高考数学精华资料【打印版无修版】
新课标高考数学公式(精华版)

1高考数学公式(精华版)1.子集个数:n 元集合有2n 个子集,有21n -个真子集,21n-个非空子集,22n-个非空真子集; 2.常见数集:自然数集:N 正整数集:*N N 、+ 整数集:Z 有理数集:Q 实数集:R3.集合间的基本运算:(1)交集:公共元素;B A I (2)并集:全部元素(不能重复);B A Y (3)补集:除去公共元素而剩余的元素;A C U4.二次函数:2()(0)f x ax bx c a =++≠:判别式ac b 42-=∆;(1)0>∆时,图像与x 轴有两个交点; (2)0=∆时,图像与x 轴有一个交点; (3)0<∆时,图像与x 轴没有交点; 5.韦达定理:若21x x 、是一元二次方程)0(02≠=++a c bx ax 的两个根,则:a b x x -=+21,acx x =21.6.单调性:设1x ,2[,]x a b ∈,且12x x ≠,那么:(1)[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; (2)[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数;(3)如果0)(>'x f ,则)(x f 为增函数;0)(<'x f ,则)(x f 为减函数;(4)增函数+增函数=增函数;减函数+减函数=减函数; 增函数-减函数=增函数;减函数-增函数=减函数; 7.奇偶性:(1)()()f x f x -=-⇔()f x 是奇函数⇔()f x 的图像关于原点对称⇒(0)0f =(若在0x =有定义)(2)()()f x f x -=⇔()f x 是偶函数⇔()f x 的图像关于y 轴对称;(3)奇函数±奇函数=奇函数;偶函数±偶函数=偶函数奇函数⨯奇函数=偶函数⨯偶函数=偶函数;奇函数⨯偶函数=奇函数8.对称性:(1)函数()y f x =的图象关于直线x a =对称2()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-9.周期性:(1)()()f x f x a =-+或1()()f x f x a =+⇔()f x 是2T a =的周期函数;(2)()()f x f x a b ++=或()()f x f x a b ⋅+=(0b ≠)⇔()f x 是2T a =的周期函数;10.分数指数幂:n mnmaa=(0,,a m n N*>∈,且1n >).1m nm naa-=(0,,a m n N *>∈,且1n >). 11.对数运算规律:(1)指数与对数互换标准:log b a N b a N =⇔= (2)常用两个对数等式:②01log =a ③1log =a a(3)对数运算法则:log ()log log a a a MN M N =+;log log log aa a MM N N=-;log log n a a M n M = (4)对数的换底公式:log log log m a m N N a=(log log m na a nb b m =)12.常见函数的导函数:(1)0='C (C 为常数);(2)'1()()n n x nx n Q -=∈; (3)x x cos )(sin =';(4)x x sin )(cos -=';(5)x x 1)(ln =';ea x xa log 1)(log ='; (6)x x e e =')(; a a a x x ln )(=';(7)[]'''()()()()f x g x f x g x ±=±; (8)[]'''()()()()()()f x g x f x g x f x g x ⋅=+(9)[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦; (10)())()()]([x g x f x g f '⋅'='(11) []''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数);13.曲线的切线方程:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率为)(0x f ',相应的切线方程是3))((000x x x f y y -'=-.14.角度制与弧度制互化标准:3602rad π︒=,180rad π︒=,10.01745rad ︒≈,'157.35718rad ︒︒≈=15.扇形面积公式:1=2S rl 扇(其中r 为半径,l 为扇形的弧长) 16.同角三角函数基本关系式:(1)平方关系:1cos sin 22=+αα;(2)商数关系:αααtan cos sin =; 17.诱导公式:(奇变偶不变,符号看象限)212(1)sin ,(sin()2(1)s ,nn n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数)(为奇数),212(1)s ,cos()2(1)sin ,nn co n n n απαα+⎧-⎪+=⎨⎪-⎩(为偶数)(为奇数) eg :ααπcos )2sin(=- ααπsin )2cos(=- ααπsin )sin(=-ααπcos )cos(-=- ααπcos )2sin(=+ 18.两角和与差的正余弦,正切公式:cos()cos cos sin sin cos()cos cos sin sin αβαβαβαβαβαβ+=-⎧⎨-=+⎩ ;sin()sin cos cos sin sin()sin cos cos sin αβαβαβαβαβαβ+=+⎧⎨-=-⎩ βαβαβαtan tan 1tan tan )tan(-+=+;βαβαβαtan tan 1tan tan )tan(+-=-19.二倍角公式:αααcos sin 22sin = ααα2tan 1tan 22tan -=ααααα2222sin 211cos 2sin cos 2cos -=-=-=20.降次(幂)公式: 21cos 2sin 2αα-=21cos 2cos 2αα+=1sincos sin 22ααα= 21.辅助角公式:sin cos )a x b x x ϕ±=±,其中tan baϕ=4特别的,有:sin cosx x x +=sin cos )4x x x π-=-cos 2sin()6x x x π+=+cos 2sin(x x x -=sin 2sin()3x x x π=+,sin 2sin(3x x x =23.三角函数图像的变换:(1)左右平移:左加右减;(2)周期变换:伸长缩短;在ABC ∆中,R CcB b A a 2sin sin sin ===. 22cos bc A -,222b c cos 2a A bc+-=; 22cos ac B -,222cos 2a c b B ac+-=;22cos ab C -,222cos 2a b c C ab +-=;)sin B C +=,cos()cos A B C +=-,(π=++C B A ,︒180)(2)若ABC ∆是锐角三角形,则sin cos A B >27.面积公式:111sin ()222ABC S ah ab C a b c r ∆===++(r 为ABC ∆内切圆半径)528.平面向量的基本运算:设11(,)a x y =r ,22(,)b x y =r;(1)1212(,)a b x x y y +=++r r ,1212(,)a b x x y y -=--r r;1212a b x x y y ⋅=+r r(2)若ar ∥br ⇔1221=-y x y x ,若a b ⊥r r ⇔12120a b x x y y ⋅=+=r r(3)cos ,cos ,a b a b a b a b a b a b⋅⋅=<>⇔<>=r rr r r r r r r r r r2121y x +=29.平面向量的基本定理:已知OP xOA yOB =+u u u r u u u r u u u r,若A 、P 、B 三点共线1x y ⇔+=30.若G 为ABC ∆的重心,则0GA GB GC ++=u u u r u u u r u u u r r,且(,)33A B C A B Cx x x y y y G ++++31.数列中n a 与n S 的关系:2111≥=-⎩⎨⎧=-n n S S S a n n n32.等差数列及其性质:(1)通项公式:1(1)()n m a a n d a n m d =+-=+-;(2)前n 项和:1()2n n n a a S +=1(1)2n n na d -=+; (3)若c b a 、、依次成等差数列,则有:b c a 2=+;(4)若m n p q +=+,则m n p q a a a a +=+;特别地,若2m n t +=,则2m n t a a a +=;(5)n S ,2n n S S -,32n n S S -成等差数列,且公差为2n d ; 33.等比数列及其性质:(1)通项公式:11n n m n m a a q a q --==;(2)前n 项和:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩(3)若c b a 、、依次成等比数列,则有:2b c a =⋅;(4)若m n p q +=+,则m n p q a a a a ⋅=⋅;特别地,若2m n t +=,则2m n t a a a ⋅=;(5)n S ,2n n S S -,32n n S S -成等比数列,且公比为n q ; 34.均值不等式:222a b ab +≥(当且仅当a b =时等号成立) ab b a 2≥+(当且仅当a b =时等号成立) “一6正、二定、三相等”35.常见几何体表面积公式:(1)圆柱:222S rl r ππ=+ (2)圆锥:2S rl r ππ=+(3)圆台:'22'()S r r r l rl π=+++ (4)球:24S R π=36.常见几何体体积公式:(1)柱体的体积公式V Sh =(其中S 为底面面积,h 为高)(2)锥体的体积公式13V Sh =(其中S 为底面面积,h 为高) (3)台体的体积公式'1()3V S S h =(其中'S ,S 分别为上、下底面面积,h 为高) (4)球的体积公式343V R π=(其中R 为球半径) 37:空间线面关系证明思路: (1)线线平行:①三角形中位线平行于第三边(且等于第三边的一半);②平行四边形对边平行;③两平行平面的垂线平行;(2)线面平行:①(平面外)直线与平面内一直线平行,则这条直线与平面平行;②两平面平行,其中一平面内一直线平行于另一平面; (3)面面平行:其中一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,这两个平面平行;(4)线线垂直:①等腰三角形底边的中线垂直于底边(即是高线);②矩形的邻边垂直、菱形的对角线垂直;③直线垂直于平面则垂直于平面内的任意直线;④三垂线定理:平面内一直线与该平面的一条斜线在平面内的射影垂直,则这条直线与这条斜线垂直;三垂线逆定理也成立;(5)线面垂直:①一条直线垂直于平面内的两条相交直线,则垂直于这个平面;②两个平面垂直,其中一个平面内一直线垂直于两个平面的相交直线,则这条直线垂直于另一个平面;(6)面面垂直:其中一个平面内一直线垂直于另一个平面,则两平面垂直。
高中数学知识点大全高清打印版

高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法B {xA A=∅=∅B A⊆B B⊆并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)AB A ⊇ AB B ⊇BA补集UA{|,}x x U x A ∈∉且1()U A A =∅ 2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的一个函数,()()()U U U A B A B =()()()UU U A B A B =记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数). (3 (4 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图(6.的(1②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为yxo 减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤; (2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用n 是偶数时,正数a 的正的n n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.(3(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2(3(4单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x=是奇函数,若p 为奇数q 为偶数时,则qpy x=是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式(3(4统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2⇔f(k1)f(k2)<0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合(5x(q)x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高等数学基础知识点大全94页完美打印版

高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作∅,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A⊆A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
2021版高考一轮总复习数学(理)复习资料打包(word版,共1431页,含

2021版高考一轮总复习数学(理)复习资料打包(word版,共1431页,含第1讲集合的概念与运算[必备知识]考点1 集合的基本概念1.集合元素的性质:确定性、无序性、互异性. 2.元素与集合的关系①属于,记为∈;②不属于,记为?. 3.常见数集的符号集合符号 4.集合的表示方法:①列举法;②描述法;③图示法.考点2 集合间的基本关系表示关系文字语言符号语言自然数集正整数集 N N*或N+整数集 Z 有理数集 Q 实数集 R 相等子集集合A与集合B中的所有元素相同 A中任意一个元素均为B中的元素 A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素空集是任何集合的子集,是任何非空集合的真子集 A?B且B?A ?A=B A?B或B?A 真子集A��B或B��A ??A ?��B(B≠?) 空集考点3 集合的基本运算图形A∪B={x|x∈A或x∈B} [必会结论]1.A∪B=A?B?A,A∩B=A?A?B. 2.A∩A=A,A∩?=?. 3.A∪A=A,A∪?=A.4.A∩(?UA)=?,A∪(?UA)=U,?U(?UA)=A.5.A?B?A∩B=A?A∪B=B??UA??UB?A∩(?UB)=?. 6.若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.[双基夯实]一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”)并集A∩B={x|x∈A 且x∈B} 交集 ?UA={x|x∈U 且x?A} 补集符号 1.集合{x|y=x-1}与集合{y|y=x-1}是同一个集合.( ) 2.已知集合A={x|mx=1},B={1,2},且A?B,则实数m=1 或1m=2.( )3.M={x|x≤1},N={x|x>ρ},要使M∩N=?,则ρ所满足的条件是ρ≥1.( )4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中有4个元素.( )答案1.× 2.× 3.√ 4.× 二、小题快练1.[2021・天津高考]已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=( )A.{1,3} C.{2,3} 答案 A解析由题意可得B={1,3,5},∴A∩B={1,3},故选A. 2.[2021・全国卷Ⅱ]已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( )A.{1} C.{0,1,2,3} 答案 C感谢您的阅读,祝您生活愉快。
高考总复习高中数学知识点完美总结PDF直接打印版

充要
充分条件 p q , p 是 q 的充分条件 若命题 p 对应集合 A ,命题 q 对应集合 必要条件 p q , q 是 p 的必要条件 B ,则 p q 等价于 A B ,p q 等
辑 用
条件
充要条件 p q , p, q 互为充要条件 价于 A B 。
语
或命题 p q , p, q 有一为真即为真, p, q 均为假时才为假。 类比集合的并
与
概念 能够判断真假的语句。
常
原命题:若 p ,则 q
原命题与逆命题,否命题与逆否命题互
用
命题
四种 逆命题:若 q ,则 p
逆;原命题与否命题、逆命题与逆否命
逻 辑常
命题 否命题:若 p ,则 q
题互否;原命题与逆否命题、否命题与
逆否命题:若 q ,则 p
逆命题互为逆否。互为逆否的命题等价。
用用 语逻
(6) a b 0,n N*,n 1 a n b n;n a n b
a b 1 1 的充要条件是 ab
ab 0 。
二
次 不
解一元二次不等式实际上就是求出对应的一元二次方程的实数根(如果有实数根),再结合对应的函
等 数的图象确定其大于零或者小于零的区间,在含有字母参数的不等式中还要根据参数的Байду номын сангаас同取值确
式 定方程根的大小以及函数图象的开口方向,从而确定不等式的解集.
基
本 ab a b
不
2
等 ( a 0, b 0 )
式
a b 2 ab ( a, b 0 );
ab ( a b )2 ( a, b R ); 2
2ab ≤ ab
ab ≤ a b ≤ 2
a 2 b 2 ( a, b 0 );
高考数学常见题型汇总(精华资料)

一、函数1、求定义域(使函数有意义) 分母 ≠0偶次根号≥0对数log a x x>0,a>0且a ≠1三角形中 0<A ∠<180, 最大角>60,最小角<60 2、求值域判别式法 V ≥0 不等式法 22232111133y x x x x x x x x =+=++≥⨯⨯=导数法 特殊函数法 换元法 题型: 题型一:1y x x =+法一:111(,222同号)或y x x x x x xy y =+=+≥∴≥≤-法二:图像法(对(0)by ax ab x =+>有效2-2-11题型二:()1(1,9)y x x x =-∈()/2(1)(9)110180,,0,9导数法:函数单调递增即y x y x xy f f y =+>∴=-⎛⎫∴∈∈ ⎪⎝⎭ 题型三:2sin 11sin 1sin ,1,2112化简变形又sin 解不等式,求出,就是要求的答案y yy yy y θθθθ-=++=≤-+∴≤-题型四:2222sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()114化简变形得即又由知解不等式,求出,就是要求的答案y y y yy y x y x y y x yy θθθθθθθθθ-=+-=+-=++++=++=+++≤≤+题型五2222333(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y+=-+=-+-+==--⨯≥V反函数1、反函数的定义域是原函数的值域2、反函数的至于是原函数的定义域3、原函数的图像与原函数关于直线y=x 对称 题型1()(2)32,2322,2已知求解:直接令,解出就是答案x xf f x xx x --=+-=+周期性()()()(2)()()(2)00(2,函数 -)式相减)是一个周期是2t 的周期函数x x t x t x t x x x t f f f f f f f +++++=+==对称()()()(2)()()()),(2,), 函数关于直线x=a 对称对称的判断方法:写出2个对应点的坐标A(x,求出其中点的坐标C(a,)。
高考数学复习资料(Word版)

高考数学复习资料(2021最新版)作者:______编写日期:2021年__月__日第1讲集合一.【课标要求】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn二.【命题走向】的直观性,注意运用Venn预测2010题的表达之中,相对独立。
具体题型估计为:(1)题型是1个选择题或1(2三.【要点精讲】1(1a的元素,记作aA;若b不是集合A的元素,记作bA;(2确定性:设x是某一个具体对象,则或者是A的元素,或者不是A指属于这个集合的互不相同的个体(对象),因此,无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。
2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或AB);集合相等:构成两个集合的元素完全一样。
[高考]高考数学高考必备知识点总结精华版
![[高考]高考数学高考必备知识点总结精华版](https://img.taocdn.com/s3/m/b36178e208a1284ac85043d9.png)
高中数学第一章-集合(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律(1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.原命题若p 则q 逆命题若q 则p 互为逆否互逆否互逆否互特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学精华资料【打印版无修版】【高考重要定理100个】■[定理1]:在三角形中[关键前提],a>b>c是sinA>sinB>sinC的充分必要条件。
[这是选择题常考的一个典型知识点■[定理2]在三角形中,若sinA>sinB,则B必定为锐角,A待定。
[记忆方法:由正弦知a>b,根据“大角对大边”原则知A>B,显然在三角形中,B角不可能为钝角或者直角,所以必为锐角。
记忆口诀:正弦小为锐]■[定理3]:(sina)^2-(sinb)^2=sin(a+b)sin(a-b)[注:首先不要怀疑这个定理的正确性,真理就是真理,这个定理可以运用于求某个三角形是何种三角形,证明方法:令a=[(a+b)/2]+[(a-b)/2],b=[(a+b)/2-(a-b)/2]■[定理4]:在复数范围内,1的n次方根必有n根。
[它的解体现在复数平面内的单位圆与其n等分线的交点上]■[定理5]空间四面体[凸形]必有内切球,必有外接球。
[这个结论有可能出现在组合型选择题中]■[定理6]:根据tana求cosa,sina的快速方法是:构造一个直角三角形。
[注:正负根据tana 待定]■[定理7]:sin18度=(√5-1)/4,[简单记忆为:黄金比的一半];tan15度=2-√3;tan75度=2+√3;√5≈2.236。
[知道这些常数只是为了加快计算速度]■[定理8]:非p是非q的必要不充分条件等价于q是p的必要不充分条件[这个结论的价值是:一般不考虑非p和非q的内容是什么,而是先转化到p与q之间的关系,而且这样不容易出错]■[定理9]:在等差数列中,Sn=na中[当n为奇数时]。
[注:na中的意思是n倍中间项举例说明:S7=7a4(第一个7与4为下角标]。
强调:一定是在等差数列中。
■[定理10]:在等差数列中,若m+n=p+q,则am+an=ap+aq;反之,也成立。
[这个定理的价值在于后半部分的利用,有些题目如果灵活一点有可能在此挖心思]说明:上述定理可以推广成多项。
■[定理11]:关于如何得到圆锥曲线中的椭圆,双曲线,抛物线:1,椭圆。
所截平面与圆锥底面成x角,[0<x<90度],左右切尽,构成封闭截面就是椭圆;2,双曲线:所截平面垂直圆锥底面[排除过顶点切的这种情况,这种情况的截面是三角形];3:抛物线:所截平面平行于圆锥母线。
■[定理12]:法向量有两种[一正一负]。
[注意答题,回答一种是错的]■[定理13]:射影公式:向量a在向量b上的射影=(向量a×向量b)[即数量积]/(向量b的模)。
[记忆方法:在哪里射影除哪个的模,分子都是数量积] 说明:射影有正负。
■[定理14]:椭圆焦点在x轴的表达形式:x^2/a^2+y^2/b^2=1(a>b>0)(a^2=b^2+c^2),焦点在y轴,y^2/a^2+x^2/b^2=1(a>b>0)(a^2=b^2+c)^2;▤▤双曲线焦点在x轴:x^2/a^2-y^2/b^2=1(a>0,b>0)(c^2=a^2+b^2),焦点在y轴:y^2/a^2-x^2/b^2=1(a>0,b>0)(c^2=a^2+b^2)。
[别看这个很基础,有些人只要一把焦点转到y轴就开始糊涂了,等式和方程无法对应起来,现在整理出来,请务必搞懂]■[定理15]:已知三角形三点坐标求其面积的方法:任取其中两个点得到一条向量m=(a,b),再任取两个点得到一条向量n=(x,y),则S=∣ay-bx∣/2.[记忆方法:对角相乘相减再除2.证明方法■[定理16]:已知双曲线表达式求其渐近线的快速方法:令右边为0即可。
[举例说明:已知后双曲线(y^2)/3-x^2=1,令右边为0有:(y^2)/3=x^2,所以渐近线为y=√3x,或者y=-√3x.]■[定理17]:异面直线的公垂线有无数条,与两条异面直线都相交的公垂线有且仅有1条。
■[定理18]:空间四面体的重心公式[(x1+x2+x3+x4)/4,(y1+y2+y3+y4)/4,(z1+z2+z3+z4)/4]:由S=■[定理19]:若一个集[和谐]合含有n(n为正整数)个元素,它的子集为2^n个,它的非空子集为(2^n)-1个,它的真子集(2^n)-1个,它的非空真子集为(2^n)-2个.■[定理20]:直观图的面积是原图面积的√2/4倍.[斜二测画法是一个冷门,但不要忘记掌握它的画法]■[定理21]正四面体的棱长为a,则必有以下结论:它的高为h=(√6)a/3,它的外接球的半径R=3h/4,它的内切球的半径r=h/4,它的体积V=[(√2)a^3]/12,它的任意两对棱间的距离d=(√2)a/2。
[同学们有兴趣的可以自己推导:外接构造直角三角形,内切利用等体积。
公式写在笔记本上会整洁哦,这里为了不引起歧义以及编辑工具的问题所以有点繁琐,敬请谅解] 1/2absinC推导]■[定理22]:若长方体一条对角线与同一顶点的三条棱所成角分别为 a.b.c.必有(cosa)^2+(cosb)^2+(cosc)^2=1.■[定理23]对于a(n+1)=ban+d的构造,首先写出基本形式a(n+1)+x=b(an+x),则x=d/(b-1),轻易构造新等比数列。
[对于这个也有利用特征根方程的做法,怕你们弄糊了,在此不介绍]■[定理24]:有理根定理:设f(x)=anx^n+...+a1x+a0 ∈Z(x),其中an≠0。
如果c =s / t是f(x)的根,其中s、t∈Z且(s,t)=1,则t整除an,且s整除a0.[不作很大要求,不懂也没关系]■[定理25]:注意点:a.周期函数,周期必无限 b.周期函数未必存在最小正周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinx 与y=sin派x 相加不是周期函数。
■[定理26]:若等差数列的前n 项和为Sn,则Sm ,S2m-Sm,S3m-S2m,…为等差数列;等比数列的前n 项和为Sn ,则在公比不等于-1时,Sm,S2m -Sm,S3m-S2m ,…成等比数列。
[强调q不等于-1]■[定理27]:等比数列爆强公式:S(n+m)=S(m)+(q^m) S(n) [作用:可以迅速求q.记忆方法:中间三个都是m,头尾保持为n]■[定理28]:适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
■[定理29]:[请务必搞懂下面这两个恒等式]关于对称问题1,若在R上(下同)满足:f (a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2 ,▤▤▤2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称。
[记忆方法:第一个:左右括号内相加除。
第二个:令左括号内式=右括号内式,解出x即为对称轴]■[定理30]:关于函数奇偶性1、对于属于R上的奇函数有f(0)=0 ;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项。
[举例说明:若f(x)=ax^4+bx^3+cx^2+dx +e为奇函数,必有a=0,c=0,e=0.(常数项可以看成是x^0,归为偶次方项处理);若该函数是偶函数,则b=0,d=0]■[定理31]:数列的终极利器,(如果看不懂就算了)。
首先介绍公式:对于a(n+1)=pan +q ,a1已知,那么特征根x=q/(1-p) ,则数列通项公式为an=(a1-x)p^(n-1)+x ,这是一阶特征根方程的运用。
[说明:这与前面的那个构造求法是不一样(我想说的是两个x 不一样)■[定理32]:关于三次函数:[三次函数曲线是中心对称图形],它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。
另外,图像中必有唯一一条过该中心的直线与两旁相切。
■[定理33]:关于复合函数:1、复合函数奇偶性:内偶则偶,内奇同外2,复合函数单调性:同增异减。
[说明:对于复合函数,不要畏惧它有几重复合,关键理解在于每个函数总是基函数得来的]■[定理34]:隔项相消的求和:对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)] ▤▤[ 注:隔项相加保留四项,即首两项,尾两项。
自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!^_^]■[定理35]:■以下命题均错■:1,空间中不同三点确定一个平面;2,垂直同一直线的两直线平行;3,两组对边分别相等的四边形是平行四边形;4,如果一条直线与平面内无数条直线垂直,则直线垂直平面;5,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;6,有一个面是多边形,其余各面都是三角形的几何体都是棱锥。
[注:对初中生不适用。
]■[定理36]:■所有棱长均相等的棱锥可以是三、四、五棱锥。
除此之外,不可能存在其它的棱锥使得棱长均相等。
[在做选择或者填空题时有用]■[定理37]:求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。
答案为:当n为奇数,最小值为(n^2-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n^2/4,在x=n/2 或(n/2 )+1时取到。
■[定理38]:√[(a^2+b^2)/2]≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)[说明:这个很基础,但是可以推广成多项]■[定理39]:椭圆中焦点三角形面积公式:S=b^2tan(A/2)在双曲线中:S=b^2/tan(A/ 2) 说明:适用于焦点在x轴,且标准的圆锥曲线。
A为两焦半径夹角。
[计算时可以加快速度,证明方法:s=1/2absinC加上向量]■[定理40]:适用于标准方程(焦点在x轴)爆强公式:k椭=-{(b^2)xo}/{(a^2)yo}k 双={(b^2)xo}/{(a^2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。
[证明方法:点差法]■[定理41]:常用数列bn=n×(2^n) 求和Sn=(n-1)×(2^(n+1))+2 记忆方法:前面减去一个1,后面加一个,再整体加一个2.[这个不能推广,但是方法可以推广:错位相减]■[定理42]:1^2+2^2+3^2+…+n^2=1/6(n)(n+1)(2n+1);1^3+2^3+3^3+…+n^3=1/4(n^2)(n+1)^2■[定理43]:空间向量三公式解决所有立体几何题目:cosA=|{向量a.向量b}/[向量a的模×向量b的模] |一:A为线线夹角,二:A为线面夹角(但是公式中cos换成sin)三:A 为面面夹角■注:以上角范围均为[0,派/2]。