人教版高一必修一数学期末检测题

合集下载

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

人教版高中数学高一期末测试卷必修一

人教版高中数学高一期末测试卷必修一

人教版高中数学高一期末测试卷(必修一)姓名:得分:一、选择题(本大题共12小题,共60.0分)1.设集合,,则A. B. C. D.2.已知偶函数在区间∞单调递增,则满足的x取值范围是A. B. C. D.3.实数集R,设集合,,则A. B. C. D. -∞-∪∞4.已知集合,集合,则A. ∞B. ∞C. D.5.函数的图象大致为A. B.C. D.6.已知是奇函数,当时,当时,等于A. B. C. D.7.函数的单调递增区间是A. ∞B. ∞C. ∞D. ∞8. 若函数单调递增,则实数a 的取值范围是A.B.C. D.9. 函数 在 ∞ ∞ 上单调递减,且为奇函数.若 ,则满足的x 的取值范围是 A.B.C.D.10. 定义在R 上的奇函数 满足,且在 上 ,则A.B.C. -D. -11. 已知函数 在区间 上是单调函数,则实数k 的取值范围是A.B.C. D.12. 函数x x x f -++=2)1lg(1)(的定义域为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13. 已知函数 , 是偶函数,则 ______. 14. 若函数,方程 有两解,则实数m 的取值范围为______.15. 已知函数 是定义在R 上的奇函数,且当 时, ,则 的值为______. 16. 函数的单调递减区间是______ .三、解答题(本大题共6小题,共70.0分) 17. 已知定义在 上的函数 是增函数.若 ,求m 的取值范围;若函数 是奇函数,且 ,解不等式 .18.已知函数在区间上有最大值1和最小值.求a,b的值;若在区间上,不等式恒成立,求实数m的取值范围.19.已知函数的图象关于原点对称,其中a为常数.求a的值;当∞时,恒成立,求实数m的取值范围;若关于x的方程在上有解,求k的取值范围.20.设函数是增函数,对于任意x,∈都有.求;证明奇函数;解不等式-.21.已知函数是奇函数.求实数a的值;试判断函数在∞∞上的单调性,并证明你的结论;若对任意的,不等式恒成立,求实数m的取值范围.22.某网店经营的一种商品进价是每件10元,根据一周的销售数据得出周销量件与单价元之间的关系如图折线所示,该网店与这种商品有关的周开支均为25元.根据周销量图写出周销量件与单价元之间的函数关系式;Ⅱ写出周利润元与单价元之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.答案和解析1.【答案】D【解析】【分析】本题考查集合的交集及其运算,同时考查二次不等式的求解,属于基础题.解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:,即,,即∞,,故选D.2.【答案】A【解析】【分析】本题考查函数的奇偶性及单调性,同时考查不等式的求解,属于简单题.根据函数奇偶性和单调性的性质,将不等式进行转化求解即可.【解答】解:是偶函数,,不等式等价为,在区间∞单调递增,,解得.故选A.3.【答案】D【解析】【分析】本题考查并集及其运算、补集及其运算、一元二次不等式的解法等知识点,属于基础题.解不等式求得集合P、Q,再根据补集与并集的定义计算即可.【解答】解:集合,,或,或,即∞∞.故选D.4.【答案】A【解析】【分析】本题考查二次不等式的求解及指数函数的性质,同时考查集合的补集,属于基础题.根据集合A是二次不等式的解集,集合B是指数不等式的解集,因此可求出集合A,B,根据补集的求法求得.【解答】解:因为,,则∞.故选A.5.【答案】B【解析】【分析】本题考查函数的定义域与值域,以及函数图象的判断,属于基础题.先求出函数的定义域,再分别讨论,时函数的范围,由此判断函数的图象即可.【解答】解:函数的定义域为:∞∞,排除选项A.当时,函数,选项C不满足题意.当时,函数,选项D不正确,故选B.6.【答案】A【解析】【分析】本题考查函数解析式的求解及奇函数的性质,属较易题.当时,,由已知表达式可求得,由奇函数的性质可得与的关系,从而可求出.【解答】解:当时,,则,又是奇函数,所以当时,.故选A.7.【答案】D【解析】【分析】本题主要考查复合函数的单调性及对数函数的图象和性质,同时考查二次函数的图象和性质及二次不等式的求解,属于简单题.由得:或,令,结合复合函数单调性“同增异减”的原则,可得答案.【解答】解:由得:或,即的定义域为或,令,在∞内单调递增,而∞时,为减函数,∞时,为增函数,故函数的单调递增区间是∞.故选D.8.【答案】B【解析】【分析】本题考查分段函数的单调性,指数函数的性质,考查学生的计算能力,属于中档题.利用函数的单调性,判断指数函数以及一次函数的单调性,列出不等式求解即可,注意两段函数在衔接点处的函数值大小的比较.【解答】解:函数单调递增,所以指数函数、一次函数均单调递增,由指数函数以及一次函数的单调性的性质,可得且,但应当注意两段函数在衔接点处的函数值大小的比较,即,解得,综上,实数a的取值范围是.故选B.9.【答案】D【解析】【分析】本题考查函数的单调性,函数的奇偶性,属于较易题.由题干函数的单调性及奇偶性,可将不等式化为,即可解得答案.【解答】解:函数为奇函数,若,则,又函数在∞∞上单调递减,,,,解得:,所以x的取值范围是.故选D.10.【答案】C【解析】【分析】本题考查函数值的求法,指数函数、对数函数的运算与性质,函数的周期性及奇函数性质的综合应用,利用条件求出函数的周期以及利用函数的性质逐步转化自变量是解题的关键.由已知条件和函数周期性的定义求出函数的周期,利用函数的周期性、奇函数的性质和函数的解析式,逐步转化由运算性质求出的值.【解答】解:由得,,所以函数的周期是4,因为是定义在R上的奇函数,且,则,且在上,,所以.故选C.11.【答案】A【解析】【分析】本题考查二次函数的单调性的判断,注意运用分类讨论的思想方法,考查运算能力,属于基础题.求出的对称轴方程,讨论在区间上是单调增函数和减函数,注意对称轴和区间的关系,解不等式即可得到所求范围.【解答】解:函数的对称轴为,若在区间上是单调增函数,可得,解得.若在区间上是单调减函数,可得,解得.综上可得k的取值范围是.故选A.12.【答案】A【解析】【分析】本题考查了函数的定义域,考查学生的计算能力,属于基础题.由题意列出不等式组:,解出即可求解.【解答】解:由题意得:解得且,函数的定义域为.故选A.13.【答案】4【解析】【分析】本题主要考查偶函数的定义和性质,注意奇偶函数的定义域关于原点对称的特点,属于基础题.利用偶函数的定义及图象关于y轴对称的特点,结合二次函数的图象的对称轴,建立关于a,b的方程,即可求出的值.【解答】解:函数,是偶函数,,或1,,.偶函数的图象关于y轴对称,,..故答案为4.14.【答案】【解析】【分析】本题考查分段函数的性质及应用,方程的解与函数图象的交点问题,考查数形结合思想,属于中档题.作出函数的图象,利用方程有两解,即可求出实数m的取值范围.【解答】解:由题意,函数,画出图象如图所示:可得,,,,方程有两解,,所以实数m的取值范围为,故答案为.15.【答案】【解析】【分析】本题主要考查函数的奇偶性的应用,求函数的值,属于基础题.利用条件求得,再利用函数的奇偶性,求得的值.【解答】解:函数是定义在R上的奇函数,且当时,,,则,故答案为.16.【答案】∞【解析】【分析】本题主要考查对数函数的单调性,对数函数的定义域,复合函数的单调性规律,是基础题.由求得函数的定义域,利用复合函数的单调性求出函数的单调递减区间,属于中档题.【解答】解:由,解得或,故函数的定义域为∞∞,在∞上,函数是减函数,由复合函数的单调性得是增函数,在∞上,函数是增函数,由复合函数的单调性得是减函数,故函数的单调递减区间是∞,故答案为∞.17.【答案】解:由题意可得:,解得,即m的范围是.函数是奇函数,且,,,,,.不等式的解集为.【解析】本题主要考查函数的单调性的应用,考查学生分析解决问题的能力,正确转化是关键,属于中档题.由题意可得,,由此解不等式组求得m的范围.由题意可得,所以,即可得出结论.18.【答案】解:,,函数图象开口向上,对称轴,在上单调递减;,且,;即,即,要使此不等式在上恒成立,只需使函数在上的最小值大于0即可.在上单调递减,,则,解得.故实数m的取值范围是∞.【解析】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键,属于中档题.函数图象开口向上,对称轴,故在单调递减,进而根据在区间上有最大值1和最小值,可得a,b的值;若在区间上,不等式恒成立,函数在上的最小值大于0,进而可得实数m的取值范围.19.【答案】解:函数的图象关于原点对称,函数为奇函数,,即在定义域内恒成立,所以,即在定义域内恒成立,所以,解得:或舍,所以,当时,,∞时,恒成立,;由得:,即,即,即在上有解,因为在上单调递减,,则的值域是,.即k的取值范围为.【解析】本题主要考查了函数的单调性、最值问题,考查函数的奇偶性以及函数的值域问题,是一道中档题.根据函数的奇偶性,求出a的值即可;求出,根据函数的单调性求出m的范围即可;问题转化为在上有解,由在上递减,根据函数的单调性求出的值域,从而求出k的范围即可.20.【答案】解:由题设,令,恒等式可变为,解得;证明:令,则由得,即,故是奇函数;,,即,又由已知得:,,由函数是增函数,不等式转化为,即,不等式的解集或.【解析】本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题.利用已知条件通过,直接求;通过函数的奇偶性的定义,直接证明是奇函数;利用已知条件转化不等式.通过函数的单调性直接求解不等式的解集即可.21.【答案】解:是奇函数在原点有定义;;在∞∞上单调递增,证明如下:设,则:;;,;;是∞∞上的增函数;由、知,是∞∞上的增函数,且是奇函数;;;;即对任意恒成立;只需;解之得;实数m的取值范围为.【解析】本题考查奇函数的定义,增函数的定义,指数函数的单调性,以及根据增函数定义证明一个函数为增函数的方法和过程,根据奇函数定义和增函数定义解不等式的方法,一元二次不等式恒大于0时,判别式的取值情况.根据为奇函数,并且在原点有定义,从而,求出;容易判断为增函数,根据增函数定义,设任意的,然后作差,通分,根据指数函数的单调性便可证明,从而得出在∞∞上单调递增;根据为奇函数,以及在R上单调递增便可根据不等式恒成立得出不等式对任意恒成立,从而得出判别式,解该不等式便可得出实数m的取值范围.22.【答案】解:当时,,代入点,,得,,;同理时,,周销量件与单价元之间的函数关系式;Ⅱ当时,,时,;时,,函数单调递减,,综上所述,时,.【解析】本题考查分段函数及运用,考查分段函数的最值,应考虑各段的最值,考查运算能力,属于中档题.根据函数图象,求出解析式,即可写出周销量件与单价元之间的函数关系式;Ⅱ分段求出函数的最值,即可得出结论.。

高一上数学期末必修一二考试卷(含答案)

高一上数学期末必修一二考试卷(含答案)

人教高一上数学必修一二期末综合测试一、选择题(每小题5分,共60分)1、点P 在直线a 上,直线a 在平面α内可记为( )A 、P ∈a ,a ⊂αB 、P ⊂a ,a ⊂αC 、P ⊂a ,a ∈αD 、P ∈a ,a ∈α 2、直线l 是平面α外的一条直线,下列条件中可推出l ∥α的是( ) A 、l 与α内的一条直线不相交 B 、l 与α内的两条直线不相交C 、l 与α内的多数条直线不相交D 、l 与α内的随意一条直线不相交 3x+y+1=0的倾斜角为 ( )A .50ºB .120ºC .60ºD . -60º4、在空间中,l ,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( ) A 、若l ∥α,m ⊥l ,则m ⊥α B 、若l ⊥m ,m ⊥n ,则m ∥nC 、若a ⊥α,a ⊥b ,则b ∥αD 、若l ⊥α,l ∥a ,则a ⊥α 5、函数y=log 2(x 2-2x-3)的递增区间是( )(A )(-∞,-1) (B )(-∞,1) (C )(1,+∞) (D )(3,+∞)6.设函数11232221,,log ,333a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则,,a b c 的大小关系是( ) A. a b c << B. a c b << C. c a b << D. c b a << 7、假如0<ac 且0<bc ,则直线0=++c by ax 不通过( )A 第一象限B 其次象限C 第三象限D 第四象限 8,A. 体重随年龄的增长而增加B. 25岁之后体重不变C. 体重增加最快的是15岁至25岁D.体重增加最快的是15岁之前9,计算2)2lg 20(lg 2021lg 356lg 700lg -+--A. 20B. 22C. 2D. 1810、经过点A (1,2),且在两坐标轴上的截距相等的直线共有( ) A 1条 B 2条 C 3条 D 4条 11、已知A (2,)3-,B (2,3--),直线l 过定点P (1, 1),且与线段AB 交,年龄/岁5015044565则直线l 的斜率k 的取值范围是( )A 434≤≤-k B 443≤≤k C 21≠k D 4-≤k 或43≥k 12、A,B,C,D 四点不共面,且A,B,C,D 到平面α的距离相等,则这样的平面( ) A 、1个 B 、4个 C 、7个 D 、多数个 二、填空题(每小题5分,共20分)13、在空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 为CB ,CD 上的点,且CF ∶CB=CG ∶CD=2∶3,若BD=6cm ,梯形EFGH 的面积 28cm 2,则EH 与FG 间的距离为 。

【人教版】高中数学必修一期末试卷(附答案)

【人教版】高中数学必修一期末试卷(附答案)

一、选择题1.已知关于x 的方程2(3)10ax a x +-+=在区间1(,)2+∞上存在两个实数根,则实数a 的取值范围是( ) A .2332a << B .213a < C .9aD .293a < 2.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 3.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .πB .2πC .3πD .4π4.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0xx f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .45.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a << 6.计算log 916·log 881的值为( ) A .18B .118C .83D .387.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14,8.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]9.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( )A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 10.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1C .-3或2D .-1或211.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃12.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .1二、填空题13.已知f (x )=23,123,1x x x x x +≤⎧⎨-++>⎩,则函数g (x )=f (x )-e x 的零点个数为________. 14.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.15.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.16.若函数()()20.2log 1f x kx kx =-+的定义域是R ,则实数k 的取值范围是______.17.定义在R 上的减函数()f x 满足(0)4f =,且对任意实数x 都有()(2)4f x f x +-=,则不等式|()2|2f x -<的解集为____________.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________20.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________三、解答题21.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产x 台需要另投入成本()C x (万元).当年产量不足80台时,21()402C x x x =+(万元),当年产量不小于80台时,8100()1012180C x x x=+-(万元),若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?并求出这个最大利润.22.函数()f x 是定义在R 上的奇函数,当0x >时,()241f x x x =-+.(1)求函数()f x 的解析式:(2)根据解析式在图画出()f x 图象. (3)讨论函数()()g x f x m =-零点的个数.23.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由.24.(1)求满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合;(2)求函数235()log (45)f x x x =--的单调递减区间.25.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.26.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可设2()(3)1f x ax a x =+-+,0a ≠,讨论0a >,0a <,结合对称轴与区间的关系和1()2f 的符号、判别式的符号,解不等式可得所求范围. 【详解】解:方程有两个实数根,显然0a ≠,可设2()(3)1f x ax a x =+-+,对称轴是32ax a-=, 当0a >时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++>,且2(3)40a a ∆=--, 即为302a <<且23a >,且9a 或1a ,则213a <;当0a <时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++<,且2(3)40a a ∆=--, 即为302a <<且23<a ,且9a 或1a ,则a ∈∅.综上可得,a 的取值范围是213a <.故选:B . 【点睛】本题解题关键是结合二次函数的图象特征研究二次方程根的分布,分类讨论借助图象准确列出不等关系,突破难点.2.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误.由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.3.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称.函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.4.C解析:C 【分析】由新定义可知探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数即得结果. 【详解】由题意可知,函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,因为()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,由y 轴左侧部分()3,0xy x =-<图像关于原点中心对称的图像3x y --=-,即3xy -=,()0x >,作函数3xy -=,()0x >和()22,0y x x x =-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”. 故选:C. 【点睛】本题解题关键是理解新定义,寻找对称点对,探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.5.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.6.C解析:C 【分析】根据对数的运算性质,换底公式以及其推论即可求出. 【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C . 【点睛】本题主要考查对数的运算性质,换底公式以及其推论的应用,属于基础题.7.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.8.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.9.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1243a ---=,x 223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;10.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.11.A解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥,所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-,又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a ≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭.故选:A.【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集. 12.C解析:C【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,1==,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++, ,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素.故选:C【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.二、填空题13.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2【详解】 把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.14.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos ,1()21,1x x f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个故答案为:5【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.15.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值. 【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =, 故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.16.【分析】由题可知恒成立再分情况讨论即可【详解】由题可知恒成立当时成立当时当时不等式不恒成立故实数k 的取值范围是故答案为:【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题属于中等题型解析:[)0,4【分析】由题可知210kx kx -+>恒成立.再分情况讨论即可.【详解】由题可知210kx kx -+>恒成立.当0k =时成立.当0k >时,24004k k k ∆=-<⇒<<. 当k 0<时,不等式不恒成立.故实数k 的取值范围是[)0,4.故答案为:[)0,4【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.17.【分析】由绝对值不等式可知利用中x 的任意性得再利用函数的单调性解不等式即可【详解】因为任意实数都有且令则故不等式解得即又函数为上的减函数解得故不等式的解集为故答案为:【点睛】方法点睛:本题考查了解抽 解析:(0,2)【分析】由绝对值不等式可知0()4f x <<,利用()(2)4f x f x +-=中x 的任意性得(2)0f =,再利用函数的单调性解不等式即可.【详解】因为任意实数x 都有()(2)4f x f x +-=,且(0)4f =,令2x =,则(2)(0)4f f +=,故(2)0f =不等式|()2|22()22f x f x -<⇒-<-<,解得0()4f x <<,即(2)()(0)f f x f << 又函数()f x 为R 上的减函数,解得02x <<,故不等式|()2|2f x -<的解集为(0,2) 故答案为:(0,2)【点睛】方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.18.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域.【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-.【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.19.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合.【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果: ()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1,()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3,()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12,()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2,()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14,故答案为:{}3,6,14【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.20.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣ 解析:12(,]23由f(x)=x2﹣(a+2)x+2﹣a<0可得x2﹣2x+1<a(x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.【详解】f(x)=x2﹣(a+2)x+2﹣a<0,即x2﹣2x+1<a(x+1)﹣1,分别令y=x2﹣2x+1,y=a(x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A={x∈Z|f(x)<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10 {120 311aaa-≤--≤<,解得12<a23≤故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题三、解答题21.(1)2160500,080281001680,80x x xyx xx⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥⎪⎪⎝⎭⎩;(2)当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.(1)分别求080x <<和80x ≥时函数的解析式可得答案;(2)当080x <<时,21(60)13002y x =--+,配方法求最值、;当80x ≥时, 利用基本不等式求最值,然后再做比较.【详解】 (1)当080x <<时,2211100405006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭, 当80x ≥时,8100810010010121805001680y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 于是2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)由(1)可知当080x <<时,21(60)13002y x =--+, 此时当60x =时y 取得最大值为1300(万元),当80x ≥时,8100168016801500y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当8100x x=即90x =时y 取最大值为1500(万元), 综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩;(2)答案见解析;(3)答案见解析.【分析】(1)当0x <时,0x ->,运用已知区间的解析式和奇函数的定义结合()00f =,即可求解;(2)根据(1)中的解析式作出图象即可;(3)()()g x f x m =-零点的个数即等价于()y f x =与y m =两个函数图象交点的个数,数形结合讨论m 的值即可.【详解】(1)当0x =时,()00f =,当0x <时,0x ->,()241f x x x -=++,因为()f x 时奇函数,所以()()f x f x -=-,所以()()241f x x x f x -=++=-,即()()2410f x x x x =---<,所以()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩(2)()f x 图象如图所示:(3)由()f x 图象知:()23f -=,()23f =-,①当3m <-或3m >时,()y f x =与y m =两个函数图象有1个交点,函数()()g x f x m =-有1个零点;②当3m =±时,()y f x =与y m =两个函数图象有2个交点,函数()()g x f x m =-有2个零点;③当31m -<≤-或13m ≤<时,()y f x =与y m =两个函数图象有3个交点,函数 ()()g x f x m =-有3个零点;④当11m -<<且0m ≠时,()y f x =与y m =两个函数图象有4个交点,函数 ()()g x f x m =-有4个零点;⑤当0m =时,()y f x =与y m =两个函数图象有5个交点,函数()()g x f x m =-有5个零点;综上所述:当3m <-或3m >时,()g x 有1个零点;当3m =±时,,()g x 有2个零点;当31m -<≤-或13m ≤<时,()g x 有3个零点;当11m -<<且0m ≠时,()g x 有4个零点;当0m = 时,()g x 有5个零点;【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.23.(1)2()log f x x =(2)偶函数.见解析【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性.【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=,所以22()log (2)log (2)g x x x =++-为偶函数.【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题.24.(1)32x x⎧⎨⎩或}1x <- (2)(5,)+∞ 【分析】 (1)先使得()22222139x x ---⎛⎫= ⎪⎝⎭,再由3x y =的单调性求解即可; (2)先求定义域,再根据复合函数单调性的“同增异减”原则求解即可.【详解】 解:(1)因为221139x x --⎛⎫> ⎪⎝⎭,且()22222139x x ---⎛⎫= ⎪⎝⎭,所以()222133x x --->,因为3x y =在R 上单调递增,所以()2221x x -->-,解得32x >或1x <-, 则满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合为32x x ⎧⎨⎩或}1x <- (2)由题,2450x x -->,解得5x >或1x <-,则定义域为()(),15,-∞-+∞, 设245u x x =--,35log y u =, 因为35log y u =单调递减,若求()f x 的递减区间,则求245u x x =--的递增区间, 因为245u x x =--的对称轴为2x =,所以在()5,+∞上单调递增,所以函数()f x 的单调减区间为()5,+∞【点睛】本题考查解指数不等式,考查复合函数的单调区间.25.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k =-与区间()0,4端点的大小关系得出实数k 的取值范围;(3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n =⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a b b a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+ (2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k =- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k <-恒成立 综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭ (3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132 132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩ ∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =- 4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围.26.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.。

人教版高中数学必修一期末测试题及答案

人教版高中数学必修一期末测试题及答案

人教版高中数学必修一期末测试题一、选择题(每小题5分,共60分)1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4log 8log 22=48log 2C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 45.下列四组函数中,表示同一函数的是( ).A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1 D .f (x )=1+x ·1-x ,g (x )=1-2x6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1,1) C .一定经过点(-1,1)D .一定经过点(1,-1)7.国内快递重量在1 000克以内的包裹邮资标准如下表:如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元B .6.00元C .7.00元D .8.00元8.方程2x=2-x 的根所在区间是( ). A .(-1,0)B .(2,3)C .(1,2)D .(0,1)9.若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <010.函数y =x 416-的值域是( ). A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ). A .f (x )=x1 B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)12.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).A .-2B .-1C .0D .1二、填空题(每小题4分 , 共16分)13.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 . 14.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 15.函数y =2-log 2x 的定义域是 . 16.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是 .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知全集R U =, A =}52{<≤x x ,集合B 是函数lg(9)y x =-的定义域.(1)求集合B ;(2)求)(B C A U .(8分)18.(12分) 已知函数f (x )=lg(3+x )+lg(3-x ).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并说明理由.19.(12分)已知函数(),2c bx x x f ++=且()01=f .(1)若0b =,求函数()x f 在区间[]3,1-上的最大值和最小值;(2)要使函数()x f 在区间[]3,1-上单调递增,求b 的取值范围.(12分)20.(12分)探究函数),0(,4)(+∞∈+=x xx x f 的图像时,.列表如下:⑴ 函数)0(4)(>+=x xx x f 的递减区间是 ,递增区间是 ; ⑵ 若对任意的[]1,3,()1x f x m ∈≥+恒成立,试求实数m 的取值范围.21. (12分)求函数212log (43)y x x =-+的单调增区间.22.(14分) 已知0,1a a >≠且, ()211x x a f x a a a ⎛⎫=- ⎪-⎝⎭.(1)判断()f x 的奇偶性并加以证明; (2)判断()f x 的单调性并用定义加以证明;(3)当()f x 的定义域为(1,1)-时,解关于m 的不等式2(1)(1)0f m f m -+-<.参考答案一、选择题 1.B解析:U B ={x |x ≤1},因此A ∩U B ={x |0<x ≤1}.2.C 3.C 4.C 5.A 6.B 7.C 8.D 9.D解析:由log 2 a <0,得0<a <1,由b⎪⎭⎫⎝⎛21>1,得b <0,所以选D 项.10.C解析:∵ 4x>0,∴0≤16- 4x<16,∴x 416-∈[0,4).11.A解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确. 12.A 13.D 14.B解析:当x =x 1从1的右侧足够接近1时,x-11是一个绝对值很大的负数,从而保证 f (x 1)<0;当x =x 2足够大时,x-11可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B . 二、填空题15.参考答案:(-∞,-2). 16.参考答案:(-∞,0). 17.参考答案:[4,+∞). 18.参考答案:(-8,+∞). 三、解答题19.参考答案:(1)由⎩⎨⎧0303>->+x x ,得-3<x <3,∴ 函数f (x )的定义域为(-3,3). (2)函数f (x )是偶函数,理由如下:由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=lg(3-x )+lg(3+x )=f (x ), ∴ 函数f (x )为偶函数.20.参考答案:(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ; 另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a . 所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2). 21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为500003600 3-=12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。

人教版高中数学必修一期末测试题

人教版高中数学必修一期末测试题

期 末 测 试 题一、选择题(每小题5分,共60分)1.设全集U =R ,A ={>0},B ={>1},则A ∩=( ).A .{0≤x <1}B .{0<x ≤1}C .{<0}D .{>1}2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D 3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ).A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ).A .2(8-4)=2 8-2 4B .4log 8log 22=48log 2 C .2 23=32 2 D .2(8+4)=2 8+2 45.下列四组函数中,表示同一函数的是( ).A .f (x )=,g (x )=2x B .f (x )= x 2,g (x )=2 xC .f (x )=1-1-2x x ,g (x )=x +1 D .f (x )=1+x ·1-x ,g (x )=1-2x6.幂函数y =x α(α是常数)的图象( ).A .一定经过点(0,0)B .一定经过点(1,1)C .一定经过点(-1,1)D .一定经过点(1,-1)7.国内快递重量在1 000克以内的包裹邮资标准如下表:是( ).A .5.00元B .6.00元C .7.00元D .8.00元8.方程2x =2-x 的根所在区间是( ).A .(-1,0)B .(2,3)C .(1,2)D .(0,1)9.若2a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <010.函数y =x416-的值域是( ). A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ).A .f (x )=x1B .f (x )=(x -1)2C .f (x )=D .f (x )=(x +1)12.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ). A .-2 B .-1 C .0 D .1二、填空题(每小题4分 , 共16分)13.A ={-2≤x ≤5},B ={>a },若⊆,则a 取值范围是 .14.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 15.函数y =2-log 2x 的定义域是 .16.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是 .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知全集R U =, A =}52{<≤x x ,集合B是函数lg(9)y x =-的定义域.(1)求集合B ;(2)求)(B C A U .(8分)18.(12分) 已知函数f (x )=(3+x )+(3-x ).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并说明理由. 19.(12分)已知函数(),2c bx x x f ++=且()01=f .(1)若0b =,求函数()x f 在区间[]3,1-上的最大值和最小值;(2)要使函数()x f 在区间[]3,1-上单调递增,求b 的取值范围.(12分) 20.(12分)探究函数),0(,4)(+∞∈+=x xx x f 的图像时,.列表如下:⑴ 函数)0(4)(>+=x xx x f 的递减区间是 ,递增区间是 ; ⑵ 若对任意的[]1,3,()1x f x m ∈≥+恒成立,试求实数m 的取值范围.21. (12分)求函数212log (43)y x x =-+的单调增区间.22.(14分) 已知0,1a a >≠且, ()211x x a f x a a a ⎛⎫=- ⎪-⎝⎭.(1)判断()f x 的奇偶性并加以证明;(2)判断()f x 的单调性并用定义加以证明;(3)当()f x 的定义域为(1,1)-时,解关于m 的不等式2(1)(1)0f m f m -+-<.参考答案一、选择题1.B 解析:={≤1},因此A ∩={0<x ≤1}.2.C 3.C 4.C 5.A 6.B 7.C 8.D 9.D 解析:由2 a <0,得0<a <1,由b⎪⎭⎫⎝⎛21>1,得b <0,所以选D 项. 10.C 解析:∵ 4x >0,∴0≤16- 4x <16,∴x416-∈[0,4). 11.A解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确.12.A 13.D 14.B解析:当x =x 1从1的右侧足够接近1时,x-11是一个绝对值很大的负数,从而保证f (x 1)<0;当x =x 2足够大时,x-11可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B .二、填空题15.参考答案:(-∞,-2). 16.参考答案:(-∞,0). 17.参考答案:[4,+∞).18.参考答案:(-8,+∞). 三、解答题 19.参考答案:(1)由⎩⎨⎧0303>->+x x ,得-3<x <3,∴ 函数f (x )的定义域为(-3,3).(2)函数f (x )是偶函数,理由如下:由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=(3-x )+(3+x )=f (x ), ∴ 函数f (x )为偶函数.20.参考答案:(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ; 另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a . 所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2).21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为500003600 3-=12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-500003-x ×50=-501(x -4 050)2+307 050.所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。

高一数学必修一期末考试试卷

高一数学必修一期末考试试卷

高一数学必修一期末考试试卷
一、选择题(每题3分,共30分)
1. 已知集合A={2,3,4},B={3,4,5,6},则A∩B等于()
A. {2,3,4}
B. {3,4}
C. {2,3,4,5,6}
D. {2,5,6}
2. 下列说法错误的是()
A. 平行线的倾斜角相等
B. 垂直线有无穷多条
C. 平行于两
条直线的平面必共线 D. 垂直于两条直线的平面必共点
3. 下面四个子集A,B,C,D,中,若A⊂B,且B⊂C,则()
A. A⊂C
B. B⊂A
C. C⊂A
D. D⊂A
二、填空题(每题3分,共18分)
4. 已知n个正整数的和为m,则至少有____个整数大于等于
m÷n 。

5. 为了得到函数y=f(x)的导数,可以采用____准则。

6. 已知等差数列{an}的前n项和为Sn,若a1=3,d=2,则n值为
_____。

三、计算题(每题5分,共40分)
7. 设P(x)为定义在R上的多项式,s(x)=a0+a1x+a2x2+…+anxn 为P(x)的展开式,若P(3)=12、P(1)=2,a2 = −2,求s(−1)的值。

8. 设等比数列{an}的前n项和为Sn,若a1=4,q=3,求n值。

9. 已知函数f(x)=x3-6x2+9x,x1>x2,求上面式子中x1, x2满足不等式f(x)>-1的左右端点。

10. 若直线l⊥原点且斜率是2,则过原点的切线方程解析式为
_____。

高一数学必修1期末试题和答案解析

高一数学必修1期末试题和答案解析

高中数学必修一期末试卷一、选择题。

(共12小题,每题5分) 1、设集合A={x ∈Q|x>-1},则()A 、A ∅∉B 、2A ∉C 、2A ∈D 、{}2⊆A2.下列四组函数中,表示同一函数的是().A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1D .f (x )=1+x ·1-x ,g (x )=1-2x3、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=()A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 4、函数21)(--=x x x f 的定义域为() A 、[1,2)∪(2,+∞)B 、(1,+∞)C 、[1,2)D 、[1,+∞)5、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是()6、三个数70。

3,0.37,㏑0.3,的大小顺序是() A 、70。

3,0.37,㏑0.3,B 、70。

3,,㏑0.3,0.37 C 、0.37,,70。

3,,㏑0.3,D 、㏑0.3,70。

3,0.377、若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165f(1.4065)=-0.052那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为() A 、1.2B 、1.3C 、1.4D 、1.5 8.函数y =x 416-的值域是().9、函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=<的图像为()10、设()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有() A 、f(xy)=f(x)f(y)B 、f(xy)=f(x)+f(y) C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y)11、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则() A 、b>0且a<0B 、b=2a<0C 、b=2a>0D 、a ,b 的符号不定12、设f(x)为定义在R 上的奇函数.当x≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)等于( ). A.-3B.-1C.1D.3二、填空题(共4题,每题5分)13、f(x)的图像如下图,则f(x)的值域为; 14、函数y =2-log 2x 的定义域是.15、若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是. 16.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是.三、解答题(本大题共6小题,满分44分,解答题写出必要的文字说明、推演步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末测试题
考试时间:90分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.
1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1} B .{x |0<x ≤1} C .{x |x <0} D .{x |x >1}
2.下列四个图形中,不是..
以x 为自变量的函数的图象是( ).
A B C
D
3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2 B .a 2+1 C .a 2+2a +2 D .a 2+2a +1
4.下列等式成立的是( ).
A .log 2(8-4)=log 2 8-log 2 4
B .4
log 8log 22=4
8log 2
C .log 2 23=3log 2 2
D .log 2(8+4)=log 2 8+log 2 4
5.下列四组函数中,表示同一函数的是( ). A .f (x )=|x |,g (x )=
2
x
B .f (x )=lg x 2,g (x )=2lg x
C .f (x )=1
-1-2
x x ,g (x )=x +1
D .f (x )=1+x ·1-x ,g (x )=1-2x
6.幂函数y =x α(α是常数)的图象( ).
A .一定经过点(0,0)
B .一定经过点(1,1)
C .一定经过点(-1,1)
D .一定经过点(1,-1) 7.国内快递重量在1 000克以内的包裹邮资标准如下表:
如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ).
A .5.00元
B .6.00元
C .7.00元
D .8.00元
8.方程2x =2-x 的根所在区间是( ).
A .(-1,0)
B .(2,3)
C .(1,2)
D .(0,1)
9.若
log 2 a <0,b



⎝⎛21>1,则( ).
A .a >1,b >0
B .a >1,b <0
C .0<a <1,b >0
D .0<a <1,b <0 10.函数y =
x
416-的值域是( ).
A .[0,+∞)
B .[0,4]
C .[0,4)
D .(0,4)
11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1
<x 2时,都有f (x 1)>f (x 2)的是( ).
A .f (x )=x
1 B .f (x )=(x -1)2
C .f (x )=e x
D .f (x )=ln(x +1) 12.奇函数f (x )在(-∞,0)上单调递增,若f (-1)=0,则不等式f (x )<0的解集是( ).
A .(-∞,-1)∪(0,1)
B .(-∞,-1)∪(1,+∞)
C .(-1,0)∪(0,1)
D .(-1,0)∪(1,+∞) 13.已知函数f (x )=⎩

⎧0≤ 30
log 2x x f x x ),+(>,,则
f (-10)的值是( ).
A .-2
B .-1
C .0
D .1 14.已知x 0是函数f (x )=2x +
x
-11
的一个零点.若x 1∈(1,x 0),
x 2∈(x 0,+∞),则有( ).
A .f (x 1)<0,f (x 2)<0
B .f (x 1)<0,f (x 2)>0
C .f (x 1)>0,f (x 2)<0
D .f (x 1)>0,f (x 2)>0
二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上.
15.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 .
16.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 .
17.函数y =
2-log 2x 的定义域是 .
18.求满足8
241-x ⎪


⎝⎛>x -24的x 的取值集合是 .
三、解答题:本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤.
19.(8分) 已知函数f (x )=lg(3+x )+lg(3-x ). (1)求函数f (x )的定义域;
(2)判断函数f (x )的奇偶性,并说明理由.
20.(10分)已知函数f (x )=2|x +1|+ax (x ∈R ).
(1)证明:当a>2时,f(x)在R上是增函数.
(2)若函数f(x)存在两个零点,求a的取值范围.
21.(10分)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
参考答案
一、选择题 1.B
解析:U B ={x |x ≤1},因此A ∩U B ={x |0<x ≤1} 2.C
3.C 4.C 5.A 6.B 7.C 8.D 9.D
解析:由log 2 a <0,得0<a <1,由b



⎝⎛21>1,得b <0,所以选
D 项.
10.C
解析:∵ 4x >0,∴0≤16- 4x <16,∴x
416-∈[0,4).
11.A
解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确.
12.A 13.D
14.B
解析:当x =x 1从1的右侧足够接近1时,x
-11是一个绝对值很
大的负数,从而保证
f (x 1)<0;当x =x 2足够大时,
x
-11可以是一个接近0的负数,从而保
证f (x 2)>0.故正确选项是B .
二、填空题
15.参考答案:(-∞,-2). 16.参考答案:(-∞,0). 17.参考答案:[4,+∞). 18.参考答案:(-8,+∞). 三、解答题
19.参考答案:(1)由⎩

⎧030
3>->+x x ,得-3<x <3, ∴ 函数f (x )的定义域为(-3,3). (2)函数f (x )是偶函数,理由如下:
由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=lg(3-x )+lg(3+x )=f (x ), ∴ 函数f (x )为偶函数.
20.参考答案:(1)证明:化简f (x )=⎩
⎨⎧
1221 ≥22<-,-)-(-,+)+(x x a x x a
因为a >2,
所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-
a ;
另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a .
所以,当a >2时,函数f (x )在R 上是增函数.
(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩
⎨⎧
0022<-)<-)(+(a a a 解得
a
的取值范围是(0,2).
21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为50
000 3600 3-=12,所以这时租出了100-12=88辆车.
(2)设每辆车的月租金定为x 元,则租赁公司的月收益为
f (x )=⎪⎭
⎫ ⎝
⎛50
000 3100--x (x -150)-
50
000
3-x ×50=-50
1(x -4 050)2
+307 050.
所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。

相关文档
最新文档