题。

教学重点:
1.导数的定义及性质;
2.导数在实际问题中的应用。

教学难点:
1.如何将实际问题转化为导数问题求解;
2.如何运用导数解决各类应用问题。

教学准备:
1.教师准备相关教学资料和案例;
2.学生准备笔记和计算工具。

教学步骤:
一、导入(5分钟)
教师用一个实际问题引入导数的应用,引导学生思考导数在解决实际问题中的作用。

二、概念讲解(10分钟)
1.复习导数的定义及性质;
2.介绍导数在实际问题中的应用,如最速下降问题、最大最小问题等。

三、案例分析(15分钟)
教师以实际问题为例,分析导数应用问题的解题思路和方法,并带领学生一起解决一些简单的案例。

四、练习与讨论(15分钟)
1.学生进行导数应用问题的练习,教师提供帮助和指导;
2.学生分组讨论解题过程,分享解题方法和经验。

五、总结(5分钟)
教师总结本节课的重点内容,强调导数在实际问题中的应用重要性。

六、作业布置(5分钟)
布置相关的导数应用问题作业,希望学生能够独立完成并加强对应用问题的理解和掌握。

教学反思:
通过本节课的教学,学生对导数的应用有了更深入的了解,同时也能够更加灵活地应用导数解决各类实际问题。

希望学生能够在课下多加练习,进一步提高解题能力和运用能力。

导数及其应用教案

导数及其应用教案

课题:变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一、情景导入为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二、知识探究探究一:气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --探究二:高台跳水:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=; 在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(0049)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态。

高中数学导数及其应用教案

高中数学导数及其应用教案

高中数学导数及其应用教案教学目标:1. 理解导数的定义和性质,能够计算常见函数的导数。

2. 掌握导数在函数求极限、判定函数的增减性和凹凸性等方面的应用。

3. 能够解决实际问题中的优化和相关性问题。

教学内容:1. 导数的定义和性质2. 基本函数的导数3. 高阶导数4. 函数的导数应用:求极限、判定增减性和凹凸性5. 优化问题和相关性问题的求解教学流程:1. 导数的定义和基本性质的介绍(15分钟)- 导数的定义- 导数的性质:线性性、乘积法则、商法则、链式法则2. 基本函数的导数计算(20分钟)- 常数函数、幂函数、指数函数、对数函数的导数计算- 三角函数的导数计算3. 高阶导数和导数的应用(25分钟)- 高阶导数的定义和计算- 导数在函数的极限、增减性和凹凸性判定中的应用4. 优化问题和相关性问题的解决(20分钟)- 优化问题的定义和解决方法- 相关性问题的建模和解决方法教学方法:1. 讲解导数的定义和性质,引导学生理解概念并掌握基本计算方法。

2. 练习基本函数的导数计算,帮助学生巩固知识。

3. 引导学生理解高阶导数和导数在函数中的应用,培养学生应用知识解决问题的能力。

4. 练习优化问题和相关性问题,让学生通过实际问题感受导数在解决问题中的作用。

教学评估:1. 布置作业,巩固学生对导数的理解和应用能力。

2. 定期组织小测验,检验学生对导数相关知识的掌握程度。

3. 课堂中提问和讨论,评估学生对导数的理解程度。

教学资源:1. PowerPoint课件:导数的定义和基本性质、基本函数的导数计算、高阶导数和导数的应用、优化问题和相关性问题的解决。

2. 习题册:导数相关习题,巩固学生对导数的掌握。

教学反思与总结:教师在教学导数及其应用过程中,要注意引导学生理解概念、掌握计算方法,并注重培养学生的问题解决能力。

通过多种教学方法,激发学生的学习兴趣,提高他们的学习效果。

及时总结分析教学过程中出现的问题和不足,不断完善教学内容和方法,提升教学质量。

导数及其应用教案设计

导数及其应用教案设计

导数及其应用教案设计一、教学目标1.理解导数的定义和概念;2.掌握导数的计算方法;3.了解导数的几何意义和物理意义;4.应用导数解决实际问题。

二、教学重点1.导数的定义和概念;2.导数的计算方法。

三、教学难点1.导数的几何意义和物理意义;2.导数在实际问题中的应用。

四、教学准备1.教学课件;2.教学工具:黑板、彩色笔;3.教学素材:与导数相关的题目和实例。

五、教学过程Step 1 引入导数的概念(10分钟)1.引入问题:小明从家里出发骑自行车到学校,经历了不同的路段,那么他在每个路段上的速度是多少呢?2.学生思考问题,并提出速度的定义。

3.介绍导数的概念:导数是研究函数变化率的工具,它描述了一个函数在其中一点附近的变化速率。

Step 2 导数的计算方法(20分钟)1. 导数的定义:设函数y=f(x),当x在x0处有极限存在,那么函数f(x)在x0处的导数定义为:f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)。

2.通过例题演示如何计算导数。

3.引入常见导数的计算法则,如幂函数、反函数、指数函数等。

Step 3 导数的几何意义和物理意义(15分钟)1.导数的几何意义:表示函数在其中一点处的切线斜率。

2.通过例题演示导数的几何意义。

3.导数的物理意义:表示物体运动的速度或速度的变化率。

4.通过例题演示导数的物理意义。

Step 4 导数在实际问题中的应用(25分钟)1.介绍导数在实际问题中的应用,如最大值最小值问题、函数的图像判断等。

2.通过例题演示导数在实际问题中的应用。

3.引入微分的概念,并介绍微分的定义和计算方法。

Step 5 拓展与巩固(20分钟)1.指导学生通过课堂练习和课后作业巩固所学知识。

2.引导学生从日常生活中发现和应用导数的问题。

六、教学反思通过引入问题、讲解定义、演示例题等方式,让学生逐步理解导数的概念和计算方法。

在讲解导数的几何意义和物理意义时,通过具体示例,帮助学生更好地理解和应用导数。

导数及其应用教案

导数及其应用教案

导数及其应用教案一、导数的基本概念导数是微积分中的重要概念,用于描述函数在某一点上的变化率。

在计算机科学、物理学、经济学等领域,导数都具有广泛的应用。

在微积分中,函数f(x)在点x=a处的导数可以表示为f'(a),它描述了函数在该点附近的局部行为。

导数可以通过两种方式计算:几何定义和算术定义。

1. 几何定义:导数可以理解为函数图像在某点的斜率,表示为$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$。

2. 算术定义:导数可以理解为函数在某点上的瞬时速度,表示为$f'(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$。

二、导数的性质及计算方法导数具有以下几个重要的性质:1. 导数的可加性:若函数f(x)和g(x)都在某点上可导,那么它们的和f(x)+g(x)也在该点上可导,且导数满足$(f+g)'(a)=f'(a)+g'(a)$。

2. 导数的乘法规则:若函数f(x)和g(x)都在某点上可导,那么它们的乘积f(x)g(x)也在该点上可导,且导数满足$(fg)'(a)=f'(a)g(a)+f(a)g'(a)$。

3. 导数的链式法则:若函数y=f(g(x))可以分解为两个函数f(u)和g(x),且它们在某点上可导,那么复合函数y也在该点上可导,并且满足$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}\cdot \frac{{du}}{{dx}}$。

计算导数的方法主要有以下几种:1. 利用基本函数的导数公式进行求导。

2. 利用导数的性质,例如可加性、乘法规则和链式法则,对复杂函数进行求导。

3. 利用导数的几何定义,通过极限的方法进行求导。

三、导数的应用导数在实际问题中有着广泛的应用,以下介绍几个常见的应用领域:1. 最优化问题:导数可以帮助我们找到函数的最大值和最小值。

高中数学教案函数的导数与应用

高中数学教案函数的导数与应用

高中数学教案函数的导数与应用高中数学教案:函数的导数与应用导数是数学中一个重要的概念,它在函数研究和应用问题中起着关键的作用。

本教案将介绍函数的导数的概念、求导法则以及导数在各种实际应用中的具体运用。

一、函数的导数的概念及求导法则1.1 函数的导数概念函数的导数描述了函数在某一点的变化率,可用以下定义来表达:对于函数f(x),当自变量x在某点a处有极小的增量Δx时,相应的函数增量为Δf(x)。

如果当Δx趋近于0时,函数增量Δf(x)与Δx之比的极限存在,那么这个极限就是函数f(x)在点a处的导数。

导数用f'(a)或者dy/dx|_(x=a)表示。

1.2 常见函数的导数求法在实际应用中,我们常常需要对各种函数进行求导。

以下是一些常见函数的导数求法:1.2.1 常数函数的导数对于常数函数y = c,其中c为常数,其导数为0。

1.2.2 幂函数的导数对于幂函数y = x^n,其中n为常数,其导数为dy/dx = nx^(n-1)。

1.2.3 指数函数的导数对于指数函数y = a^x,其中a为底数(a>0且a≠1),其导数为dy/dx = a^x·ln(a)。

1.2.4 对数函数的导数对于对数函数y = logₐ(x),其中a为底数(a>0且a≠1),其导数为dy/dx = 1/(x·ln(a))。

1.2.5 三角函数的导数对于三角函数,常见的导数求法如下:- 正弦函数的导数:dy/dx = cos(x)- 余弦函数的导数:dy/dx = -sin(x)- 正切函数的导数:dy/dx = sec^2(x)- 余切函数的导数:dy/dx = -csc^2(x)二、导数在函数研究中的应用2.1 函数的单调性与极值导数可以帮助我们研究函数的单调性与极值。

当函数的导数为正时,函数递增;当函数的导数为负时,函数递减。

函数的极值出现在导数为0的点或者导数不存在的点上。

2.2 函数的凹凸性与拐点导数还可以帮助我们研究函数的凹凸性与拐点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学导数及其应用一、知识网络二、高考考点1、导数定义的认知与应用;2、求导公式与运算法则的运用;3、导数的几何意义;4、导数在研究函数单调性上的应用;5、导数在寻求函数的极值或最值的应用;6、导数在解决实际问题中的应用。

三、知识要点(一)导数1、导数的概念(1)导数的定义(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比,叫做函数在点到这间的平均变化率。

如果时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作,即。

(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即。

认知:(Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。

(Ⅱ)求函数在点处的导数的三部曲:①求函数的增量;②求平均变化率;③求极限上述三部曲可简记为一差、二比、三极限。

(2)导数的几何意义:函数在点处的导数,是曲线在点处的切线的斜率。

(3)函数的可导与连续的关系函数的可导与连续既有联系又有区别:(Ⅰ)若函数在点处可导,则在点处连续;若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。

事实上,若函数在点处可导,则有此时,记 ,则有即在点处连续。

(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。

反例:在点处连续,但在点处无导数。

事实上,在点处的增量当时,,;当时,,由此可知,不存在,故在点处不可导。

2、求导公式与求导运算法则(1)基本函数的导数(求导公式)公式1 常数的导数:(c为常数),即常数的导数等于0。

公式2 幂函数的导数:。

公式3 正弦函数的导数:。

公式4 余弦函数的导数:公式5 对数函数的导数:(Ⅰ);(Ⅱ)公式6 指数函数的导数:(Ⅰ);(Ⅱ)。

(2)可导函数四则运算的求导法则设为可导函数,则有法则1 ;法则2 ;法则3 。

3、复合函数的导数(1)复合函数的求导法则设,复合成以x为自变量的函数,则复合函数对自变量x的导数,等于已知函数对中间变量的导数,乘以中间变量u对自变量x的导数,即。

引申:设,复合成函数,则有(2)认知(Ⅰ)认知复合函数的复合关系循着“由表及里”的顺序,即从外向内分析:首先由最外层的主体函数结构设出,由第一层中间变量的函数结构设出,由第二层中间变量的函数结构设出,由此一层一层分析,一直到最里层的中间变量为自变量x的简单函数为止。

于是所给函数便“分解”为若干相互联系的简单函数的链条:;(Ⅱ)运用上述法则求复合函数导数的解题思路①分解:分析所给函数的复合关系,适当选定中间变量,将所给函数“分解”为相互联系的若干简单函数;②求导:明确每一步是哪一变量对哪一变量求导之后,运用上述求导法则和基本公式求;③还原:将上述求导后所得结果中的中间变量还原为自变量的函数,并作以适当化简或整理。

二、导数的应用1、函数的单调性(1)导数的符号与函数的单调性:一般地,设函数在某个区间内可导,则若为增函数;若为减函数;若在某个区间内恒有,则在这一区间上为常函数。

(2)利用导数求函数单调性的步骤(Ⅰ)确定函数的定义域;(Ⅱ)求导数;(Ⅲ)令,解出相应的x的范围当时,在相应区间上为增函数;当时在相应区间上为减函数。

(3)强调与认知(Ⅰ)利用导数讨论函数的单调区间,首先要确定函数的定义域D,并且解决问题的过程中始终立足于定义域D。

若由不等式确定的x的取值集合为A,由确定的x 的取值范围为B,则应用;(Ⅱ)在某一区间内(或)是函数在这一区间上为增(或减)函数的充分(不必要)条件。

因此方程的根不一定是增、减区间的分界点,并且在对函数划分单调区间时,除去确定的根之外,还要注意在定义域内的不连续点和不可导点,它们也可能是增、减区间的分界点。

举例:(1)是R上的可导函数,也是R上的单调函数,但是当x=0时,。

(2)在点x=0处连续,点x=0处不可导,但在(-∞,0)内递减,在(0,+∞)内递增。

2、函数的极值(1)函数的极值的定义设函数在点附近有定义,如果对附近的所有点,都有,则说是函数的一个极大值,记作;如果对附近的所有点,都有,则说是函数的一个极小值,记作。

极大值与极小值统称极值认知:由函数的极值定义可知:(Ⅰ)函数的极值点是区间内部的点,并且函数的极值只有在区间内的连续点处取得;(Ⅱ)极值是一个局部性概念;一个函数在其定义域内可以有多个极大值和极小值,并且在某一点的极小值有可能大于另一点处的极大值;(Ⅲ)当函数在区间上连续且有有限个极值点时,函数在内的极大值点,极小值点交替出现。

(2)函数的极值的判定设函数可导,且在点处连续,判定是极大(小)值的方法是(Ⅰ)如果在点附近的左侧,右侧,则为极大值;(Ⅱ)如果在点附近的左侧,右侧,则为极小值;注意:导数为0的不一定是极值点,我们不难从函数的导数研究中悟出这一点。

(3)探求函数极值的步骤:(Ⅰ)求导数;(Ⅱ)求方程的实根及不存在的点;考察在上述方程的根以及不存在的点左右两侧的符号:若左正右负,则在这一点取得极大值,若左负右正,则在这一点取得极小值。

3、函数的最大值与最小值(1)定理若函数在闭区间上连续,则在上必有最大值和最小值;在开区间内连续的函数不一定有最大值与最小值。

认知:(Ⅰ)函数的最值(最大值与最小值)是函数的整体性概念:最大值是函数在整个定义区间上所有函数值中的最大值;最小值是函数在整个定义区间上所有函数值中的最小值。

(Ⅱ)函数的极大值与极小值是比较极值点附近的函数值得出的(具有相对性),极值只能在区间内点取得;函数的最大值与最小值是比较整个定义区间上的函数值得出的(具有绝对性),最大(小)值可能是某个极大(小)值,也可能是区间端点处的函数值。

(Ⅲ)若在开区间内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值。

(2)探求步骤:设函数在上连续,在内可导,则探求函数在上的最大值与最小值的步骤如下:( I )求在内的极值;( II )求在定义区间端点处的函数值,;( III )将的各极值与,比较,其中最大者为所求最大值,最小者为所求最小值。

引申:若函数在上连续,则的极值或最值也可能在不可导的点处取得。

对此,如果仅仅是求函数的最值,则可将上述步骤简化:( I )求出的导数为0的点及导数不存在的点(这两种点称为可疑点);( II )计算并比较在上述可疑点处的函数值与区间端点处的函数值,从中获得所求最大值与最小值。

(3)最值理论的应用解决有关函数最值的实际问题,导数的理论是有力的工具,基本解题思路为:( I )认知、立式:分析、认知实际问题中各个变量之间的联系,引入变量,建立适当的函数关系;( II )探求最值:立足函数的定义域,探求函数的最值;( III )检验、作答:利用实际意义检查(2)的结果,并回答所提出的问题,特殊地,如果所得函数在区间内只有一个点满足,并且在点处有极大(小)值,而所给实际问题又必有最大(小)值,那么上述极大(小)值便是最大(小)值。

四、经典例题例1、设函数在点处可导,且,试求(1);(2);(3);(4)(为常数)。

解:注意到当)(1);(2)=A+A=2A(3)令,则当时,∴(4)点评:注意的本质,在这一定义中,自变量x在处的增量的形式是多种多样的,但是,不论选择哪一种形式,相应的也必须选择相应的形式,这种步调的一致是求值成功的保障。

若自变量x在处的增量为,则相应的,于是有;若令,则又有例2、(1)已知,求;(2)已知,求解:(1)令,则,且当时,。

注意到这里∴(2)∵∴①注意到,∴由已知得②∴由①、②得例3、求下列函数的导数(1);(2);(3);(4);(5);(6)解:(1)(2),∴(3),∴(4),∴(5),∴(6)∴当时,;∴当时,∴即。

点评:为避免直接运用求导法则带来的不必要的繁杂运算,首先对函数式进行化简或化整为零,而后再实施求导运算,特别是积、商的形式可以变为代数和的形式,或根式可转化为方幂的形式时,“先变后求”的手法显然更为灵巧。

例4、在曲线C:上,求斜率最小的切线所对应的切点,并证明曲线C关于该点对称。

解:(1)∴当时,取得最小值-13又当时,∴斜率最小的切线对应的切点为A(2,-12);(2)证明:设为曲线C上任意一点,则点P关于点A的对称点Q的坐标为且有①∴将代入的解析式得,∴点坐标为方程的解∴注意到P,Q的任意性,由此断定曲线C关于点A成中心对称。

例5、已知曲线,其中,且均为可导函数,求证:两曲线在公共点处相切。

证明:注意到两曲线在公共点处相切当且仅当它们在公共点处的切线重合,设上述两曲线的公共点为,则有,,∴,∴,∴,∴于是,对于有;①对于,有②∴由①得,由②得∴,即两曲线在公共点处的切线斜率相等,∴两曲线在公共点处的切线重合∴两曲线在公共点处相切。

例6、(1)是否存在这样的k值,使函数在区间(1,2)上递减,在(2,+∞)上递增,若存在,求出这样的k值;(2)若恰有三个单调区间,试确定的取值范围,并求出这三个单调区间。

解:(1)由题意,当时,当x∈(2,+∞) 时,∴由函数的连续性可知,即整理得解得或验证:(Ⅰ)当时,∴若,则;若,则,符合题意;(Ⅱ)当时,,显然不合题意。

于是综上可知,存在使在(1,2)上递减,在(2,+∞)上递增。

(2)若,则,此时只有一个增区间,与题设矛盾;若,则,此时只有一个增区间,与题设矛盾;若,则并且当时,;当时,∴综合可知,当时,恰有三个单调区间:减区间;增区间点评:对于(1),由已知条件得,并由此获得k的可能取值,进而再利用已知条件对所得k值逐一验证,这是开放性问题中寻求待定系数之值的基本策略。

例7、已知函数,当且仅当时,取得极值,并且极大值比极小值大4.(1)求常数的值;(2)求的极值。

解:(1),令得方程∵在处取得极值∴或为上述方程的根,故有∴,即①∴又∵仅当时取得极值,∴方程的根只有或,∴方程无实根,∴即而当时,恒成立,∴的正负情况只取决于的取值情况当x 变化时,与的变化情况如下表:(1,+∞)1+ 0 —0 +极大值极小值∴在处取得极大值,在处取得极小值。

由题意得整理得②于是将①,②联立,解得(2)由(1)知,点评:循着求函数极值的步骤,利用题设条件与的关系,立足研究的根的情况,乃是解决此类含参问题的一般方法,这一解法体现了方程思想和分类讨论的数学方法,突出了“导数”与“在处取得极值”的必要关系。

例8、(1)已知的最大值为3,最小值为-29,求的值;(2)设,函数的最大值为1,最小值为,求常数的值。

相关文档
最新文档