江苏省无锡市江阴四校2017-2018学年高二下学期期中考试数学(文)试题含答案

合集下载

江苏省无锡市江阴市青阳中学2017-2018学年高二下学期期中数学试卷(文科) Word版含解析

江苏省无锡市江阴市青阳中学2017-2018学年高二下学期期中数学试卷(文科) Word版含解析

2017-2018学年江苏省无锡市江阴市青阳中学高二(下)期中数学试卷(文科)一、填空题(共14题,每小题5分,共70分.请把答案填写在答题纸相应位置上)1.已知集合A={x|=0},则集合A的子集的个数为.2.命题“若α=,则tan α=1”的逆否命题是.3.已知i为虚数单位,||=2,则正实数a=.4.函数的定义域是;值域是.5.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的依次为(写序号).6.函数的增区间是.7.若函数f(x)=(m﹣1)xα是幂函数,则函数g(x)=log a(x﹣m)(其中a>0,a≠1)的图象过定点A的坐标为.8.已知命题p:|x﹣1|<2和命题q:﹣1<x<m+1,若p是q的充分不必要条件,则实数m的取值范围.9.若x∈(e﹣1,1),a=lnx,b=()lnx,c=e lnx,则a,b,c的大小关系为.10.若f(x)为R上的奇函数,且在(﹣∞,0)内是增函数,又f(﹣2)=0,则xf(x)<0的解集为.11.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=﹣f(x),且当x∈[0,2)时,f(x)=log8(x+1),则f(﹣2013)+f已知函数f(x)=log a(2x﹣a)在区间上恒有f(x)>0,则实数a的取值范围是.13.已知函数f(x)=,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是.14.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+t ∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2,且f(x)为R上的4高调函数,那么实数a 的取值范围是.二、解答题:(本大题共6小题,共90分)15.设复数z=a+bi(a,b∈R,a>0,i是虚数单位),且复数z满足|z|=,复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.(1)求复数z;(2)若为纯虚数(其中m∈R,),求实数m的值.16.设命题p:关于x的函数y=(a﹣1)x为增函数;命题q:不等式﹣x2+2x﹣2≤a对一切实数均成立.若命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.17.若x>0,y>0,且x+y>2,(1),,时,分别比较和与2的大小关系;(2)依据(1)得出的结论,归纳提出一个满足条件x、y都成立的命题并证明.18.在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y升.(1)将y表示为x的函数;(1)若x∈[4,8],求总用氧量y的取值范围.19.已知函数f(x)=(a﹣1)x a(a∈R),g(x)=|lgx|.(Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间;(Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),求a++的取值范围.20.设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若a>1,试判断函数f(x)的单调性,并加以证明;(3)若已知f(1)=,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.2017-2018学年江苏省无锡市江阴市青阳中学高二(下)期中数学试卷(文科)参考答案与试题解析一、填空题(共14题,每小题5分,共70分.请把答案填写在答题纸相应位置上)1.已知集合A={x|=0},则集合A的子集的个数为2个.【考点】子集与真子集;集合的表示法.【分析】求出集合A中的元素,从而求出集合A的子集的个数即可.【解答】解:由=0,得:,解得:x=2,故A={2},故A的子集为∅,{2},共2个,故答案为:2个.2.命题“若α=,则tan α=1”的逆否命题是若tanα≠1,则α≠.【考点】四种命题.【分析】根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,可写出答案.【解答】解:命题“若α=,则tan α=1”的逆否命题是“若tanα≠1,则”.故答案为:若tanα≠1,则.3.已知i为虚数单位,||=2,则正实数a=.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:∵==1﹣ai,||=2,∴=2,化为a2=3,a>0,解得a=.故答案为:.4.函数的定义域是[0,+∞);值域是[0,1).【考点】函数的定义域及其求法;函数的值域;指数函数的定义、解析式、定义域和值域.【分析】根据指数函数y=的性质,只要解不等式1﹣≥0,即可求得定义域;欲求值域,还是要依据指数函数y=的性质求解即可.【解答】解:∵1﹣≥0,∴x≥0,故定义域是[0,+∞).又>0,∴1﹣<1,∴,∴值域是[0,1)故答案为:[0,+∞),[0,1).5.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的依次为②③①(写序号).【考点】演绎推理的意义.【分析】由题意,根据三段论的形式“大前提,小前提,结论”直接写出答案即可【解答】解:用三段论的形式写出的演绎推理是:大前提②矩形的对角线相等,小前提③正方形是矩形,结论①正方形的对角线相等,故答案为:②③①6.函数的增区间是(﹣∞,1).【考点】函数的单调性及单调区间.【分析】先求函数的定义域,再根据复合函数的同增异减性确定增区间.【解答】解:的定义域为:(﹣∞,1)∪(2,+∞)令z=x2﹣3x+2 则原函数可以写为:y=是单调递减函数故原函数的增区间为:(﹣∝,1)故答案为:(﹣∝,1)7.若函数f(x)=(m﹣1)xα是幂函数,则函数g(x)=log a(x﹣m)(其中a>0,a≠1)的图象过定点A的坐标为(3,0).【考点】幂函数的概念、解析式、定义域、值域.【分析】根据幂函数的定义求出m的值,结合对数函数的性质求出A的坐标即可.【解答】解:若函数f(x)=(m﹣1)xα是幂函数,则m=2,则函数g(x)=log a(x﹣m)=(其中a>0,a≠1),令x﹣2=1,解得;x=3,g(x)=0,其图象过定点A的坐标为(3,0),故答案为:(3,0).8.已知命题p:|x﹣1|<2和命题q:﹣1<x<m+1,若p是q的充分不必要条件,则实数m的取值范围(2,+∞).【考点】必要条件、充分条件与充要条件的判断.【分析】命题p:|x﹣1|<2,化为﹣2<x﹣1<2,解出x的范围.根据p是q的充分不必要条件,即可得出.【解答】解:命题p:|x﹣1|<2,化为﹣2<x﹣1<2,解得﹣1<x<3.命题q:﹣1<x<m+1,由p是q的充分不必要条件,∴3<m+1,解得m>2.则实数m的取值范围(2,+∞).故答案为:(2,+∞).9.若x∈(e﹣1,1),a=lnx,b=()lnx,c=e lnx,则a,b,c的大小关系为b>c>a.【考点】对数函数的图象与性质.【分析】根据指数幂和对数的性质进行判断即可.【解答】解:∵x∈(e﹣1,1),∴lnx∈(﹣1,0),则函数f(t)=t lnx,为减函数,∴f()>f(e)>0,即b>c>a,故答案为:b>c>a;10.若f(x)为R上的奇函数,且在(﹣∞,0)内是增函数,又f(﹣2)=0,则xf(x)<0的解集为(﹣2,0)∪(0,2).【考点】奇偶性与单调性的综合.【分析】根据函数的奇偶性求出f(2)=0,xf(x)<0分成两类,分别利用函数的单调性进行求解.【解答】解:∵f(x)为奇函数,且满足f(﹣2)=0,且在(﹣∞,0)上是增函数,∴f(﹣2)=﹣f(2)=0,f(x)在(0,+∞)内是增函数∵xf(x)<0,∴或根据在(﹣∞,0)内是增函数,在(0,+∞)内是增函数解得:x∈(﹣2,0)∪(0,2).故答案为:(﹣2,0)∪(0,2).11.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=﹣f(x),且当x∈[0,2)时,f(x)=log8(x+1),则f(﹣2013)+f当x≥0时,f(x)为周期为4的函数,且f (x)为偶函数,从而可得出f(﹣2013)+f+f(2),而由f(x+2)=﹣f(x)可以得出f(2)=f(0),这样带入x∈[0,2)时的解析式便可求出f(1)+f(2)的值,从而得出答案.【解答】解:f(x)=﹣f(x+2)=﹣[﹣f(x+4)]=f(x+4);∴x≥0时,f(x)是周期为4的函数;又f(x)为偶函数;∴f(﹣2013)+f+f+f(2+503×4)=f(1)+f(2)=f(1)+f(﹣2)=f(1)﹣f(0)=log82﹣log81=.故答案为:.12.已知函数f(x)=log a(2x﹣a)在区间上恒有f(x)>0,则实数a的取值范围是.【考点】对数函数的单调性与特殊点;对数函数的值域与最值.【分析】先利用对数函数的图象性质,即“底、真同,对数为正”的特点,将数f(x)=log a(2x﹣a)在区间上恒有f(x)>0问题转化为在区间上恒成立或在区间上恒成立,通过解决一次不等式恒成立问题即可得解【解答】解:由对数函数的图象性质,f(x)=log a(2x﹣a)>0⇔或由在区间上恒成立,得即a∈∅由在区间上恒成立,得即a∈故答案为13.已知函数f(x)=,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是(0,1).【考点】根的存在性及根的个数判断.【分析】作f(x)的图象,从而由f2(x)﹣af(x)=f(x)(f(x)﹣a)=0可得f(x)=a 有三个不同的解,从而结合图象解得.【解答】解:作f(x)的图象如下,,f2(x)﹣af(x)=f(x)(f(x)﹣a)=0,∴f(x)=0或f(x)=a;∵f(x)=0有两个不同的解,故f(x)=a有三个不同的解,故a∈(0,1);故答案为:(0,1).14.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+t ∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2,且f(x)为R上的4高调函数,那么实数a 的取值范围是﹣1≤a≤1.【考点】函数单调性的性质.【分析】根据分段函数的意义,对f(x)的解析式分段讨论,可得其分段的解析式,结合其奇偶性,可得其函数的图象;进而根据题意中高调函数的定义,可得若f(x)为R上的4高调函数,则对任意x,有f(x+4)≥f(x),结合图象分析可得4≥4a2;解可得答案.【解答】解:根据题意,当x≥0时,f(x)=|x﹣a2|﹣a2,则当x≥a2时,f(x)=x﹣2a2,0≤x≤a2时,f(x)=﹣x,由奇函数对称性,有则当x≤﹣a2时,f(x)=x+2a2,﹣a2≤x≤0时,f(x)=﹣x,图象如图:易得其图象与x轴交点为M(﹣2a2,0),N(2a2,0)因此f(x)在[﹣a2,a2]是减函数,其余区间是增函数.f(x)为R上的4高调函数,则对任意x,有f(x+4)≥f(x),故当﹣2a2≤x≤0时,f(x)≥0,为保证f(x+4)≥f(x),必有f(x+4)≥0;即x+4≥2a2;有﹣2a2≤x≤0且x+4≥2a2可得4≥4a2;解可得:﹣1≤a≤1;故答案为﹣1≤a≤1.二、解答题:(本大题共6小题,共90分)15.设复数z=a+bi(a,b∈R,a>0,i是虚数单位),且复数z满足|z|=,复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.(1)求复数z;(2)若为纯虚数(其中m∈R,),求实数m的值.【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】(1)由得:a2+b2=10.①,又复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上得a=﹣3b.②,由①②联立方程组解得a,b的值,则复数z可求.(2)由利用复数代数形式的乘除运算化简,再由纯虚数的条件得到实部等于零,虚部不等于零即可求出实数m的值.【解答】解:(1)设z=a+bi(a,b∈R,a>0),由得:a2+b2=10.①又复数(1+2i)z=(1+2i)(a+bi)=(a﹣2b)+(2a+b)i在复平面上对应的点在第一、三象限的角平分线上,则a﹣2b=2a+b即a=﹣3b.②由①②联立方程组,解得或.∵a>0,∴a=3,b=﹣1.∴z=3﹣i;(2)由,可得==,∵为纯虚数,∴,解得m=﹣5.16.设命题p:关于x的函数y=(a﹣1)x为增函数;命题q:不等式﹣x2+2x﹣2≤a对一切实数均成立.若命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.【考点】复合命题的真假.【分析】利用一次函数与二次函数的单调性分别化简命题p,q,由命题“p或q”为真,且“p 且q”为假,可得命题p、q一真一假.即可得出.【解答】解:当命题p为真命题时,a>1.当命题q为真命题时,由﹣x2+2x﹣2=﹣(x﹣1)2﹣1≤﹣1,∴a≥﹣1.由命题“p或q”为真,且“p且q”为假,可得命题p、q一真一假.①当p真q假时,则,无解;②当p假q真时,则,得﹣1≤a≤1,∴实数a的取值范围是[﹣1,1].17.若x>0,y>0,且x+y>2,(1),,时,分别比较和与2的大小关系;(2)依据(1)得出的结论,归纳提出一个满足条件x、y都成立的命题并证明.【考点】反证法的应用;归纳推理.【分析】(1)分别代入,计算,即可得出结论;(2)利用反证法,证明即可.【解答】解:(1)当,时,=1+2=3>2,==1<2;当时, ==8>2, =<2;当时, =<2, =<2(2)命题:若x >0,y >0且x +y >2,则,至少有一个小于2.证明:假设≥2,≥2,∵x >0,y >0,∴1+y ≥2x ,1+x ≥2y .∴2+x +y ≥2x +2y ,∴x +y ≤2.这与已知x +y >2矛盾. 假设不成立.∴和中至少有一个小于2.18.在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x 米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y 升. (1)将y 表示为x 的函数;(1)若x ∈[4,8],求总用氧量y 的取值范围. 【考点】函数模型的选择与应用.【分析】(1)通过速度、时间与路程之间的关系可知下潜所需时间为分钟、返回所需时间为分钟,进而列式可得结论;(2)通过基本不等式可知及x ∈[4,8]可知在[4,6]上单调递减、在[6,8]上单调递增,比较当x=4、8时的取值情况即得结论.【解答】解:(1)依题意,下潜所需时间为分钟;返回所需时间为分钟,∴,整理得:(x >0);(2)由基本不等式可知,当且仅当即x=6时取等号,因为x ∈[4,8],所以在[4,6]上单调递减、在[6,8]上单调递增,所以当x=6时,y 取最小值7,又因为当x=4时;当x=8时,所以y的取值范围是:.19.已知函数f(x)=(a﹣1)x a(a∈R),g(x)=|lgx|.(Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间;(Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),求a++的取值范围.【考点】幂函数的性质;幂函数的概念、解析式、定义域、值域.【分析】(Ⅰ)根据幂函数的定义,求出a的值,即得f(x)的解析式与单调递减区间;(Ⅱ)把方程化为g(x﹣1)=1﹣a,利用函数y=g(x﹣1)与y=1﹣a在x∈(1,3)的图象上有二交点,得出a的取值范围以及x1,x2的关系,从而求出a++的取值范围.【解答】解:(Ⅰ)∵f(x)=(a﹣1)x a(a∈R),f(x)是幂函数,∴由题有a﹣1=1,得a=2;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2’∴f(x)=x2的单调递减区间为(﹣∞,0)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣4’(Ⅱ)方程g(x﹣1)+f(1)=0化为g(x﹣1)=1﹣a,由题意函数y=g(x﹣1)与y=1﹣a在x∈(1,3)上有两不同交点.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5’y=g(x﹣1)=|lg(x﹣1)|=;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣7’在x∈(1,2]时,y=g(x﹣1)单调递减,又y=g(x﹣1)∈[0,+∞),在x∈[2,3)时,y=g(x﹣1)单调递增,y=g(x﹣1)∈[0,lg2),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9’所以0<1﹣a<lg2,即1﹣lg2<a<1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣11’由x1<x2,可知x1∈(1,2),x2∈(2,3),且即相加消去a,可得lg(x1﹣1)+lg(x2﹣1)=0,即(x1﹣1)(x2﹣1)=1,展开并整理得x1x2=x1+x2,即+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣14’所以a++的取值范围为(2﹣lg2,2).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣16’20.设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若a>1,试判断函数f(x)的单调性,并加以证明;(3)若已知f(1)=,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.【考点】函数奇偶性的性质;函数单调性的判断与证明.【分析】(1)根据函数的奇偶性的性质,建立方程即可求常数k的值;(2)当a>1时,f(x)在R上递增.运用单调性的定义证明,注意作差、变形和定符号、下结论几个步骤;(3)根据f(1)=,求出a,然后利用函数的最小值建立方程求解m.【解答】解:(1)∵f(x)=ka x﹣a﹣x(a>0且a≠1)是奇函数.∴f(0)=0,即k﹣1=0,解得k=1.(2)∵f(x)=a x﹣a﹣x(a>0且a≠1),当a>1时,f(x)在R上递增.理由如下:设m<n,则f(m)﹣f(n)=a m﹣a﹣m﹣(a n﹣a﹣n)=(a m﹣a n)+(a﹣n﹣a﹣m)=(a m﹣a n)(1+),由于m<n,则0<a m<a n,即a m﹣a n<0,f(m)﹣f(n)<0,即f(m)<f(n),则当a>1时,f(x)在R上递增.(3)∵f(1)=,∴a﹣=,即3a2﹣8a﹣3=0,解得a=3或a=﹣(舍去).∴g(x)=32x+3﹣2x﹣2m(3x﹣3﹣x)=(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2,令t=3x﹣3﹣x,∵x≥1,∴t≥f(1)=,∴(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2=(t﹣m)2+2﹣m2,当m时,2﹣m2=﹣2,解得m=2,不成立舍去.当m时,()2﹣2m×+2=﹣2,解得m=,满足条件,∴m=.2018年8月2日。

江苏省无锡市江阴四校2018-2019学年高二下学期期中考试数学(文)试题(含精品解析)

江苏省无锡市江阴四校2018-2019学年高二下学期期中考试数学(文)试题(含精品解析)

2018-2019学年第二学期高二期中考试数学学科试题(文科)一、填空题:每小题5分,共70分.请把答案直接填写在答题卷相应位置.1.已知集合,则________.【答案】【解析】【分析】要求,即将集合中的元素写在同一个集合中,重复的写一次。

【详解】解:,所以,【点睛】本题考查了集合的并集运算,并集就是将两个集合中的元素写在同一个集合中,相同的元素只写一次,属于简单题。

2.命题的否定是________.【答案】【解析】【分析】命题是特称命题,它的否定应是全称命题。

【详解】解:命题的否定为。

【点睛】本题考查了特称命题与全称命题的关系,属于简单题。

3.函数的定义域为________.【答案】【解析】的定义域是, ,故得到函数定义域为取交集,故答案为.4.已知复数,其中i是虚数单位,则的值是_____________.【答案】【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】复数z=(1+i)(1+3i)=1﹣3+4i=﹣2+4i,∴|z|==.故答案为:.【点睛】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.5.已知幂函数()的图象关于轴对称,且在上是减函数,则______.【答案】1【解析】∵幂函数f(x)=x m2−2m−3(m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,是偶数且解得m=1故答案为16.如图,一个类似杨辉三角的数阵,请写出第n(n≥2)行的第2个数为_____.【答案】n2+2【解析】分析:由三角形数阵看出,从第二行开始起,每一行的第二个数与它的前一行的第二个数的差构成以为公差的等差数列,然后利用累加的办法求得第行的第二个数.详解:由图可以看出由此看出,以上个式子相加得,所以.点睛:本题主要考查了归纳推理的应用,解答此题的关键是根据数表数阵,得到数字的排布规律,即从第二行开始起,每一行的第二个数与它的前一行的第二个数的差构成以为公差的等差数列,此题是中档试题.7.若复数满足(为虚数单位),则的最小值是________.【答案】1【解析】分析:复数满足,设,利用复数的模的计算公式与三角函数求值即可求出.详解:由复数满足,设,则,当且仅当时等号成立,所以的最小值为.点睛:本题考查了复数的运算法则、模的计算公式及其三角函数的求解,着重考查了推理与运算能力,属于基础题.8.偶函数的图象关于直线对称,,则______.【答案】3【解析】试题分析根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.考点:函数奇偶性的性质.9.若是不等式成立的充分不必要条件,则实数的范围是________.【答案】【解析】【分析】先求得不等式的解集,然后根据充分不必要条件列不等式组,解不等式组求得的取值范围.【详解】不等式可转化为,解得,由于是的充分不必要条件,结合集合元素的互异性,得到.【点睛】本小题主要考查一元二次不等式的解法,考查充分不必要条件的概念,还考查了集合元素的互异性,属于基础题.一元二次不等式的解法主要通过因式分解,求得一元二次不等式对应的一元二次方程的两个根,由此解出不等式的解集.集合的三要素是:确定性、互异性以及无序性.10.定义在上的函数满足则________.【答案】【解析】【分析】表示周期为3的函数,故,故可以得出结果。

江苏省无锡市江阴四校2017-2018学年高二下学期期中考试文数试题(精编含解析)

江苏省无锡市江阴四校2017-2018学年高二下学期期中考试文数试题(精编含解析)

1.-2【解析】分析:由为的子集,得到中的所有元素都属于,从而可得,进而可求出的值. 详解:集合,且,,解得,故答案为.点睛:本题主要考查子集的基本定义,属于简单题.2.【解析】分析:利用共轭复数的定义求得,代入,再由复数的乘除运算法则化简可得结果. 详解:,于是可得,故答案为.点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意和以及运算的准确性,否则很容易出现错误.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.4.【解析】分析:利用对数函数的定义域,指数函数的单调性解不等式组即可的得结果.详解:要使函数有意义,则,故答案为.点睛:求定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.5.【解析】分析:利用指数函数的性质判断的范围,利用对数函数的性质判断的范围,结合幂函数的单调性可得结果.详解:由指数函数的性质可得,,,递增,,又由对数函数的性质可得,,故答案为.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6.充分不必要【解析】分析:根据分式不等式的解法,利用充分条件和必要条件的定义进行判断.详解:由得,,可得或,“”是“”的充分不必要条件,故答案为充分不必要.点睛:本题主要考查分式不等式的解法、充分条件与必要条件相关问题,将分式不等式充分条件、必要条件、充要条件相关的问题联系在起来,体现综合应用数学知识解决问题的能力,是基础题.点睛:本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.8.【解析】二维空间中圆的一维测度(周长),二维测度(面积);观察发现,三维空间中球的二维测度(表面积),三维测度(体积),观察发现四维空间中“超球”的三维测度,猜想其四维测度,则,故答案为. 【方法点睛】本题通过观察维测度与二维测度、二维测度与三维测度之间的关系,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质.②从已知的相同性质中推出一个明确表述的一般性命题(猜想),由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现十分有用,观察、实验、对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.9.【解析】试题分析:∵二次函数f(x)=x2+mx-1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得考点:二次函数性质10.【解析】分析:根据函数奇偶性和单调性之间的关系,利用数形结合思想求解可得到结论.详解:点睛:本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.11.【解析】分析:根据时,可推导出,由此能求出结果.详解:函数,,故答案为.点睛:本题主要考查分段函数的解析式以及函数周期性的应用,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.点睛:本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.13.③【解析】分析:利用条件和函数为奇函数,结合时,,综合考虑函数图像,逐一判断四个结论的真假,可得结论.详解:是定义在上的奇函数,对,均有,,可得函数的周期为,且的图象关于对称,故①错误;无最大值,故②错误;方程的实数根个数等于与y-=图象的交点个数,结合函数图象简图,由图可知轴左边有六个交个,轴右边有四个交个共有个交点,即方程有个实数根,故③正确;当时,,则,当时,不符合,故④错误,故答案为③.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.14.(2,3]【解析】分析:函数恰有4个零点,等价于的图象与有四个交点,只需,与,,与轴都有两个交点,画出图象,利用数形结合思想求解即可.详解:当时,在上,要使恰有四个零点,则满足,即,解得,故答案为.点睛:本题主要考查函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.15.(1);(2).【解析】试题分析:(1)且真,则都是真命题,解这两个不等式后取交集即可得到实数的取值范围.(2)是的必要不充分条件,则的范围是的范围的子集,由此得到的取值范围.试题解析:(1)由,得.当时,,即为真命题时,.由得,所以为真时,.若为真,则所以实数的取值范围是.16.(1)或;(2)当时,是偶函数.【解析】分析:()由可得,根据一元二次不等式的解法,分三种情况讨论求解即可;(2)由是偶函数,可得函数定义域关于原点对称,结合()可知,;经检验可得结论.详解:()因为即,当时,不等式的解为或,所以函数的定义域为或.当时,不等式的解为,所以函数的定义域为.当时,不等式的解为或,所以函数的定义域为或.点睛:本题主要考查分函数的定义域、一元二次不等式的解法、分类讨论思想的应用.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.17.(1);(2).【解析】试题分析:(1)由函数(其中为常数且,)的图象经过点,,知,由此能求出;(2)设,则在上是减函数,故当时,,由此能求出实数的取值范围.学科&网试题解析:(1)由已知可得且且.(2)解:由(1)可得令,只需,易得在为单调减函数,. 18.(1)43.5(万元);(2)当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.【解析】试题分析:(1)当时,此时甲城市投资万元,乙城市投资万元,即可得到总收益;(2)由题知,甲城市投资万元,乙城市投资万元,得出函数的解析式,进而可求解最大值总收益.试题解析:(1)当时,此时甲城市投资50万元,乙城市投资70万元所以总收益=43.5(万元)令,则所以当,即万元时,的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.点睛:本题考查了根据实际问题分析和解决问题的能力,以及转化与化归的能力,对于函数的应用问题:(1)函数模型的关键是找到一个影响求解目标函数的变量,以这个变量为自变量表达其他需要的量,综合各种条件建立数学模型;(2)在实际问题的函数模型中要特别注意函数的定义域,它是实际问题决定的,不是由建立的函数解析式决定的.(3)利用数学方法得出函数模型的数学结果,再将得到的数学结果转译到实际问题中作出答案.19.(1);(2);(3).【解析】试题分析:(1)⇒,再由f(x)=-1即可求得x的值;(2)由, 在[2,+∞)上是增函数,利用二次函数的单调性可求得a的取值范围;(3)作出,的图象,对m分0<m≤1与1<m, 三种情况讨论即可求得答案.试题解析:解:(1)由知即∴(3)图象如图当时,当时,当时,综合.20.(1);(2);(3)答案见解析.解析:(1)根据题意得:的对称轴是,故在区间递增,因为函数在区间上存在零点,故有,即,故所求实数的范围是;(2)若对任意的,总存在,使成立,只需函数的值域是函数的值域的子集,时,的值域是,下面求,的值域,③时,的值域是,要使,只需,计算得出;综上,的范围是.(3)根据题意得,计算得出,①时,在区间上,最大,最小,,计算得出:或(舍去);②时,在区间上,最大,最小,,计算得出:;③时,在区间上,最大,最小,,计算得出:或,故此时不存在常数满足题意,综上,存在常数满足题意,或.点睛:本题是道函数综合题目,在判定零点的时候可以运用零点的存在定理求解,当遇到“对任意的,总存在”时候要转化为两个函数值域的包含关系,从而求解。

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)(J)

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)(J)

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(文科)(J)副标题一、填空题(本大题共14小题,共14.0分)1.已知集合,0,,且,则a等于______.【答案】【解析】解:集合,0,,且,,解得:.故答案为:由A为B的子集,得到A中的所有元素都属于B,得到,即可求出a的值.此题考查了集合的包含关系判断与应用,弄清题意是解本题的关键.2.若,则______.【答案】【解析】解:,.则,故答案为:,利用复数的运算法则、共轭复数的性质即可得出.本题考查了复数的运算法则、共轭复数的性质,考查了推理能力与计算能力,属于基础题.3.已知命题p:,,那么命题¬为______.【答案】,【解析】解:命题是全称命题,则命题的否定是:,,故答案为:,.根据全称命题的否定是特称命题进行求解即可.本题主要考查含有量词的命题的否定,比较基础.4.函数的定义域是______.【答案】【解析】解:由,解得.函数的定义域是.故答案为:.由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组求解.本题考查函数的定义域及其求法,是基础的计算题.5.已知,,,则a,b,c的大小关系为______.【答案】【解析】解:,,.故答案为:.根据指数函数和幂函数的性质可得判断a与b与1的关系,根据对数函数的性质可得判断c与1的关系,即可得到所求大小关系.本题考查对数值大小的比较,关键在于掌握三类函数的性质并灵活运用之,注意与0与1的比较,属于基础题.6.是的______条件.【答案】充分不必要条件【解析】解:成立,充分性成立;而或,即不能推出,必要性不成立;是的充分不必要条件.故答案为:充分不必要.由充分条件与必要条件的概念即可判断.本题考查必要条件、充分条件与充要条件的判断,掌握充分条件与必要条件的概念是判断的基础,属于基础题.7.设函数,则满足的x的取值范围是______.【答案】【解析】解:当时,,,解得,当时,,,恒成立,综上所述满足的x的取值范围是,故答案为:根据分段函数和指数函数和对数函数的性质即可求出.本题考查了分段函数和不等式的解法,属于基础题.8.二维空间中,圆的一维测度周长,二维测度面积;三维空间中,球的二维测度表面积,三维测度体积应用合情推理,若四维空间中,“特级球”的三维测度,则其四维测度______.【答案】【解析】解:二维空间中,圆的面积的导数圆周长L,三维空间中,球的体积导数球的表面积S,由此类比,可以求得四维空间中,“特级球”W的导数,所以.故答案为.本题考查类比推理,和初级求导.二维空间中,圆的面积的导数,三维空间中,球的体积导数,由此类比,可以求得四维空间中,W的导数,所以.本题考查类比推理,初级求导,属于基础题目.9.已知函数,若对于任意,都有成立,则实数m的取值范围是______.【答案】【解析】解:二次函数的图象开口向上,对于任意,都有成立,,即,解得,故答案为:.由条件利用二次函数的性质可得,由此求得m的范围.本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.10.若函数定义在R上的奇函数,且在上是增函数,又,则不等式的解集为______.【答案】【解析】解:函数定义在R上的奇函数,且在上是增函数,又,在上是增函数,且,当或时,,当或时,,如图则不等式等价为或,即或,则或,解得或,故不等式的解集为,故答案为:根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键.11.已知函数,则______.【答案】【解析】解:时,,即有,,,,则,故答案为:.求得,,由函数的周期性计算可得所求和.本题考查函数值的求和,注意运用函数的周期性和分段函数的解析式,考查运算能力,属于基础题.12.设函数,则使成立的x的取值范围是______.【答案】【解析】解:根据题意,函数,有,则函数为偶函数,当时,,其导数,则函数在上为增函数,若,必有,即,变形可得:,解可得:,即x的取值范围为;故答案为:.根据题意,分析可得函数为偶函数,且在上为增函数,进而可以将转化为,解可得x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,关键是分析函数的奇偶性与单调性.13.已知函数是定义在R上的奇函数,对任意的,均有,当时,,则下列结论正确的是______.的图象关于对称的最大值与最小值之和为2 方程有10个实数根当时,【答案】【解析】解:是定义在R上的奇函数,,又时,,设,则,,又,是以2为周期的函数,画出函数与的图象,如图所示,结合图象可得函数无对称轴,的最大值与最小值之和为0,当时,与有个交点,当与有5个交点,故方程有10个实数根;当时,,,当时,,故错误,综上所述,正确的为,故答案为:根据奇函数的性质求出时,函数的解析式,再根据函数的周期性,即可得到函数的图象,再画出的图象,由图象即可判断.本题考查了函数的奇偶性周期性,对称性,以及函数零点的问题,考查了转化能力和运算能力,属于中档题.14.已知函数函数,若函数恰有4个零点,则实数a的取值范围是______.【答案】【解析】解:由题意当时,即方程有4个解.又由函数与函数的大致形状可知,直线与函数的左右两支曲线都有两个交点当时,函数的最大值为a,则,同时在上的最小值为,当时,在上,要使恰有4个零点,,解得.则满足,即或故答案为:根据函数和的关系,将转化为,利用数形结合进行求解即可.本题主要考查函数与方程的应用,利用条件转化为,利用数形结合以及绝对值函数以及一元二次函数的性质进行求解即可.二、解答题(本大题共6小题,共6.0分)15.已知p:实数x,满足,q:实数x,满足.若时为真,求实数x的取值范围;若p是q的必要不充分条件,求实数a的取值范围.【答案】解:由,得当时,,即p为真命题时,.由得,所以q为真时,.若为真,则所以实数x的取值范围是.设,,q是p的充分不必要条件,所以,从而.所以实数a的取值范围是.【解析】利用不等式的解法、复合命题的真假性质即可得出.设,,q是p的充分不必要条件,可得,即可得出.本题考查了不等式的解法、简易逻辑的判定方法、集合的运算性质,考查了推理能力与计算能力,属于中档题.16.已知函数.求函数的定义域.若为偶函数,求实数a的值.【答案】解:因为,即,当时,不等式的解为或,此时,函数的定义域为或;当时,不等式的解为,此时,函数的定义域为;当时,不等式的解为或,此时,函数的定义域为或;如果函数是偶函数,则其定义域关于原点对称,由知,.检验:当时,定义域为或,关于原点对称,,则,因此,当时,是偶函数.【解析】由对数的真数大于零得,即,然后对和a的大小进行分类讨论,求出不等式的解,从而求出函数的定义域;由函数为偶函数得函数的定义域关于原点对称,可求出a的值,并将a的值代入函数的解析式,利用偶函数的定义验证函数为偶函数,从而检验a的值是否合乎题意.本题考察函数的定义域的求解以及函数的奇偶性,在求函数的定义域时,关键在于合理进行分类讨论,在考察函数的奇偶性时,关键在于函数奇偶性定义的应用,属于中等题.17.已知函数其中a,b为常量且且的图象经过点,试求a、b的值;若不等式在时恒成立,求实数m的取值范围.【答案】解:Ⅰ函数,其中a,b为常数且,的图象经过点,,,解得,,,Ⅱ设,在R上是减函数,当时,.若不等式在时恒成立,即.【解析】Ⅰ由函数,其中a,b为常数且,的图象经过点,,得到关于a,b的方程组,由此能求出.Ⅱ设,则在R上是减函数,故当时,由此能求出实数m的取值范围.本题考查函数解析式的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.18.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入单位:万元满足,乙城市收益Q与投入单位:万元满足,设甲城市的投入为单位:万元,两个城市的总收益为单位:万元.当甲城市投资50万元时,求此时公司总收益;试问如何安排甲、乙两个城市的投资,才能使总收益最大?【答案】解:当时,在乙城市投资为70万元,公司总收益为万元..,令得,当时,,当时,,在上单调递增,在上单调递减,当时,取得最大值.该公司在甲城市投资72万元,在乙城市投资48万元,总收益最大.【解析】根据收益公式计算;得出的解析式,判断在定义域上的单调性,从而可得取得最大值时对应的x的值,从而得出最佳投资方案.本题考查了函数模型的应用,函数最值的计算,属于中档题.19.已知函数,.若,且,求x的值;当时,若在上是增函数,求a的取值范围;若,求函数在区间上的最大值.【答案】解:由知,又即,.,在上是增函数,即,.,图象如图当时,;当时,;综上.【解析】,再由即可求得x的值;由在上是增函数,利用二次函数的单调性可求得a 的取值范围;作出的图象,对m分与及三种情况讨论即可求得答案.本题考查函数单调性的判断与证明,考查函数最值的应用,考查分类讨论思想与数形结合思想、方程思想的综合运用,属于难题.20.已知函数,.若函数在区间上存在零点,求实数a的取值范围;当时,若对任意的,总存在,使成立,求实数m的取值范围;若的值域为区间D,是否存在常数t,使区间D的长度为?若存在,求出t的值;若不存在,请说明理由.注:区间的长度【答案】解:由题意得:的对称轴是,故在区间递增,函数在区间存在零点,故有,即,解得:,故所求实数a的范围是;若对任意的,总存在,使成立,只需函数的值域是函数的值域的子集,时,,的值域是,下面求,的值域,令,则,,时,是常数,不合题意,舍去;时,的值域是,要使,只需,解得:;时,的值域是,要使,只需,解得:,综上,m的范围是;由题意得,解得:,时,在区间上,最大,最小,,即,解得:或舍去;时,在区间上,最大,最小,,解得:;时,在区间上,最大,最小,,即,解得:或,故此时不存在常数t满足题意,综上,存在常数t满足题意,或.【解析】求出函数的对称轴,得到函数的单调性,解关于a的不等式组,解出即可;只需函数的值域是函数的值域的子集,通过讨论,,的情况,得到函数的单调性,从而确定m的范围即可;通过讨论t的范围,结合函数的单调性以及,的值,得到关于t的方程,解出即可.本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,集合思想,是一道综合题.。

江苏省无锡市江阴四校2017-2018学年高二下学期期中考试数学(文)试题

江苏省无锡市江阴四校2017-2018学年高二下学期期中考试数学(文)试题

【全国校级联考】江苏省无锡市江阴四校2020-2021学年高二下学期期中考试数学(文)试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知集合A ={0,1},B ={-1,0,a +3},且A ⊆B ,则a 等于_________.2.若32i z =-,则2i z =-___________. 3.已知命题1:0,2p x x x ∀>+≥,那么命题p ⌝为___________. 4.函数()ln 3y x =-___________.5.已知2133311,,log 34a b c π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为__________. 6.“1x >” 是 “11x<” 的___________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)7.设函数()133,1{?1log ,1x x f x x x -≤=->,则满足()3f x ≤的x 的取值范围是___________. 8.二维空间中,圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=;三维空间中,球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=.应用合情推理,若四维空间中,“特级球”的三维测度312V r π=,则其四维测度W =___________. 9.已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有()0f x ≤成立,则实数m 的最小值是______.10.若函数()f x 定义在R 上的奇函数,且在(),0∞-上是增函数,又()20f =,则不等式()x 10f x +<的解集为__________.11.已知函数()()20{?20x x f x f x x ≤=->,则()()()()1232017f f f f ++++=_______.12.设函数()212e x f x x =-+,则使()()24f x f x ≤-成立的x 的取值范围是___________.13.已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R ,均有()()2f x f x +=, 当[)0,1x ∈时, ()21xf x =-,则下列结论正确的是___________. ① ()f x 的图象关于1x =对称 ② ()f x 的最大值与最小值之和为2 ③方程()lg 0f x x -=有10个实数根 ④当[]2,3x ∈时, ()221x f x +=- 14.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.二、解答题15.已知:p 实数x ,满足0x a -<,:q 实数x ,满足2430x x -+≤.(1)若2a =时p q ∧为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围16.已知函数()()2lg 1f x x a x a ⎡⎤=+--⎣⎦. (1)求函数()f x 的定义域.(2)若()f x 为偶函数,求实数a 的值.17.已知函数()x f x b a =⋅(,a b 为常数且0,1a a >≠)的图象经过点(1,8)A ,(3,32)B(1)试求,a b 的值;(2)若不等式11()()0x x m a b+-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围. 18.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足6P =,乙城市收益Q 与投入b (单位:万元)满足124Q b =+,设甲城市的投入为x (单位:万元),两个城市的总收益为()f x (单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?19.已知函数()2f x x x a =-,a R ∈.(1)若0a =,且()1f x =-,求x 的值;(2)当0a >时,若()f x 在[2,)+∞上是增函数,求a 的取值范围;(3)若1a =,求函数()f x 在区间[0,]m (0)m >上的最大值()g m .20.已知函数()245f x x x a =++-,()147x g x m m -=⋅-+.(1)若函数()f x 在区间[]1,1-上存在零点,求实数a 的取值范围;(2)当0a =时,若对任意的[]11,2x ∈,总存在[]21,2x ∈使()()12f x g x =成立,求实数m 的取值范围;(3)若()[],,2y f x x t =∈的值域为区间D ,是否存在常数t ,使区间D 的长度为64t -?若存在,求出t 的值,若不存在,请说明理由.(注:区间[],p q 的长度为q p -)参考答案1.-2【解析】分析:由A 为B 的子集,得到A 中的所有元素都属于B ,从而可得31a +=,进而可求出a 的值. 详解:集合{}{}0,1,1,0,3A B a ==-+,且A B ⊆,31a ∴+=,解得2a =-,故答案为2-.点睛: 本题主要考查子集的基本定义,属于简单题.2.21i 55+ 【解析】 分析:利用共轭复数的定义求得z ,代入i 2z -,再由复数的乘除运算法则化简可得结果. 详解:32i,32i z z =-∴=+,于是可得()()()i 12i i i i 21i 232i 212i 12i 12i 55z -====+-+-++-,故答案为21i 55+. 点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.3.10,2x x x ∃>+< 【解析】分析:根据全称命题的否定是特称命题,即可得到结论. 详解: 全称命题的否定是特称命题,∴命题“1:0,2p x x x∀>+≥”的否定p ⌝为“10,2x x x ∃>+<”,故答案为10,2x x x∃>+<. 点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可. 4.[)2,3【解析】分析:利用对数函数的定义域,指数函数的单调性解不等式组即可的得结果.详解:要使函数()ln 3y x =-+3023240x x x ->⎧⇒≤<⎨-≥⎩,故答案为[)2,3.点睛:求定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出. 5.a b c <<【解析】分析:利用指数函数的性质判断a b ,的范围,利用对数函数的性质判断c 的范围,结合幂函数的单调性可得结果. 详解:由指数函数的性质可得,203110132a ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,23110142b ⎛⎫⎛⎫<==< ⎪ ⎪⎝⎭⎝⎭,23y x ∴=递增,a b ∴<,又由对数函数的性质可得33log log 1c π=>=,a b c ∴<<,故答案为a b c <<.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6.充分不必要【解析】分析:根据分式不等式的解法,利用充分条件和必要条件的定义进行判断. 详解:由11x <得,10x x ->,可得1x >或0x <,∴“1x >”是“11x<”的充分不必要条件,故答案为充分不必要.点睛:本题主要考查分式不等式的解法、充分条件与必要条件相关问题,将分式不等式充分条件、必要条件、充要条件相关的问题联系在起来,体现综合应用数学知识解决问题的能力,是基础题.7.[)0,+∞【解析】分析:根据分段函数的解析式讨论两种情况,利用指数函数和对数函数的性质求解即可.详解:因为函数()133,1{1log ,1x x f x x x -≤=->,由()3f x ≤,可得当1x ≤时,()11333,11x f x x -=≤=∴-≤,解得01x ≤≤,当1x >时,()331log 3,log 2f x x x =-≤∴≥-恒成立,综上所述面,满足()3f x ≤的的x 的取值范围是0x ≥,故答案为[)0,+∞.点睛:本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.8.43r π【分析】根据题意分析可得二维测度的导数是一维测度,三维测度的导数是二维测度,所以根据合情推理可得四维测度的导数是三维测度,根据三维测度312V r π=,可得四维测度W =43r π.【详解】因为()2S r r l π'==,224()343V r r r S ππ'=⨯==, 所以3()12W r V r π'==,所以43W r π=.故答案为:43r π.【点睛】本题考查了合情推理,考查了导数的计算公式,属于基础题.9.2- 【解析】试题分析:∵二次函数f (x )=x 2+mx-1的图象开口向上,对于任意x ∈[m ,m+1],都有f (x )<0成立,∴()()()()22210{11110f m m f m m m m =-<+=+++-<,即(){22230m m m -<<+<,解得0m << 考点:二次函数性质10.(3,1)(0,1)--⋃【解析】分析:根据函数奇偶性和单调性之间的关系,利用数形结合思想求解可得到结论. 详解:因为函数()f x 定义在R 上的奇函数,且在(),0-∞上是增函数,又()()20,f f x =∴在()0,∞+上是增函数,且()()220f f -=-=,∴当2x >或20x -<<时,()0f x >;当2x <-或02x <<时,()0f x <,作出函数的草图,如图,则不等式()10xf x +<等价为()010x f x >⎧⎨+<⎩或()010x f x <⎧⎨+>⎩,即0012x x >⎧⎨<+<⎩或0210x x <⎧⎨-<+<⎩,则011x x >⎧⎨-<<⎩或031x x <⎧⎨-<<-⎩,解得01x <<或31x -<<-,即不等式的解集为()()0,13,1⋃--,故答案为()()0,13,1⋃--.点睛:本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解..11.30252【解析】分析:根据0x >时,()()2f x f x =-可推导出()()()()()()123...20171009110080f f f f f f ++++=⨯-+⨯,由此能求出结果. 详解:函数()()2,02,0x x f x f x x ⎧≤⎪=⎨->⎪⎩,()()()()()()123...20171009110080f f f f f f ∴++++=⨯-+⨯10302510092100822-=⨯+⨯=,故答案为30252. 点睛:本题主要考查分段函数的解析式以及函数周期性的应用,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.12.44,3⎡⎤-⎢⎥⎣⎦【解析】分析:首先判断函数()212e x f x x =-+为偶函数,再判断()f x 在(),0-∞单调递减,得到()f x 在()0,∞+单调递增,从而将原不等式转化为24x x ≤-求解即可.详解:因为函数()212e x f x x =-+,所以0x <时,()2x12e f x x -=-+ ,可得()f x 在(),0-∞单调递减,()()f x f x -=,所以函数()212e xf x x =-+为偶函数,所以()f x 在()0,∞+单调递增,又因为()()24f x f x ≤-,24x x ∴≤-,2224816,38160x x x x x ≤-++-≤,()()3440x x -+≤,443x -≤≤,故答案为44,3⎡⎤-⎢⎥⎣⎦. 点睛:本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.13.③【解析】分析:利用条件()()2f x f x +=和函数为奇函数,结合[)0,1x ∈时, ()21x f x =-,综合考虑函数图像,逐一判断四个结论的真假,可得结论.详解:()f x 是定义在R 上的奇函数,对x R ∀∈,均有()()2f x f x +=,()()()()220f x f x f x f x +=--⇒++-=,可得函数的周期为2,且()f x 的图象关于()1,0对称,故①错误;()()1,1f x ∈-无最大值,故②错误;方程()lg 0f x x -=的实数根个数等于 ()y f x =与y-=lg x 图象的交点个数,结合函数图象简图,由图可知y 轴左边有六个交个,y 轴右边有四个交个共有10个交点,即方程()lg 0f x x -=有10个实数根,故③正确;当[)2,3x ∈时, [)20,1x -∈,则()()2221x f x f x -=-=-,当3x =时,()0f x =不符合()221x f x +=-,故④错误,故答案为③.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.14.(]2,3【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解.【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a ;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >, 综上可得:实数a 的取值范围为(]2,3.【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.15.(1)[)1,2.(2)()3,+∞.【解析】试题分析:(1)p 且q 真,则,p q 都是真命题,解,p q 这两个不等式后取交集即可得到实数x 的取值范围.(2)p 是q 的必要不充分条件,则q 的范围是p 的范围的子集,由此得到a 的取值范围.试题解析:(1)由0x a -<,得x a <.当2a =时,2x <,即p 为真命题时,2x <. 由2430x x -+≤得13x ≤≤,所以q 为真时,13x ≤≤.若p q ∧为真,则12x ≤<所以实数x 的取值范围是[)1,2.(2)设(),A a =-∞,[]1,3B =, q 是p 的充分不必要条件,所以B A ⊆,从而3a >.所以实数a 的取值范围是()3,+∞.16.(1){|1x x <-或}x a >;(2)当1a =时, ()f x 是偶函数.【解析】分析:(1)由()210x a x a +-->可得()()10x x a +->,根据一元二次不等式的解法,分三种情况讨论求解即可;(2)由()f x 是偶函数,可得函数定义域关于原点对称, 结合(1)可知, 1a =;经检验可得结论.详解:(1)因为()210x a x a +-->即()()10x x a +->, 当1a <-时,不等式的解为x a <或1x >-,所以函数()f x 的定义域为{|x x a <或1}x >-.当1a =-时,不等式的解为1x ≠-,所以函数()f x 的定义域为{|1}x x ≠-.当1a >-时,不等式的解为1x <-或x a >,所以函数()f x 的定义域为{|1x x <-或}x a >.(2)如果()f x 是偶函数,则其定义域关于原点对称,由(1)知, 1a =,检验:当1a =时,定义域为{|1x x <-或1}x >关于原点对称,()()2lg 1f x x =-, ()()()()22lg 11f x x lg x f x ⎡⎤-=--=-=⎣⎦, 因此当1a =时, ()f x 是偶函数.点睛:本题主要考查分函数的定义域、一元二次不等式的解法、分类讨论思想的应用.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.17.(1)2,4a b ==;(2)3,4⎛⎤-∞ ⎥⎝⎦.【分析】(1)利用函数图像上的两个点的坐标列方程组,解方程组求得,a b 的值.(2)将原不等式分离常数m ,利用函数的单调性,求出m 的取值范围.【详解】(1)由于函数()f x 图像经过(1,8)A ,(3,32)B ,所以3832a b a b ⋅=⎧⎨⋅=⎩,解得2,4a b ==,所以()2422x x f x +=⋅=.(2)原不等式11()()0x x m a b +-≥为11024x x m ⎛⎫⎛⎫+-≥ ⎪ ⎪⎝⎭⎝⎭,即1124x x m ⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭在(,1]x ∈-∞时恒成立,而1124x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭在(,1]x ∈-∞时单调递减,故在1x =时1124x x⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭有最小值为11113244⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,故34m ≤.所以实数m 的取值范围是3,4⎛⎤-∞ ⎥⎝⎦. 【点睛】本小题主要考查待定系数法求函数的解析式,考查不等式恒成立问题的求解策略,考查函数的单调性以及最值,属于中档题.18.(1)43.5(2)当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.【解析】(1)当50x =时,此时甲城市投资50万元,乙城市投资70万元,所以总收益()50f =167024+⨯+=43.5(万元). (2)由题知,甲城市投资x 万元,乙城市投资()120x -万元,所以()f x =()1612024x -+-+=126,4x -+ 依题意得4012040x x ≥⎧⎨-≥⎩,解得4080x ≤≤,故()f x =()12640804x x -+≤≤,令t =,则t ⎡∈⎣,所以y=21264t -++=21(444t --+.当t =,即72x =万元时,y 的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.19.(1)1x =-;(2)0 1.a <≤;(3)()()()2,0 1.1,112,1m m m g x m m m m ⎧-<≤⎪=<≤+⎨⎪->⎩.【解析】试题分析:(1)0a =⇒()f x x x =,再由f (x )=-1即可求得x 的值;(2)由222,22,2x ax x a fx ax x x a⎧-≥=⎨-<⎩, 在[2,+∞)上是增函数,利用二次函数的单调性可求得a 的取值范围;(3)作出()()2,22,2x x x fx x x x ⎧-≥⎪=⎨-<⎪⎩,的图象,对m 分0<m ≤1与1<m 1≤, 1m >三种情况讨论即可求得答案.试题解析:解:(1)由0a =知()f x x x =()1f x =-即1x x =- ∴1x =-(2)()f x 在[)2,∞+ 上是增函数22,1a a ∴≤≤即∴01a <≤(3)()f x 图象如图当01m <≤时,当11m <≤时,()()11g m f == 当21m >+时,综合.20.(1)[]0,8 []0,8;(2)][7,7,2⎛⎫-∞-⋃+∞ ⎪⎝⎭;(3)答案见解析. 【解析】试题分析:()1求出函数的对称轴,得到函数的单调性,解关于a 的不等式组,解出即可; ()2只需函数()y f x =的值域是函数()y g x =的值域的子集,通过讨论0m =,0m >,0m <的情况,得到函数的单调性,从而确定m 的范围即可;()3通过讨论t 的范围,结合函数的单调性以及()2f ,()2f -的值,得到关于t 的方程,解出即可.解析:(1)根据题意得:()f x 的对称轴是2x =-,故()f x 在区间[]1,1-递增, 因为函数在区间[]1,1-上存在零点,故有()()1010f f ⎧-≤⎪⎨≥⎪⎩,即08a ≤≤, 故所求实数a 的范围是[]0,8;(2)若对任意的[]11,2x ∈,总存在[]21,2x ∈,使()()12f x g x =成立,只需函数()y f x =的值域是函数()y g x =的值域的子集,0a =时,()[]245,1,2f x x x a x =++-∈的值域是[]0,7, 下面求()g x ,[]1,2x ∈的值域,令14x t -=,则[]1,4t ∈,27y mt m =-+,①0m =时,()7g x =是常数,不合题意,舍去;②0m >时,()g x 的值域是[]7,27m m -+,要使[]0,7⊆ []7,27m m -+,只需70277m m -≤⎧⎨+≥⎩,计算得出7m ≥; ③0m <时,()g x 的值域是[]27,7m m +-, 要使[]0,7⊆ []27,7m m +-,只需77270m m -≥⎧⎨+≤⎩,计算得出72m ≤; 综上,m 的范围是][7,7,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. (3)根据题意得2640t t <⎧⎨->⎩,计算得出32t <,①6t ≤-时,在区间[],2t 上,()f t 最大,()2f -最小, ()()224464f t f t t t --=++=-,计算得出:4t =--4t =-+;②62t -<≤-时,在区间[],2t 上,()2f 最大,()2f -最小, ()()221664f f t --==-,计算得出:52t =-; ③322t -<<时,在区间[],2t 上,()2f 最大,()f t 最小, ()()2241264f f t t t t -=--+=-,计算得出:t =t =t 满足题意,综上,存在常数t 满足题意,4t =--或52t =-. 点睛:本题是道函数综合题目,在判定零点的时候可以运用零点的存在定理求解,当遇到“对任意的,总存在”时候要转化为两个函数值域的包含关系,从而求解.。

江苏省江阴四校高二数学下学期期中试题文

江苏省江阴四校高二数学下学期期中试题文

2016-2017学年第二学期高二期中考试数学(文科)一、填空题(每小题5分,共70分.请把答案直接填写在答题卷相应位置上). 1、 已知复数z 满足i z i +=-1)1(,则z 的模为____▲______.2、 已知集合{}|47M x x =-≤≤,{}3,5,8N =,则MN =____▲_____.3、 命题“R x ∀∈,220x +>”的否定是_ ▲ 命题.(填“真”或“假”之一)4、 函数)13lg(13)(2++-=x xx x f 的定义域是 ▲ .5、 已知函数2()2f x x x =-在定义域[1,]n -上的值域为[1,3]-,则实数n 的取值范围 ▲ .6、 已知数列{}n a 中,2,11≥=n a 时,,121-+=-n a a n n 猜想n a 的表达式是 ▲ .7、 函数)34(log )(221-+-=x x x f 的递减区间为_______▲__________.8、 设函数()f x 是定义在R 上的奇函数,当0x ≥时,()22x f x x b =+-(b 为常数),则(1)f -的值为 ___▲____.9、 若f (x )为奇函数,且在(-∞,0)上是减函数,又f (-2) = 0,求不等式x ·f (x )<0的解集为 ▲ . 10、已知函数862++-=m mx mx y 的定义域为R ,则实数m 的取值范围是___▲___.11、已知实数a ≠0,函数f (x ) = ⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a ) = f (1+a ),则a 的值为_▲__.12、设函数f (x )是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f (a – 2) – f (4 – a 2)<0, 实数a 的取值范围______▲________.13、已知f (x )是定义在R 上函数,且)(1)23(x f x f -=+当x ∈[0,3)时,f (x )=|212|2+-x x .若函数y = f (x )– a 在区间[–3,4]上有10个零点(互不相同),则实数a 的取值范围 是__▲___.14 、已知函数⎩⎨⎧>-≤+-=1,521,)(2x ax x ax x x f ,若2121,,x x R x x ≠∈∃使得)()(21x f x f =成立,则实数a 的取值范围是 ▲ .二、解答题(本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤).15、设关于x 的不等式x (x -a -1)<0(a ∈R )的解集为M ,不等式x 2-2x -3≤0的解集为N . (1)当a =1时,求集合M ; (2)若M ⊆N ,求实数a 的取值范围.16、设命题p :函数2()lg(1)f x x ax =++的定义域为R ;命题q :函数2()21f x x ax =--在(,1]-∞-上单调递减.(1)若命题“p q ∨”为真,“p q ∧”为假,求实数a 的取值范围;(2)若关于x 的不等式()(5)0()x m x m m R --+<∈的解集为M ;命题p 为真命题时,a 的取值集合为N .当""N x ∈是""M x ∈的充分不必要条件时,求实数m 的取值范围.17、己知二次函数f (x ) = ax 2+ bx (a 、b 为常数)满足条件f (x – 3) = f (5 – x ),且方程f (x )= x 有等根.(1)求f (x )的解析式;(2)是否存在实数m , n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[3m ,3n ]?如果存在,求出m ,n 的值;如果不存在,请说明理由.18、某隧道长2150m ,通过隧道的车辆速度不能超过20s m /.一列有55辆车身长都为10m 的同一车型的车队(这种型号车能行驶的最高速度为40s m /),匀速通过该隧道,设车队的速度为s xm /,根据安全和车流量的需要,当100≤<x 时,相邻两车之间保持20m 的距离;当2010≤<x 时,相邻两车之间保持m x x ⎪⎭⎫ ⎝⎛+31612的距离.自第1辆车车头进入隧道至第55辆车车尾离开隧道所用时间为)(s y .(1)将y 表示为x 的函数;(2)求车队通过隧道时间y 的最小值及此时车队的速度.(3≈1.73).19、已知函数)(x f y =是定义在[]1,1-上的奇函数,且,1)1(=f 若[]2121,1,1,x x x x ≠-∈,0)()(2121>--x x x f x f .(1)判断函数)(x f 的单调性,并证明; (2)解不等式:)11()21(-<+x f x f ; (3)若12)(2+-≤am m x f 对所有[]1,1-∈a 恒成立,求实数m 的取值范围.20、已知函数()21,f x x x a x =+-+∈R . (1)判断函数()f x 的奇偶性,并说明理由; (2)当0=a 时,求函数()f x 的单调区间; (3)求函数()f x 的最小值)(a g .2016-2017学年第二学期高二期中考试数学答案1、12、{}5,33、假4、)1,31(- 5、[]3,1 6、2n a n = 7、)2,1( 8、-3 9、()),2(2,+∞⋃-∞- 10、 []1,0 11、43- 12、)5,2()2,3(⋃ 13、)21,0( 14、)4,(-∞15.解析 (1)当a =1时,由已知得x (x -2)<0,解得0<x <2. 所以M ={x |0<x <2}----4分(2)由已知得N ={x |-1≤x ≤3}. - ---------------------5分 ①当a <-1时,因为a +1<0,所以M ={x |a +1<x <0}因为M ⊆N ,所以-1≤a +1<0,所以-2≤a <-1. . - ----------------------8分 ②当a =-1时,M =∅,显然有M ⊆N ,所以a =-1成立. ----------------------10分 ③当a >-1时,因为a +1>0,所以M ={x |0<x <a +1}.因为M ⊆N ,所以0<a +1≤3,所以-1<a ≤2. ----------------------13分 综上所述,a 的取值范围是[-2,2] ----------------------14分16、(1)若p 真:22,0<<-<∆a ----------------------2分若q 真:1-≥a ----------------------4分 命题“p q ∨”为真,“p q ∧”为假真假假,真p q q p ∴ ----------------------5分 当p 真q 假,12-<<-a当p 假q 真,2≥a综上: 12-<<-a 或2≥a ----------------------9分 (2)当""N x ∈是""M x ∈的充分不必要条件M N 是∴的真子集 ----------------------11分 ⎩⎨⎧≥-≤-∴225m m (等号不同时取) -------------------13分32≤≤∴m -------------------14分17、(1)由)5()3(x f x f -=-,得对称轴为1=x ,即12=-ab----------------3分 又f (x ) = x 有等根,1=b , ---------------6分所以解析式为x x x f +-=221)(- --------------7分(2)213,2121)1(2121)(22≤≤+--=+-=n x x x x f --------------9分 61≤<∴n m --------------11分所以函数在[]n m ,上单调递增,n n f m m f ==∴)(,)(--------------13分0,4=-=∴n m --------------14分18、解:(1)当0<x ≤10时,y =2150+10×55+20×(55-1)x =3780x(s ); -------------3分当10<x ≤20时,y =2150+10×55+(16x 2+13x )×(55-1)x =2700+9x 2+18xx--------------6分=18+9x +2700x(s ).所以y =⎩⎨⎧3780x,0<x ≤10,18+9x +2700x ,10<x ≤20.------------7分(2)当x ∈(0,10]时,在x =10时,y min =378010=378(s ). ------------10分当x ∈(10,20]时,y =18+9x +2700x≥18+29x ⋅2700x=18+1803≈329.4(s ).当且仅当9x =2700x,即x =103≈17.3时取等号.因为17.3∈(10,20],所以当x =17.3m /s 时,y min =329.4(s ). ------------14分 因为378>329.4,所以当车队的速度为17.3m /s 时,车队通过隧道时间y 有最小值329.4s . ------------16分19、(1)单调递增 ------------4分(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-112111111211x x x x 所以不等式的解集为⎪⎭⎫⎢⎣⎡--1,23------------10分 (3))(x f 为增函数,所以)(x f 的最大值为1)1(=f 022≥-∴am m 恒成立 令am m a h 2)(2-=⎩⎨⎧≥≥-∴0)1(0)1(h h ------------13分⎩⎨⎧-≤≥≤≥∴2002m m m m 或或 022=-≤≥∴m m m 或或 - -----------16分20、(1)当)(,0x f a =为偶函数 ------------2分 当)()(),()(,0x f x f x f x f a -≠-≠-≠,此时函数为非奇非偶函数--------4分(2)当⎪⎪⎩⎪⎪⎨⎧<+-≥++=++==0,43)21(0,43)21(1)(,0222x x x x x x x f a所以)(x f 的单调增区间是),0(+∞,单调减区间是)0,(-∞ ------------7分 (3)当21-≤a 时,a x ≥时,)(x f 的最小值为a f -=-43)21( a x <时,1)()(2+=>a a f x f而041)1()43(22≤---=+--a a a a 所以)(x f 的最小值为a a g -=43)( ------------10分当21≥a 时,a x ≥时,)(x f 的最小值为1)(2+=a a f a x <时,)(x f 的最小值为43)21(+=a f而041)43()1(22≥+-=+-+a a a a所以)(x f 的最小值为 a a g +=43)( ------------13分当2121<<-a 时, )(x f 的最小值为1)(2+=a a g ------------15分综上所述:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+<<-+-≤-=21,432121,121,43)(2a a a a a a a g ------------16分。

江苏无锡江阴四校高二下学期期中考试数学(文)试卷Word版含答案

江苏无锡江阴四校高二下学期期中考试数学(文)试卷Word版含答案
在 上单调递增,在 上单调递减,在 上单调递增,
所以 , ,
而 ,
当 时, ;
当 时, ;13分
当 时, ,
这时 在 上单调递增,在 上单调递减,此时 ;
当 时, , 在 上单调递增,此时 ;15分
综上所述, 时, 16分
(1)因为 所以有 .10分
(2)因为 ,即 解得 .14分
16.若 真,则 在 上单调递减,
2分
若 真,令 ,
则应满足 5分教育精品
7分
又由已知“ 或 ”为真,“ 且 ”为假,则应有 真 假,或者 假 真.
① 若 真 假,则 .10分
② 若 假 真,则 12分
综合①②知,实数 的取值范围为 14分
(2)设 则 ,
由 得
所以点 10分教育精品
所以,绿化带的总长度
14分
当 时, .
所以,当OM长为1千米时,绿化带的总长度最长. 16分教育精品
19.(1)
4分
6分
(2)方程 在 上有解 ,9分
设 对称轴 .
① 即 ,则 ,无解12分
② 即 ,则 解得 15分
综上 16分教育精品
方法二、分离参数
20.(1)当 时, ,
17.(1) 是定义在 的奇函数, 4分
当m=1时, , 6分
(2)(方法一:利用导数证明)
, ,
, 在 单调递增10分
(方法二:利用单调性定义证明)
12分
(忘记定义域扣2分)14分
18.(1)因为曲线段OAB过点 ,且最高点为 ,
得 ,
所以,当 时, 4分
因为最后一部分是线段BC, ,当 时,
综上, .8分
(1)求曲线段OABC对应的函数 的解析式;

2017-2018年江苏省无锡市江阴四校高二(下)期中数学试卷(理科)和答案

2017-2018年江苏省无锡市江阴四校高二(下)期中数学试卷(理科)和答案

2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(理科)一、填空题(每题5分,满分70分,将答案填在答题纸上)1.(5分)复数z=的虚部为.2.(5分)用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是.3.(5分)设复数z=﹣1﹣i(i为虚数单位),z的共轭复数为,则|(1﹣z)|=.4.(5分)用数学归纳法证明不等式“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值自然数n0应取为.5.(5分)三段论推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是.(填写序号)6.(5分)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为.7.(5分)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(用数字回答)8.(5分)设f(k)=+++…+(k∈N*),那么f(k+1)﹣f(k)=.9.(5分)已知﹣=,则C21m=.10.(5分)(ax﹣)8的展开式中x2的系数为70,则a=.11.(5分)在数列{a n}中,a1=2,,可以猜测数列通项a n的表达式为.12.(5分)记等差数列{a n}得前n项和为S n,利用倒序相加法的求和办法,可将S n表示成首项a1,末项a n与项数的一个关系式,即S n=;类似地,记等比数列{b n}的前n项积为T n,b n>0(n∈N*),类比等差数列的求和方法,可将T n表示为首项b1,末项b n与项数的一个关系式,即公式T n=.13.(5分)已知(1+x)10=a0+a1(1﹣x)+a2(1﹣x)2+…+a10(1﹣x)10,则a8=.14.(5分)学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有种.(用数字作答)二、解答题(本大题共6小题,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(14分)(1)设(3x﹣1)4=a0+a1x+a2x2+a3x3+a4x4.①求a0+a1+a2+a3+a4;②求a0+a2+a4;③求a1+a2+a3+a4;(2)求S=C271+C272+…+C2727除以9的余数.16.(14分)已知复数w满足w﹣4=(3﹣2w)i(i为虚数单位).(1)求w;(2)设z∈C,在复平面内求满足不等式1≤|z﹣w|≤2的点Z构成的图形面积.17.(14分)(1)证明:当a>2时,;(2)已知x,y∈R+,且x+y>2,求证:与中至少有一个小于2.18.(16分)男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.19.(16分)已知在(﹣)n的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项.(3)求n+9c+81c+…+9n﹣1c的值.20.(16分)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n与log a b n+1的大小,并证明你的结论.2017-2018学年江苏省无锡市江阴四校高二(下)期中数学试卷(理科)参考答案与试题解析一、填空题(每题5分,满分70分,将答案填在答题纸上)1.(5分)复数z=的虚部为﹣1.【解答】解:z===,则复数z的虚部﹣1,故答案为:﹣1.2.(5分)用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是a、b都不能被2整除.【解答】解:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故答案为:a、b都不能被2整除.3.(5分)设复数z=﹣1﹣i(i为虚数单位),z的共轭复数为,则|(1﹣z)|=.【解答】解:∵复数z=﹣1﹣i,∴=﹣1+i.∴(1﹣z)=(1+1+i)•(﹣1+i)=﹣3+i.∴|(1﹣z)|=|﹣3+i|=.故答案为:.4.(5分)用数学归纳法证明不等式“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值自然数n0应取为5.【解答】解:根据数学归纳法的步骤,首先要验证当n取第一个值时命题成立;结合本题,要验证n=1时,左=21=2,右=12+1=2,2n>n2+1不成立,n=2时,左=22=4,右=22+1=5,2n>n2+1不成立,n=3时,左=23=8,右=32+1=10,2n>n2+1不成立,n=4时,左=24=16,右=42+1=17,2n>n2+1不成立,n=5时,左=25=32,右=52+1=26,2n>n2+1成立,因为n>5成立,所以2n>n2+1恒成立.5.(5分)三段论推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是②.(填写序号)【解答】解:推理:“①矩形是平行四边形,②正方形是矩形,③正方形是平行四边形.”中大前提:矩形是平行四边形;小前提:正方形是矩形;结论:所以正方形是平行四边形.故小前提是:②正方形是矩形.故答案为:②6.(5分)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为+…+=+…+.【解答】解:由已知可得:第n个等式含有2n项,其中奇数项为,偶数项为﹣.其等式右边为后n项的绝对值之和.∴第n个等式为:+…+=+…+.7.(5分)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为72(用数字回答)【解答】解:要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有A44=24种排法.由分步乘法计数原理得,由1、2、3、4、5组成的无重复数字的五位数中奇数有3×24=72个.8.(5分)设f(k)=+++…+(k∈N*),那么f(k+1)﹣f(k)=.【解答】解:∵f(k)=+++…+(k∈N*),∴f(k+1)=++…++;(k∈N*),则f(k+1)﹣f(k)=++…++﹣(+++…+)=;故答案为:9.(5分)已知﹣=,则C21m=210.【解答】解:∵﹣=,∴﹣=,化简,得:6×(5﹣m)!﹣(6﹣m)!=,6﹣(6﹣m)=,∴m2﹣23m+42=0,解得m=2或m=21(舍去),∴=210.故答案为:210.10.(5分)(ax﹣)8的展开式中x2的系数为70,则a=±1.【解答】解:(ax﹣)8的展开式中的通项公式为T r+1=•(﹣1)r•a8﹣r•,令8﹣=2,求得r=4,故x2的系数为•a4=70,则a=±1,故答案为:±1.11.(5分)在数列{a n}中,a1=2,,可以猜测数列通项a n的表达式为.【解答】解:∵a1=2,,∴,,,,由此猜测a n=.故答案为:a n=.12.(5分)记等差数列{a n}得前n项和为S n,利用倒序相加法的求和办法,可将S n表示成首项a1,末项a n与项数的一个关系式,即S n=;类似地,记等比数列{b n}的前n项积为T n,b n>0(n∈N*),类比等差数列的求和方法,可将T n表示为首项b1,末项b n与项数的一个关系式,即公式T n=.【解答】解:在等差数列{a n}的前n项和为S n=,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列{b n}的前n项积T n==,故答案为:13.(5分)已知(1+x)10=a0+a1(1﹣x)+a2(1﹣x)2+…+a10(1﹣x)10,则a8= 180.【解答】解:∵(1+x)10=[2﹣(1﹣x)]10∴其展开式的通项为T r+1=(﹣1)r210﹣r C10r(1﹣x)r令r=8得a8=4C108=180故答案为:18014.(5分)学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有930种.(用数字作答)【解答】解:若甲乙都入选,则从其余6人中选出2人,有C62=15种,男生甲不适合担任一辩手,女生乙不适合担任四辩手,则有A44﹣2A33+A22=14种,故共有15×14=210种;若甲不入选,乙入选,则从其余6人中选出3人,有C63=20种,女生乙不适合担任四辩手,则有C31A33=18种,故共有20×18=360种;若甲乙都不入选,则从其余6人中选出4人,有C64=15种,再全排,有A44=24种,故共有15×24=360种;综上所述,共有210+360+360=930种.故答案为:930种.二、解答题(本大题共6小题,共90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(14分)(1)设(3x﹣1)4=a0+a1x+a2x2+a3x3+a4x4.①求a0+a1+a2+a3+a4;②求a0+a2+a4;③求a1+a2+a3+a4;(2)求S=C271+C272+…+C2727除以9的余数.【解答】解:(1)①令x=1,得a0+a1+a2+a3+a4=(3﹣1)4=16;(3分)②令x=﹣1,得a0﹣a1+a2﹣a3+a4=(﹣3﹣1)4=256,而由①知a0+a1+a2+a3+a4=(3﹣1)4=16,两式相加,得2(a0+a2+a4)=272,所以a0+a2+a4=136;(6分)③令x=0,得a0=(0﹣1)4=1,所以a1+a2+a3+a4=a0+a1+a2+a3+a4﹣a0=16﹣1=15;(2)S=++…+=227﹣1=89﹣1=(9﹣1)9﹣1=×99﹣×98+…+×9﹣﹣1=9×(×98﹣×97+…+)﹣2=9×(×98﹣×97+…+﹣1)+7,显然上式括号内的数是正整数.故S被9除的余数为7.16.(14分)已知复数w满足w﹣4=(3﹣2w)i(i为虚数单位).(1)求w;(2)设z∈C,在复平面内求满足不等式1≤|z﹣w|≤2的点Z构成的图形面积.【解答】解:(1)∵w(1+2i)=4+3i,∴w===2﹣i.(2)在复平面内求满足不等式1≤|z﹣w|≤2的点Z构成的图形为一个圆环,其中大圆为:以(2,﹣1)为圆心,2为半径的圆;小圆是:以(2,﹣1)为圆心,1为半径的圆.∴在复平面内求满足不等式1≤|z﹣w|≤2的点Z构成的图形面积=22π﹣12×π=3π.17.(14分)(1)证明:当a>2时,;(2)已知x,y∈R+,且x+y>2,求证:与中至少有一个小于2.【解答】证明:(1)要证+<2,只要证(+)2<(2)2,只要证2a+2<4a,只要证<a,由于a>2,只要证a2﹣4<a2,最后一个不等式成立,所以+<2;(2)(反证法)假设与中均不小于2,即≥2,≥2,∴1+x≥2y,1+y≥2x.将两式相加得:x+y≤2,与已知x+y>2矛盾,故与中至少有一个小于2.18.(16分)男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.【解答】解:(1)由题意知本题是一个分步计数问题,首先选3名男运动员,有C63种选法.再选2名女运动员,有C42种选法.共有C63•C42=120种选法.(2)法一(直接法):“至少1名女运动员”包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得有C41•C64+C42•C63+C43•C62+C44•C61=246种选法.法二(间接法):“至少1名女运动员”的反面为“全是男运动员”.从10人中任选5人,有C105种选法,其中全是男运动员的选法有C65种.所以“至少有1名女运动员”的选法有C105﹣C65=246种.(3)“只有男队长”的选法为C84种;“只有女队长”的选法为C84种;“男、女队长都入选”的选法为C83种;∴共有2C84+C83=196种.∴“至少1名队长”的选法有C105﹣C85=196种选法.(4)当有女队长时,其他人选法任意,共有C94种选法.不选女队长时,必选男队长,共有C84种选法.其中不含女运动员的选法有C54种,∴不选女队长时共有C84﹣C54种选法.既有队长又有女运动员的选法共有C94+C84﹣C54=191种.19.(16分)已知在(﹣)n的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项.(3)求n+9c+81c+…+9n﹣1c的值.【解答】解:(1)由第5项的系数与第3项的系数之比是:=56:3,解得n=10.因为通项:T r+1=•(﹣2)r •,当5﹣为整数,r可取0,6,于是有理项为T1=x5和T7=13440.(2)设第r+1项系数绝对值最大,则.解得,于是r只能为7.所以系数绝对值最大的项为T8=﹣15360.(3)n+9c+81c+…+9n﹣1c=10+9+92•+…+910﹣1•===.20.(16分)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.第11页(共13页)(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n 与log a b n+1的大小,并证明你的结论.【解答】解:(1)设数列{b n}的公差为d ,由题意得解得所以b n=3n﹣2.(2)由b n=3n﹣2,知S n=log a(1+1)+log a(1+)++log a(1+)=log a[(1+1)(1+)(1+)],log a b n+1=log a.因此要比较S n 与log a b n+1的大小,可先比较(1+1)(1+)(1+)与的大小.取n=1有(1+1)>,取n=2有(1+1)(1+)>,由此推测(1+1)(1+)(1+)>.①若①式成立,则由对数函数性质可断定:当a>1时,S n >log a b n+1.当0<a<1时,S n <log a b n+1.下面用数学归纳法证明①式.(ⅰ)当n=1时已验证①式成立.(ⅱ)假设当n=k(k≥1)时,①式成立,即(1+1)(1+)(1+)>.那么,当n=k+1时,(1+1)(1+)(1+)(1+)>(1+)第12页(共13页)=(3k+2).因为==,所以(3k+2)>.因而(1+1)(1+)(1+)(1+)>.这就是说①式当n=k+1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n都成立.由此证得:当a>1时,S n >log a b n+1.当0<a<1时,S n <log a b n+1.第13页(共13页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第二学期高二期中考试数学学科试题(文科)一、填空题(每小题5分,共70分。

请把答案直接填写在答题卷相应位置.) 1.已知集合A ={0,1},B ={-1,0,a +3},且A ⊆B ,则a 等于 ▲ .2.若32z i =-,则2=-z i▲ . 3.已知命题1:0,2p x x x∀>+≥,那么命题p ⌝为 ▲ .4.函数()ln 3y x =-的定义域是 ▲ .5.已知2133311,,log 34a b c π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为 ▲ . 6.“1x >” 是 “11x<” 的 ▲ 条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 7.设函数()133,1{1log ,1x x f x x x -≤=->,则满足()3f x ≤的x 的取值范围是 ▲ .8.二维空间中,圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=;三维空间中,球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=.应用合情推理,若四维空间中,“特级球”的三维测度312V r π=,则其四维测度W = ▲ .9.已知函数1)(2-+=mx x x f ,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是 ▲ .10.若函数)(x f 定义在R 上的奇函数,且在)0,(-∞上是增函数,又0)2(=f ,则不等式0)1(<+x xf 的解集为 ▲ .11.已知函数()()20{ 20x x f x f x x ≤=->,则()()()()1232017f f f f ++++=▲ .12.设函数()212exf x x =-+,则使()()24f x f x ≤-成立的x 的取值范围是 ▲ .13.已知函数()f x 是定义在R 上的奇函数,对任意的x R ∈,均有()()2f x f x +=,当[)0,1x ∈时, ()21x f x =-,则下列结论正确的是 ▲ .① ()f x 的图象关于1x =对称 ② ()f x 的最大值与最小值之和为2 ③方程()lg 0f x x -=有10个实数根 ④当[]2,3x ∈时, ()221x f x +=-14.已知函数⎩⎨⎧>-≤+-=,1,)(,1|,1|)(2x a x x x a x f 函数)(2)(x f x g -=,若函数)()(x g x f y -=恰有4个零点,则实数a 的取值范围是 ▲ .二、解答题(本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤).15.(本小题满分14分)已知:p 实数x ,满足0x a -<,:q 实数x ,满足2430x x -+≤. (1)若2a =时p q ∧为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围16.(本小题满分14分)已知函数()()2lg 1f x x a x a ⎡⎤=+--⎣⎦.(1)求函数()f x 的定义域.(2)若()f x 为偶函数,求实数a 的值.17.(本小题满分14分)已知函数()xf x b a =⋅ (其中,a b 为常量且0a >且1a ≠)的图象经过点()1,8A , ()3,32B . (1)试求,a b 的值;(2)若不等式110x xm a b ⎛⎫⎛⎫+-≥ ⎪ ⎪⎝⎭⎝⎭在(],1x ∈-∞时恒成立,求实数m 的取值范围.18.(本小题满分16分)近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足623-=a P ,乙城市收益Q 与投入a (单位:万元)满足241+=a Q ,设甲城市的投入为x (单位:万元),两个城市的总收益为)(x f (单位:万元). (1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?19.(本小题满分16分)已知函数()2,.f x x x a a R =-∈ ⑴若0a =,且() 1.f x =-,求x 的值;⑵当0a >时,若()f x 在[)2,+∞上是增函数,求a 的取值范围; ⑶若1=a ,求函数()f x 在区间[]()00m m >,上的最大值()g m .20.(本小题满分16分)已知函数54)(2-++=a x x x f ,724)(1+-⋅=-m m x g x .(1)若函数)(x f 在区间]1,1[-上存在零点,求实数a 的取值范围;(2]2,1[1∈x ,总存在]2,1[2∈x ,使)()(21x g x f =成立,求实数m的取值范围;(3)若]2,[),(t x x f y ∈=的值域为区间D ,是否存在常数,使区间D 的长度为t 46-?若存在,求出的值;若不存在,请说明理由.(注:区间],[q p 的长度为p q -)2017-2018学年第二学期高二期中考试数学学科答案(文科)一、填空题 1. -2 2.2155i + 3. 21,0<+>∃xx x 4. [)2,3 5. c b a << 6. 充分不必要 7. [)0,+∞ 8. 43r π 9.)0,22(-10. )1,0()1,3(⋃-- 11. 30252 12.44,3⎡⎤-⎢⎥⎣⎦ 13. ③ 14. (2,3]二、解答题15.(1)由0x a -<,得x a <.当2a =时,2x <,即p 为真命题时,2x <. ----------------------2分 由2430x x -+≤得13x ≤≤,所以q 为真时,13x ≤≤. ----------------------4分 若p q ∧为真,则12x ≤<所以实数x 的取值范围是[)1,2. ----------------------7分 (2)设(),A a =-∞,[]1,3B =, ----------------------8分q 是p 的充分不必要条件,所以B A ⊆, ----------------------10分 从而3a >.所以实数a 的取值范围是()3,+∞. ---------------------14分16.(1)因为()210x a x a +-->即()()10x x a +->, ----------------------1分当1a <-时,不等式的解为x a <或1x >-,所以函数()f x 的定义域为{|x x a <或1}x >-. ----------------------3分 当1a =-时,不等式的解为1x ≠-,所以函数()f x 的定义域为{|1}x x ≠-. ----------------------5分 当1a >-时,不等式的解为1x <-或x a >,所以函数()f x 的定义域为{|1x x <-或}x a >. ----------------------7分 (2)如果()f x 是偶函数,则其定义域关于原点对称, ----------------------9分 由(1)知, 1a =, ----------------------11分 检验:当1a =时,定义域为{|1x x <-或1}x >关于原点对称,()()2lg 1f x x =-, ()()()()22lg 11f x x lg x f x ⎡⎤-=--=-=⎣⎦,因此当1a =时, ()f x 是偶函数. ----------------------14分17.(1)由函数()xf x b a =⋅的图象经过点()1,8A , ()3,32B ,知38{ 32a b a b ⋅=⋅=-----2分1,≠>a o a ,4,2==∴b a --------------------6分(2)解:由(1)可得恒成立令,只需,易得在为单调减函数,-------------10分. --------------------14分18.(1)当时,此时甲城市投资50万元,乙城市投资70万元所以总收益=43.5(万元) ----------------------4分(2)由题知,甲城市投资万元,乙城市投资万元所以 ----------------------8分依题意得,解得 ----------------------10分故令,则所以当t =,即72x =万元时, y 的最大值为44万元, ----------------------14分 所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元. ----------------------16分19.(1)由0a =知()f x x x =()1f x =-即1x x =- ∴1x =- ----------------------3分(2)----------------------4分,0>a)(x f ∴在),(a -∞上单调递增,在)2,(a a 上单调递减,在),2(+∞a 上单调递增-------6分()f x 在[)2,+∞ 上是增函数 22,1a a ∴≤≤即∴01a <≤ ---------------------8分(3)()f x 图象如图当01m <≤时, ----------------------10分当11m <≤时, ()()11g m f ==----------------------12分当1m >时,----------------------14分综 ----------------------16分20.(1)根据题意得: 的对称轴是 --------1分--------------------3分(2----------------------4分----------------------5分的值域是----------------------7分的值域是,综上,----------------------9分(3----------------------10分最大,计算得出:;---------------------12分---------------------14分计算得出:综上,存在常数满足题意,----------------------16分。

相关文档
最新文档