中考复习直角三角形[下学期]--北师大版

合集下载

数学北师大版九年级下册直角三角形的边角关系 30°、45°、60°角的三角函数值

数学北师大版九年级下册直角三角形的边角关系 30°、45°、60°角的三角函数值

直角三角形的边角关系30°、45°、60°角的三角函数值一、学生知识状况分析学生的知识技能基础:本节课前学生已经学习了正切、正弦、余弦的定义学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析本节课教学目标如下:知识与技能:1.历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义。

2.能够进行30°、45°、60°角的三角函数值的计算3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小过程与方法:1.经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力。

情感态度与价值观:1.培养学生把实际问题转化为数学问题的能力。

教学重点:能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小教学难点:三角函数值的应用三、教学过程分析本节课设计了六个教学环节:复习巩固、活动探究、讲解新课、知识应用、小结与拓展、作业布置。

第一环节复习巩固活动内容:如图所示在Rt△ABC中,∠C=90°。

B (1)a、b、c三者之间的关系是活动目的:复习巩固上一节课的内容第二环节活动探究活动内容:[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度. 我们组设计的方案如下:让一位同学拿着三角尺站在一个适当的位置B处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C点,30°的邻边和水平方向平行,用卷尺测出AB的长度,BE的长度,因为DE=AB,所以只需在Rt△CDA中求出CD的长度即可. 我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°的正切值,在上图中,tan30°,则CD=atan30°,岂不简单. 你能求出30°角的三个三角函数值吗? 活动目的:引出课题,激发学生的学习积极性第三环节讲解新课活动内容:探索30°角的三角函数值①观察一副三角尺,其中有几个锐角?它们分别等于多少度? ②sin30°等于多少呢?你是怎样得到的?与同伴交流. ③cos30°等于多少?tan30°呢? 学生探讨、交流,得出30°角的三角函数值2.我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?4.例题讲解(多媒体演示), [例1]计算:(1)sin30°+cos45°;(2)sin260°+cos260°-tan45°. [例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)活动目的:探索30°、45°、60°角的三角函数值,并能够进行含30°、45°、60°角的三角函数值的计算. 第四环节知识运用活动内容:1.计算:(1)sin60°-tan45°;(2)cos60°+tan60°;(3) 2 2 sin45°+sin60°-2cos45° 2.某商场有一自动扶梯,其倾斜角为30°.高为7 m,扶梯的长度是多少? 3.如图为住宅区内的两幢楼,它们的高AB=CD=30 m,两楼问的距离AC=24 m,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高? (精确到0.1 m,2≈1.41,3≈1.73) 活动目的:对本节知识进行巩固练习。

北师大版八年级数学(下)第一章 直角三角形

北师大版八年级数学(下)第一章  直角三角形

1.2直角三角形一、知识点梳理1.直角三角形的性质定理:①直角三角形的两个锐角互余②直角三角形两条直角边的平方等于斜边的平方2.直角三角形的判定定理:①有两个角互余的三角形是直角三角形②如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形3.互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题成为互逆命题,其中一个命题成为另一个命题的逆命题。

4.逆定理:如果一个定力的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理成为另一个定理的逆定理。

5.直角三角形全等的证明:斜边和一条直角边分别相等的两个直角三角形全等。

二、经典题型总结题型一:利用直角三角形的性质求角的度数题型二:利用直角三角形的性质求线段长题型三:利用互逆命题的关系写逆命题题型四:利用“斜边、直角边”(HL)证明两直角三角形全等题型五:与直角三角形有关的动点、最值问题题型六:与直角三角形有关的综合提升题三、解题技巧点睛1.在直角三角形中求斜边上的高的时候可以考虑使用面积相等的方法(等积法)2.在等腰直角三角形(或等腰等边三角形)内部出现三角形的题型中,有时可以考虑用旋转的方法构造全等三角形解题3.灵活运用勾股定理的逆定理,若题干中未明确直角三角形,而是给定了几条边的长度,那么就可以考虑一下是否需要逆定理4.灵活运用①直角三角形中30°角所对的直角边是斜边的一半 ②直角三角形中斜边的中线长等于斜边的一半四、易错点分析原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.五、典型例题分析题型一:利用直角三角形的性质求角的度数例题:如图,在△ABC 中,∠C=70°,∠B=30°,AD ⊥BC 于点D,AE 为∠BAC 的平分线,求∠DAE 的度数。

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1


∴∠A
= 90°,

B

1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.

第一章 直角三角形的边角关系 第三章 圆 单元整体复习课 课件-北师大版九年级数学下册

第一章 直角三角形的边角关系 第三章 圆 单元整体复习课 课件-北师大版九年级数学下册
70°
∴AC=AB,
∴∠CBA=∠BCA=70°,
分析 画弧操作知AC=AB, 则∠CBA=∠BCA=70°
∵l1∥l2,
∴∠CBA+∠BCA+∠1=180°,
∴∠1=180°-70°-70°=40°,
l1∥l2,知∠CBA+∠BCA+∠1=180°
故答案为:40°.
∠1度数
典例分析2
知识点2--圆的对称性
分析
解:∵OB=OC,
∴∠OCB=∠OBC=40°, 由圆周角定理∠A= ∠BOC

∴∠BOC=180°-40°-40°
=100°,

∴∠BOC=180°-2 ∠OBC
∴∠A= ∠BOC=50°.

故选:A.
典例分析4
知识点3--圆周角与圆心角的关系
如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、
运用勾股定理与直角三角形的边角关系解决生活中的实际问题;
3.掌握并能运用以下知识解决问题:圆的有关性质:相关概念,对称性,
圆周角与圆心角关系,确定圆的条件,与圆有关的位置关系:点、直线与
圆的位置关系,与圆有关的运算:弧长面积的计算,圆的内接正多边形相
关运算。
复习要求
1.知识建构环节,需要大家暂停屏幕,根据给出的思维导图查阅课本,往
构造直角三角形
分析
锐角三角函数定义
10
5
5
典例分析2
知识点2--特殊的三角函数值
已知a为锐角,且sin(a - 10°)=
A.50°
B.60°
C.70°


解:∵sin60°= ,
∴a - 10°=60°,
即a=70°.

解直角三角形的应用[下学期]--北师大版

解直角三角形的应用[下学期]--北师大版
从计划经济到市场经济,社会发生着日新月异的变化。认识多元化,政治多边化,城市楼群化,超市连锁化,大数据云计算,发展区域中心化,物联网五花八门。人类社会正 面临着百年未遇之大变局。置身其中,人们的生活也发生了极大的变化。从前的城市,房子是用来住的,不是用来“炒“的,也是人家经济实力的象征。从前的房子,居家待业是 一个幸福的归宿,不是按揭付款,户主成了负债累累前行的房奴。从前的文章,是一技之长,不是炒作,更不是出轨对象。从前的学术是大雅之堂,不是炒作成风,囧态百出。就 连从前的时光都很慢,一生只够爱一个人,不是时间如金钱,曝出来恐婚单身。就连生活都乐活无边,笑逐颜开,并不是今天的“炒”话连篇,养活自己都难。
我记得我在风华正茂的年纪,我还是一个不谙世事的毛头小子。那时候我觉得友爱就像一场风,是说走就走的旅行。我还记得念大学的那会儿,我就是一个人尽皆知的好男儿, 是志在四方的唱将。我只知道人生除了奋斗,别无选择。几年之后,我凭借工作能力晋级升职加薪,凭借自己的能耐购房选车,养家活口。工作期间,我依然谨记尊师重道。我依 然铭记师长的垂训和教导。“温良恭俭让”、“己所不欲,勿施于人”、“言之无文,行而不远”……信以如是观。
。 电影在线观看 https:///index.php/vod/type/id/1.html
此次考察考证了历史,饱览了名胜;缅怀了先烈,学习了先辈;见识了最新复古建筑,开阔了视野。虽然时间短暂,但我们收获良多。
“非主流”业已成为一种势不可当的大趋势。而我,在这个“大众化”的潮流里尽情地放浪形骸,偶尔纸醉金迷,灯红酒绿着。

北师大版九年级数学下册第一章直角三角形的边角关系综合题训练

北师大版九年级数学下册第一章直角三角形的边角关系综合题训练

北师大版九年级数学下册第一章直角三角形的边角关系综合压轴题专项训练试题1、如图,MN是表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500 米为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400米,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?2、如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D 是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE,EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F.求支架DE的长.3、如图,拦水坝的横断面为等腰梯形ABCD,坝顶宽BC为6 m,坝高为3.2 m,为了提高水坝的拦水能力需要将水坝加高2 m,并且保持坝顶宽度不变,迎水坡CD的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD的长为多少.4、小红家的阳台上放置了一个晒衣架(如图∶),图∶是晒衣架的侧面示意图,立杆AB,CD相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32 cm (参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC ∶BD .(2)求扣链EF 与立杆AB 的夹角∶OEF 的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm ,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.5、如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的点B 处安置测角仪,在点A 处测得电线杆上C 处的仰角为30°.已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).6、如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的距离为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin360.59cos360.81tan360.73===°,°,°.】7、在建筑楼梯时,设计者要考虑楼梯的安全程度和占地面积,如图1—136(1)所示,虚线为楼梯的斜度线,斜度线与地板的夹角为锐角θ,一般情况下,锐角θ愈小,楼梯的安全程度愈高,但占地面积较多,如图l—136(2)所示,为提高安全程度,把倾角由θ1减至θ2,这样楼梯占用地板的长度由d1增加到d2,已知d1=4 m,θ1=40°,θ2=36°,求楼梯占用地板的长度增加了多少.(精确到0.01 m,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan 36°≈0.7265,sin 40°≈0.6428,cos 40°≈0.7660,tan 40°≈0.8391)8、在旧城改造中,要拆除一烟囱AB,如图1—137所示,在地面上事先划定以B为圆心,半径与AB等长的圆形区域为危险区,现在从与B地水平距离相距(BD=21米)21米远的建筑物CD的顶端C点测得A点的仰角为45°,B点的俯角为30°,现在离B点25米远的地方有一受保护的文物,则该文物是否在危险区内?试说明理由.,精确到0.01米)9、通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1,在∶ABC中,AB =AC ,顶角A 的正对记作sadA ,这时sadA =底边腰=BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad 60°=____________;(2)对于0°<∶A <180°,∶A 的正对值sadA 的取值范围是____________;(3)如图2,已知sinA =35,其中∶A 为锐角,试求sadA 的值. 10、根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M 距离羲皇大道l (直线)的距离MN 为30米(如图8所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从点A 行驶到点B 所用时间为6秒,∠AMN =60°,∠BMN =45°.(1)计算AB 的长;(2)通过计算判断此车是否超速.11、如图所示,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.12、如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C 在AB 的延长线上,设想过C 点作直线AB 的垂线l ,过点B 作一直线(在山的旁边经过),与l 相交于D 点,经测量∶ABD =135°,BD =800米,求直线l 上距离D 点多远的C 处开挖?(2≈1.414,结果精确到1米)13、已知:如图,在山脚的C 处测得山顶A 的仰角为 45°,沿着坡度为30°的斜坡前进400米到D 处(即 ∠,CD =400米),测得A 的仰角为,求山的高度AB .14、如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B 两船相距1003+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号).(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在23≈1.73)6015、如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1∶,且AB=30 m,李亮同学在大堤上A点处用高1.5 m的测量仪测出高压电线杆CD顶端D的仰角为30°,已知地面BC宽30 m,求高压电线杆CD的高度.(结果保留三位有效数字,≈1.732)16、如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1∶的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).17、如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BP Q的度数;(2)求该电线杆PQ的高度(结果精确到1 m).(参考数据:≈1.7,≈1.4)18、乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示).建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处的俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P,D的连线与水平方向的夹角为30°,求引桥BC的长度.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)。

九年级数学下册第一章直角三角形的边角关系1.230°、45°、60°角的三角函数值课件(新版)北师大版

九年级数学下册第一章直角三角形的边角关系1.230°、45°、60°角的三角函数值课件(新版)北师大版
[解析] 过点 M 作 MN⊥OB,MN 的长即为所求. ∵∠AOB=60°,OM=4, ∴MN=4×sin60°=2 3.
2 30°,45 °,60°角的三角函数
12.如图 K-3-4,在△ABC 中,∠A=30°,∠B=45°,AC=2 3, 则 AB 的长为__3+ ___3___.
图K-3-4
2 30°,45 °,60°角的三角函数
二、填空题
8.点 M(-sin60°,cos60°)关于x轴对称的点的坐标是 ___-__2_3_,_-__12_ ___.
[解析]
∵sin60°=
23,cos60°=12,∴点
M

的坐标为-

23,12.∵点
M
关于
x
轴对称的点,横坐标不变,纵坐标为其相反数,∴点 M 关于 x 轴对称的点的坐标

是-

23,-12.
2 30°,45 °,60°角的三角函数
9.在 Rt△ABC 中,∠C=90°,BC=5 2,AC=5 6,则∠A= ____3_0___°.
[解析] ∵在 Rt△ABC 中,∠C=90°,BC=5
2,AC=5
6,∴tanA=55
2 6
= 33,∴∠A=30°.故答案为 30.
图K-3-2
2 30°,45 °,60°角的三角函数
BC 3 2 2 [解析] C ∵sin∠CAB=AC= 6 = 2 ,∴∠CAB=45°.∵sin∠C′AB′= B′C′ 3 3 3 AC′ = 6 = 2 ,∴∠C′AB′=60°,∴∠CAC′=60°-45°=15°, 即鱼竿转过的角度是 15°.故选 C.
2 30°,45 °,60°角的三角函数
1 解:(1)原式=2-2×(

九年级数学下册:第一章直角三角形的边角关系复习教案(北师大版)

九年级数学下册:第一章直角三角形的边角关系复习教案(北师大版)

第1章直角三角形的边角关系课题回顾与思考教具目标(一)教学知识点1.经历回顾与思考,建立本章的知识框架图.2.利用计算器,发现同角的正弦、余弦、正切之间的关系。

3.进一步体会直角三角形边角关系在现实生活中的广泛应用.(二)能力训练要求1.体会数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题.2.进一步体会三角函数在现实生活中的广泛应用,增强应用数学的意识.(三)情感与价值观要求1.在独立思考问题的基础上,积极参与对数学问题的讨论,敢于发表自己的观点.并尊重与理解他人的见解,在交流中获益.2.认识到数学是解决现实问题的重要工具,提高学习数学的自信心.教学重点1.建立本章的知识结构框架图.2.应用三角函数解决现实生活中的问题,进一步理解三角函数的意义.教学难点应用三角函数解决问题教学方法探索——发现法教具准备多媒体演示、计算器教学过程Ⅰ.回顾、思考下列问题,建立本章的知识框架图[师]直角三角形的边角关系,是现实世界中应用广泛的关系之一.通过本章的学习,我们知道了锐角三角函数在解决现实问题中有着重要的作用.如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,—般来说,这些实际问题的数量关系往往归结为直角三角形中边和角的关系.利用锐角三角函数解决实际问题是本章的重要内容,很多实际问题穿插于各节内容之中.[问题门举例说明,三角函数在现实生活中的应用.[生]例如:甲、乙两楼相距30 m,甲楼高40 m,自甲楼楼顶看乙楼楼顶.仰角为30°,乙楼有多高?(结果精确到1 m)解:根据题意可知:3乙楼的高度为30tn30°=40+30×3=40+103≈57(m),即乙楼的高度约为57 m.[生]例如,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P和Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q南偏西50°的方向,求河宽(结果精确到1 m).解:根据题意,∠TPQ=90°,∠PQT=90°-50°=40°,PQ=180 m.则:PT就是所求的河宽.在Rt△TPQ中,PT=180×tan40°=180×0.839≈151 m,即河宽为151 m.[师]三角函数在现实生活中的应用很广泛,下面我们来看一个例子.多媒体演示如图.MN表示某引水工程的一段设计路线从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心,500 m为半径的圆形区域为居民区,取MN上的另一点B,测得BA 的方向为南偏东75°,已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?[师生共析]解:根据题意可知∠CMB=30°,∠CMA=60°,∠EBA=75°,MB=400 m,输水路线是否会穿过居民区,关键看A 到MN 的最短距离大于400 m 还是等于400 m ,于是过A 作AD ⊥MN .垂足为D .∵BE//MC .∴∠EBD =∠CMB =30°.∴∠ABN=45°.∠AMD =∠CMA-∠CMB =60°-30°=30°.在Rt △ADB 中,∠ABD =45°,∴tan45°=BD AD ,BD =︒45tan AD =AD , 在Rt △AMD 中.∠AMD=30°,tan30° =MD AD ,MD =︒30tan AD =3AD , ∵MD=MD-BD ,即 3AD-AD =400, AD-200(3+1)m>400m .所以输水路线不会穿过居民区.[师]我们再来看[问题2]任意给定一个角,用计算器探索这个角的正弦、余弦、正切之间的关系.例如∠α=25°,sin α、cos α、tan α的值是多少?它们有何关系呢?[生]sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663. 而︒︒25cos 25sin ≈0.4663. 我们可以发现ααcos sin =tan α. [师]这个关系是否对任意锐角都成立呢?我们不妨从三角函数的定义出发来推证一下.[师生共析]如 图,在Rt △ABC 中. ∠C =90°,∵sinA =ABBC cosA =AB AC tanA =ACBC , ∴ACBC AC AB AB BC AB AC AB BC A A =⋅=÷=cos sin =tanA, tanA=A A cos sin . 这就是说,对于任意锐角A ,∠A 的正弦与余弦的商等于∠A 的正切.[师]下面请同学们继续用计算器探索sin α,cos α之间的关系.[生]sin 225°≈0.1787,cos 225°≈0.8213,可以发现:sin 225°+cos 225°≈0.1787+0.8213=1.[师]我们可以猜想任意锐角都有关系:sin 2α+cos 2α=1,你能证明吗?[师生共析]如上图.sinA= AB BC ,cosA=ABAC sin 2A+cos 2A =2222222AB AC BC AB AC AB BC +=+, 根据勾股定理,得BC 2+AC 2=AB 2,∴sin 2A+cos 2A =1,这就是说,对于任意锐角A ,∠A 的正弦与余弦的平方和等于1.[师]我们来看一个例题,看是否可以应用上面的tanA 、sinA 、cosA 之间的关系.已知cosA=53,求sinA .tanA . [生]解:根据sin 2A+cos 2A =1.得sinA =.54)53(1cos 122=-=-A tanA=345354cos sin ==A A . [生]我还有另外一种解法,用三角函数的定义来解.解:∵cosA =.53=∠斜边的邻边A 设∠A 的邻边=3k .斜边=5k .则∠A 的对边=.4)3()5(22k k k =-∴sinA=.5454==∠k k A 斜边的邻边 tanA=.3434==∠∠k k A A 的邻边的对边 [师]问题3:你能应用三角函数解决哪些问题?[生]锐角三角函数反映了直角三角形的边角关系.凡是属于直角三角形的问题或可以转化为直角三角形的问题,都可以用三角函数来解决.[师]我们知道在直角三角形中,除直角外,有两个锐角.两条直角边以及斜边共5个元素,它们之间的关系很丰富.如图:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .(1)边的关系:a 2+b 2=c 2(勾股定理):(2)角的关系:∠A+∠B =90; (3)sinA=c a ,cosA=c b ,tanA=b a ;sinB=c b ,cosB=c a ,tanB=ab . 利用三角形的全等和直角三角形全等,以及作图,我们知道:当一直角边和斜边确定时,直角三角形唯一确定,即直角三角形的一直角边和斜边已知,则直角三角形中其他元素都可以求出.同学们不妨试一试.[生]例如Rt △ABC 中,∠C =90°.a =4,c=8求b ,∠A 及∠B解:∵a =4,c =8,根据勾股定理可得 b=3422=-a c .∵sinA=c a =2184=, ∴∠A =30°.又∵∠A+∠B =90°,∴∠B =60°.[师]很好,是不是只要知道直角三角形除直角外的两个元素,其余元素就都可以求出呢?[生甲]可以.[生乙]不可以.例如Rt △ABC 中,∠c =90°,∠A =25°.∠B=65°.这样的直角三角形有无数多个,是不唯一确定的,所以其余的元素无法确定.[生丙]我认为已知直角三角形中除直角外的两个元素.其中至少有一个边,就可以求出其余元素.[师]很好,我们来做一个练习.多媒体演示:在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A ,∠B 、∠C 的对边.(1)已知a =3,b =3,求C ,∠A ,∠B .(2)已知b =5,c =10,求a ,∠A ,∠B .(3)已知∠A=45°,c =8,求a ,b ,∠B .[生]解:(1)根据勾股定理c .=23332222=+=+b a .又∵tanA ∴∠A=b a =33=1, ∴∠A=45°. 又∵∠A+∠B =90,∴∠B =45°.(2)根据勾股定理,得a=355102222=-=-b c ,又∵sinB =21105==c b ∴∠B=30°. 又∵∠A+∠B=90°∴∠A=60°.(3)∵sinA=ca ∴=csinA=8×sin45°=42, 又∵cosA =c b ∴b=c ·cosA =8×cos45°=42, 又∵∠A+∠B =90°,∴∠B=45°.[师]实践证明,在直角三角形中,已知除直角外的两个元素(至少有一个是边),利用直角三角形中特殊的边的关系、角的关系、边角关系,就可求出其余所有元素.因此,在现实生活中,如测量、建筑、工程技术和物理学中,常遇到的距离、高度、角度都可以转化到直角三角形中,这些实际问题的数量关系往往就归结为直角三角形中边和角的关系问题.接下来,我们看问题4:如何测量一座楼的高度?你能想出几种办法?[生]有四种方法:第一种:用太阳光下的影子来测量.因为在同一时刻,物体的高度与它的影子的比值是一个定值.测量出物体的高度和它的影子的长度,再测出高楼在同一时刻的影子的长度.利用物体的高度:物体影子的长度=高楼的高度,高楼影子的长度.便可求出高楼的高.第二种:在地面上放一面镜子,利用三角形相似,也可以测量出楼的高度.第三种:用标杆的方法.第四种:利用直角三角形的边角关系求楼的高度.[师]下面就请同学们对本章的内容小结,建立本章内容框架图.[师生共析]本章内容框架如下:Ⅱ.随堂练习1.计算(1)︒-︒︒-︒45cos 60sin 45sin 30cos (2)sin 230°+2sin60°+tan45°-tan60°+cos 230°;(3)原式=.60tan 60tan 60tan 212︒-︒+︒-解:(1)原式=22232223--=1; (2)原式=(21)2+2×23+1-3+(23)2; =4331341+-++ =1+1=2(3)原式=︒-︒-60tan )60tan 1(2=|1-tan60°|-tan60°=tan60°-1-tan60°=-1.2.如图,大楼高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及楼与塔之间的距离AC(结果19确到0.0l m).解:没AC=x ,BC =y ,在Rt △ABC 中,tan60°=xy ,① 在Rt △BDE 中.tan30°=x y 30-,② 由①得y =3x ,代入②得33=xx 303 . x=153≈25.98(m).将x =153代入y=3x=3×153 =45(m).所以塔高BC 为45 m ,大楼与塔之间的距离为25.98 m .Ⅲ.课时小结本节课针对回顾与思考中的四个问题作了研讨,并以此为基础,建立本章的知识框植架结构图.进一步体验三角函数在现实生活中的广泛应用.Ⅳ.课后作业复习题A 组1,2,5,6,8B 组2.3,4,5,6Ⅴ.活动与探究如图.AC 表示一幢楼,它的各楼层都可到达;BD 表示一个建筑物,但不能到达.已知AC 与BD 地平高度相同,AC 周围没有开阔地带,仅有的测量工具为皮尺(可测量长度)和测角器(可测量仰角、俯角和两视线间的夹角).(1)请你设计一个测量建筑物BD 高度的方案,要求写出测量步骤和必要的测量数据(用字母表示),并画出测量示意图:(2)写出计算BD 高度的表达式.[过程]利用测量工具和直角三角形的边角关系来解决.这里的答案不唯一,下面只写出一种方法供参考.[结果]测量步骤(如图):①用测角器在A 处测得D 的俯角α;②用测角器在A 处测得B 的仰角β ③用皮尺测得AC=am .(2)CD=αtan a ,BE=αtan a ·tan β, BD=a+αβtan tan a . 板书设计回顾与思考本章内容结构框架图:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pk10稳定小赚模式
[单选]混凝土养护应注意夏天保持必要湿度,冬天保持必要温度,其主要原因是()。A.增加混凝土中游离水B.增加混凝土抗渗能力C.延缓混凝土凝结时间D.使水泥水化作用正常进行 [单选]常见堤防隐患可概括为()、裂缝、暗沟、渗漏、近堤坑塘五大类。A.洞穴B.人为洞穴C.害堤动物洞穴D.朽木洞穴 [单选]维生素的生理功能不包括()A.保护视力B.影响生殖功能C.提供热能D.参与骨代谢E.维持正常免疫功能 [单选]在发现有可疑交易或者行为时,在其发生后()个工作日内,向中国反洗钱监测分析中心报告。A.5B.10C.30D.60 [单选]主动脉瘤外穿的造影指征为()A.造影剂快速充盈瘤囊B.造影剂缓慢充盈瘤囊C.造影剂不充盈瘤囊D.造影剂外溢E.瘤囊内充盈缺损 [单选,A2型题,A1/A2型题]下列CT叙述中,错误的是()A.CT图像是数字图像B.CT成像仍使用X射线CT是多参数成像D.CT扫描层是二维体积E.CT可以进行薄层扫描 [单选,A1型题]下列各项,属于暑淫证临床表现的是()。A.头昏如裹B.胸闷脘痞C.肌肉酸痛D.头身疼痛E.卒然昏倒 [单选]以下不属于体检医师对风险考察的方式的是()A.安排体检B.审核体检报告书C.调阅病历D.审查业务员报告书 [单选]使用荧光显微镜检测时应注意的是()A.使用前应预热15minB.标本可以长时间照射C.应用发荧光的镜油封片D.调整激发光源波长与荧光物质发射波长一致E.染色后标本应放置一段时间再镜检 [填空题]在公路中桩测量中碰到虚交时,应先解三角形,求出()的位置,然后再根据普通交点的敷设方法,计算曲线各要素桩。 [单选]男,5岁,反复呛咳,张口呼吸,有鼾声,鼻腔分泌物多。X线检查如图所示,最可能的诊断是()A.鼻窦炎B.鼻息肉C.扁桃体炎D.腺样体肥大E.鼻炎 [单选,A型题]弱碱性药物在碱性尿液中则()A.解离多,重吸收少,排泄慢B.解离少,重吸收少,排泄快C.解离少,重吸收多,排泄慢D.解离多,重吸收少,排泄快E.解离多,重吸收多,排泄快 [名词解释]人工饲料 [单选]Battle征是指()A.颅后窝骨折引起的脑脊液耳漏B.颅中窝底骨折引起的脑脊液鼻漏和耳漏C.颅前窝底骨折引起的眼眶周围的青紫和肿胀D.颅后窝骨折引起的迟发性乳突部皮下淤血斑E.颅中窝底骨折引起的搏动性突眼和颅内血管杂音 [单选]以下()项指的是边际效用A.张某吃了第二个面包,满足程度从10个效用单位增加到了15个单位,增加了5个效用单位B.张某吃了两个面包,共获得满足15个效用单位C.张某吃了四个面包后再不想吃了D.张某吃了两个面包,平均每个面包带给张某的满足程度为7.5个效用单位E.以上都 [单选,A2型题,A1/A2型题]急性粒细胞白血病与急性单核细胞白血病的主要鉴别点是()。A.过氧化物酶阳性程度B.Auer小体有无C.血清溶菌酶升高程度D.α-醋酸萘酚染色可否被氟化钠抑制E.苏丹黑染色阳性程度 [单选]Denis三柱理论中,后柱不包括()A.后纵韧带B.棘间韧带C.横突D.椎板E.黄韧带 [问答题,简答题]优质护理的主题是什么? [单选]关于会计的职能,下列说法错误的是()。A.会计的职能是会计本质的外在表现形式B.会计的基本职能是核算和监督C.预算、检查、考核分析等手段是会计的核算职能D.会计核算具有完整性、连续性和系统性的特点 [单选]下列关于会计报表的编制要求,表述不正确的是()。A.在编制报表时,应保证内容完整,不得漏填B.会计报表之间,本期报表与上期报表之间的数字应允许不一致C.账簿记录是编制会计报表的主要依据,在编制会计报表前,要做好对账和结账工作,在保证账证、账账、账实相符的前提下 [填空题]教育行政部门负责学校卫生工作的行政管理。卫生行政部门负责对学校卫生工作的()指导。 [单选]根据营业税法律制度的规定,下列各项中,按“服务业”税目征税的是()。A.旅游公司从事景区内索道运输业务B.金融企业从事融资租赁业务C.邮政局从事传递函件业务D.文化公司从事字画展览业务 [单选]风湿性心脏瓣膜病二尖瓣狭窄出现急性肺水肿是由于().A.肺静脉和肺毛细血管压升高B.肺小动脉痉挛造成肺动脉高压C.左心室排血量减低D.左心室充盈压升高E.体循环淤血,静脉压升高 [填空题]空压机一级安全阀开启压力范围是(),二级开启范围是()。 [单选]右侧小脑幕切迹疝时,其瞳孔和肢体的改变是()A.右侧瞳孔散大,右侧肢体瘫痪B.右侧瞳孔缩小,左侧肢体瘫痪C.左侧瞳孔散大,右侧肢体瘫痪D.左侧瞳孔散大,右侧肢体瘫痪E.右侧瞳孔散大,右侧肢体瘫痪 [单选]下列()不是保安押运工作的特点。A.高风险B.高标准C.高素质D.高强度 [填空题]一般照明用电为(),通过人体的安全电压为()。 [单选]铁路平面无线调车B型号调车长台,直接发五车信号时用()A.黄(0.5)B.黄(1.5)C."黄绿"D."黄红" [单选,A2型题,A1/A2型题]不属于人格的投射类测验的是()A.洛夏墨迹测验B.主题统觉测验C.霍兹曼墨迹测验D.词语联想测验E.范畴测验 [单选,A1型题]迟发型超敏性炎症发生中,下列哪种细胞因子能活化巨噬细胞()A.IFN-γB.TNFC.TGF-βD.LTE.IL-10 [判断题]使命是一个组织存在的理由或价值。组织的每一个成员都非常清楚这一点,所以没有必要形成文件。()A.正确B.错误 [单选]下列有关行政法规制定程序的说法哪一项是正确的?()A.行政法规的民族语言文本由国家民族事务委员会与国务院办公厅共同审定B.行政法规修改后,应公布新的行政法规文本C.国务院年度立法工作计划一经确定,应严格执行,不得改变和调整D.起草行政法规时,对涉及的有关管理体制 [单选]下列哪项不属于生长发育指标()A.年龄别低体重百分比B.人口自然增长率C.年龄别低身高百分比D.身高别低体重百分比E.新生儿低体重发生率 [单选]经济全球化的基础是()A.战后多边贸易的迅速发展B.战后科学技术的迅猛发展C.战后金融市场的迅速发展D.布雷顿森林会议体系崩溃 [单选]在建设项目招投标的交易方式下,通常由()作为招标人,通过发布招标公告或者向一定数量的特定承包人发出招标邀请等方式发出招标信息。A.业主B.工程承包人C.公证人D.工程发包人 [单选]直流母线的正、负极色漆规定为()。A.蓝、白B.红、白C.红、蓝D.黑、白 [单选]良性骨肿瘤X线片常表现为()A.边界清楚,无骨膜反应B.骨密度不均匀C.边界不清,可见软组织阴影D.可见Codman三角E.呈多处虫蛀状 [单选]钢筋的纵向焊接应采用()。A.电弧焊B.气压焊C.电渣压力焊D.闪光对焊 [单选]下列卵巢粘液性囊腺瘤声像图特点,哪一项是错误A.肿瘤体积较大B.囊腔内有较多的分隔C.囊内有细小点状回声D.少数有乳头状生长E.囊腔内无分隔 [问答题,简答题]简述中央银行经理国库的优越性。
ห้องสมุดไป่ตู้
相关文档
最新文档