江苏省东台市创新学校高一上学期数学学案:必修四 第一章 第1课时 任意角(1)
高中数学必修4学案 1 任意角

山东省临沭第二中学高一数学学科学案编号001时间:2013-1-24 主编:王廷建审核:高一年级组班级:姓名:课题:任意角【学习目标】1.理解任意角的概念,学会在平面内建立适当的坐标系讨论任意角.2.能在0º到360º范围内,找出一个与已知角终边相同的角,并判定其为第几象限角.3.能写出与任一已知角终边相同的角的集合.【学习重点】将0º到360º的角概念推广到任意角.【学习难点】终边相同的角用集合和符号语言正确表示出来【问题导学】1. 角是平面几何中的一个基本图形,角是可以度量其大小的.在平面几何中,角的取值范围如何?2. 体操是力与美的结合,也充满了角的概念.2002年11月22日,在匈牙利德布勒森举行的第36届世界体操锦标赛中,“李小鹏跳”——“踺子后手翻转体180度接直体前空翻转体900度”,震惊四座,这里的转体180度、转体900度就是一个角的概念. 但是用我们之前学习的0度到360度的角是不够用,所以必须将角的概念推广,你能说出他们在原地旋转3圈旋转了多少度吗?3.你的手表慢了5分钟,你怎样将它校准?假如你的手表快了1.25个小时,你应当如何将它校准?当时间校准后,分针旋转了多少度?4.任意角的定义(通过类比数的正负,定义角的正负和零角的概念)5.能否以同一条射线为始边作出下列角吗?能的话,作出来。
210º -150º -660º6. 如何判断一个角是第几象限的角?上述三个角分别是第几象限角,其中哪些角的终边相同.7.在直角坐标系中标出-32°、328°、-392°,你能发现什么?解释一下为什么?除了这几个角之外你还能举出有相同特征其它角吗?【典型例题】1.在0°~360°范围内找出与-860°36′终边相同的角,并判断它是第几象限角。
2.根据课本例2,请写出终边在X轴上角的集合3.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤ß<360°的元素ß写出来(1)1303°18′(2)-225°【基础题组】1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A⊂C D.A=B=C2.下列结论正确的是()A.三角形的内角必是一、二象限内的角 B.第一象限的角必是锐角C.不相等的角终边一定不同D.{}Zkk∈±⋅=,90360|αα={}Zkk∈+⋅=,90180|αα3.若角α的终边为第二象限的角平分线,则α的集合为______________________.4.在0°到360°范围内,与角-60°的终边在同一条直线上的角为.5.今天是星期5,那么7k(k属于Z)天后的那一天是星期几?7k天前的那一天是星期几?100天后的那一天是星期几?6.做出下列各角,并指出它们是第几象限角:(1)-54°18′ (2)395°8′ (3)-1190°【拓展题组】1.下列说法中,正确的是()A.第一象限的角是锐角 B.锐角是第一象限的角C.小于90°的角是锐角 D.0°到90°的角是第一象限的角2.已知α是锐角,那么2α是()A.第一象限角 B. 第二象限角 C. 小于180°的正角 D. 第一或第二象限角3.下面4个命题,其中真命题的个数是()(1)终边相同的角一定相等;(2)相等的角的终边一定相同;(3)终边相同的角有无限多个;(4)终边相同的角有有限多个.A.0个 B.1个 C.2个 D.3个4.终边在第二象限的角的集合可以表示为:()A.{α∣90°<α<180°}B.{α∣90°+k·180°<α<180°+k·180°,k∈Z}C.{α∣-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}5.与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.6.在直角坐标系中,若角α和角β的终边互相垂直,则角α和角β之间的关系是A.β=α+90°B.β=k·360°+90°+α(k∈z)C.β=α±90°D.β=k·360°±90°+α(k∈z)7.(1)若角α的终边为第二象限的角平分线,则角α集合是 . (2)若角α的终边为第一、三象限的角平分线,则角α集合是 .8.角α,β的终边关于0=+yx对称,且α=-60°,求角β.。
苏教版数学高一苏教版必修4导学案任意角

1.1.1 任意角1.任意角(1)一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.射线的端点称为角的顶点,射线旋转的开始位置和终止位置称为角的始边和终边.(2)按逆时针方向旋转所形成的角叫做正角,按顺时针方向旋转所形成的角叫做负角.如果射线没有作任何旋转,那么也把它看成一个角,叫做零角.预习交流1终边与始边重合的角一定是零角吗?提示:不一定.如360°角,终边与始边重合,但不是零角.2.象限角及终边相同的角(1)象限角:以角的顶点为坐标原点,角的始边为x 轴正半轴,建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,称这个角为轴线角.(2)终边相同的角:一般地,与角α终边相同的角的集合为{β|β=k ·360°+α,k ∈Z }. 预习交流2(1)与220°角的终边相同的角组成的集合可表示为__________;(2)由第二象限角组成的集合可表示为__________.提示:(1){α|α=k ·360°+220°,k ∈Z } (2){α|k ·360°+90°<α<k ·360°+180°,k ∈Z } 预习交流3第一象限角、小于90°的角、0°~90°的角、锐角这四种角有什么差别?提示:这四种角的范围用集合表示分别是:锐角的集合是{α|0°<α<90°},0°~90°的角的集合是{α|0°≤α<90°},小于90°的角的集合是{α|α<90°},第一象限角的集合是{α|k ·360°<α<k ·360°+90°,k ∈Z }.所以锐角一定是第一象限角,而第一象限角不都是锐角,小于90°的角包括锐角、零角和负角.一、与角有关的概念判断下列说法是否正确,并说明理由:(1)集合P ={钝角},集合Q ={第二象限角},则有P =Q ;(2)角α和角2α的终边不可能相同;(3)若α是第二象限角,则2α一定是第四象限角;(4)设集合A ={射线OP },集合B ={坐标平面内的角},法则f :以x 轴正半轴为角的始边,以OP 为角的终边,那么f :OP ∈A →∠xOP ∈B 是一个映射;(5)不相等的角其终边位置必不相同.思路分析:解答本题首先要明确角的范围不再局限于0°~360°,其次要紧扣象限角、终边相同的角的概念.解:(1)不正确.实际上P ={α|90°<α<180°},应有P Q .(2)不正确.如α=0°时,α与2α终边相同.(3)不正确.由90°+k ·360°<α<180°+k ·360°,k ∈Z 知180°+2k ·360°<2α<360°+2k ·360°,k ∈Z ,故2α是第三或第四象限角,也可能终边在y 轴的负半轴上.(4)不正确.以x 轴正半轴为角的始边,以OP 为终边的∠xOP 不惟一.(5)不正确.不相等的角其终边位置也可能相同,如30°与390°.下列各命题:①终边相同的角一定相等;②第一象限角都是锐角;③锐角都是第一象限角;④小于90°的角都是锐角.其中正确命题的序号是______.答案:③解析:-60°和300°是终边相同的角,但它们并不相等,所以①不正确;390°角是第一象限角,可它不是锐角,所以②不正确;-60°角是小于90°的角,可它不是锐角,所以④不正确.显然,锐角都是第一象限角.对推广后角的概念的理解:(1)紧紧抓住“旋转”二字,用运动的观点来看角.①要明确旋转的方向; ②要明确旋转的大小;③要明确射线未作任何旋转时的位置.(2)结合实际意义明确角的概念经过推广后,角的范围不再限于0°~360°,已包括正角、负角和零角.(3)正确理解正角、负角和零角的概念,既要注意始边位置和旋转量,又要注意旋转方向是逆时针、顺时针,还是没有转动.二、终边相同的角及象限角(1)在0°~360°的范围内,找出与下列各角终边相同的角,作出它们的终边,并指出它们是第几象限角:①-510°;②855°.(2)已知α是第一象限角,则2α,α2分别是第几象限角? 解:(1)如图所示.由图可知:-510°角在第三象限,在0°~360°的范围内与210°角终边相同;855°角在第二象限,在0°~360°的范围内与135°角终边相同.(2)∵α为第一象限角,∴k ·360°<α<k ·360°+90°(k ∈Z ).∴2k ·360°<2α<2k ·360°+180°(k ∈Z ).∴2α是第一或第二象限角或终边落在y 轴正半轴上的角.∵α2的范围是k ·180°<α2<k ·180°+45°(k ∈Z ), ∴当k =2n (n ∈Z )即k 为偶数时,n ·360°<α2<n ·360°+45°(n ∈Z ),∴α2为第一象限角; 当k =2n +1(n ∈Z )即k 为奇数时,n ·360°+180°<α2<n ·360°+225°(n ∈Z ), ∴α2为第三象限角.故α2是第一或第三象限角. 1.若α是第三象限角,则α2所在的象限是__________. 答案:第二或第四象限解析:由k ·360°+180°<α<k ·360°+270°(k ∈Z ),得k ·180°+90°<α2<k ·180°+135°(k ∈Z ), ∴当k 为偶数时,α2为第二象限角; 当k 为奇数时,α2为第四象限角. 2.已知角α=-3 000°,则与α终边相同的最小正角是__________.答案:240°解析:与α=-3 000°终边相同的所有角为β=k ·360°-3 000°,k ∈Z ,当k =9时,与α终边相同的最小正角为240°.判断一个角是第几象限角,首先要在平面直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合.在这个前提下,由角的终边所在象限来判断这个角是第几象限角.对于已知某角所在象限,求与该角有关的其他角所在象限问题,一般用不等式知识处理.注意数形结合思想的运用.三、区域角的表示(1)如图,写出终边落在阴影部分的角的集合,并指出-950°12′是否是该集合中的角.(2)在平面直角坐标系中,用阴影部分表示集合A ={α|k ·180°+45°<α≤k ·180°+60°,k ∈Z }所表示的区域.思路分析:(1)先用终边相同的角的集合表示出边界,再用不等式表示出所求区域角.(2)作出45°,60°角的终边所在直线,角α的终边所在区域为一个“对顶角形”.解:(1)225°角的终边与-135°角的终边相同,所以阴影部分角的集合为{x|120°+k·360°≤x≤225°+k·360°,k∈Z}.∵-950°12′=129°48′-3×360°,120°<129°48′<225°,∴-950°12′是该集合中的角.(2)作出45°角的终边所在直线(画虚线),作出60°角的终边所在直线(画实线),则集合A 所表示区域为如图阴影部分.如图所示,终边落在阴影部分的角的集合是__________.答案:{α|k·360°-45°≤α≤k·360°+120°,k∈Z}解析:由题图可知,角-45°+k·360°(k∈Z)的终边为射线OA,角30°+90°+k·360°=120°+k·360°(k∈Z)的终边为射线OB.∴阴影部分所表示的角的集合是{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}.区域角的表示主要有以下两种类型:(1)单个“扇形”区域.此时可先写终边落在边界上的角的集合,再从中选取一组恰当的角并注意利用逆时针旋转时角变大,定准两个角的大小关系,最后加上360°的整数倍,写出不等式,表示成集合的形式.(2)“对角形”区域,此时两个区域的边界互为反向延长线,与单个“扇形”区域的表示方法类似,但最后要加上180°的整数倍.1.将射线OM绕端点O按逆时针方向旋转120°所得的角为______.答案:120°解析:易知逆时针旋转所成的角为正角.2.与210°角的终边相同的角连同210°角在内组成的角的集合是__________.答案:{α|α=210°+k·360°,k∈Z}解析:由终边相同的角的集合得到.3.若α为锐角,则-α+k·360°(k∈Z)为第______象限角.答案:四解析:∵α为锐角,∴α为第一象限角.∴-α为第四象限角,∴-α+k·360°(k∈Z)为第四象限角.4.20°角的始边与x轴的正半轴重合,把终边按顺时针方向旋转2周,所得角是______.答案:-700°解析:顺时针旋转2周为-720°,∴20°+(-720°)=-700°.5.在0°到360°的范围内,求出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)2 012°;(2)-734°;(3)808°28′.解:(1)2 012°=212°+5×360°,则212°角即为所求的角.∵212°角是第三象限角,∴2 012°角是第三象限角.(2)-734°=346°-3×360°,则346°角即为所求的角.∵346°角是第四象限角,∴-734°角是第四象限角.(3)808°28′=88°28′+2×360°,则88°28′角即为所求的角.∵88°28′角是第一象限角,∴808°28′角是第一象限角.。
2015-2016学年高一苏教版数学必修4教案第1章第1课时《任意角》

第1课时任意角教学过程一、问题情境情境1:在初中,我们已经学习过的角有哪些?它们的范围是多少?[3]情境2:在体操、跳水运动中,有“转体720°”“翻腾两周半”这样的动作名称,“720°”在这里也是用来表示旋转程度的一个角,那么“720°”是怎样的一个角?[4]二、数学建构(一)生成概念问题1在初中,角的概念是如何定义的?(初中平面几何中角的定义是:从一个端点出发的两条射线所组成的几何图形.这个定义形象、直观、容易理解,但它是静态的,具有一定的局限性)问题2体操运动中的“转体720°”是如何形成的?(引导学生来说明这个角可由旋转的方式得到)问题3你能根据上面的例子,给角下一个新的具有动态意义的定义吗?(引导学生由特殊来归纳一般,给角下一个动态性的定义)通过师生互动,以及多媒体演示,学生亲手作图,给出角的动态性定义:角是平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形,射线旋转的开始位置和终止位置称为角的始边和终边,射线的端点称为角的顶点.问题4既然角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形,那么有几种旋转方式呢?如何来区分这些不同旋转方式所得到的角呢?(通过旋转方式的讨论,引导学生来区别旋转所得到的角,进而得到正角、负角、零角的概念)通过讨论,结合下图(图1),给出正角、负角、零角的定义.(图1)按逆时针方向旋转所形成的角叫做正角,按顺时针方向旋转所形成的角叫做负角.如果射线没有作任何旋转,那么也把它看成一个角,叫做零角.(二)理解概念1.用“旋转”定义角之后,角的范围大大地扩充了.①角有正负之分(结合图2,引导学生知道区分正、负角的关键是抓住终边的旋转方向是逆时针、顺时针,还是没有转动);②角可以任意大;③还有零角.(图2)2.正角和负角是表示具有相反意义的旋转量,它的正负规定纯系习惯,就好像与正数、负数的规定一样,零角无正负,就好像数零无正负一样.问题5角的概念推广后,角的范围也就扩大了,那么,我们又该如何来研究角?为了便于研究,我们要将角放在直角坐标系中.建立直角坐标系的方法:角的顶点与原点重合,角的始边为x轴的正半轴.问题6将角放入直角坐标系中研究后,角的终边会出现在哪些位置?我们该如何称呼它们?(通过讨论,得到象限角与轴线角的概念)角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,称这个角为轴线角.(三)巩固概念(1)分别举几个第一、二、三、四象限角的例子.(2) 30°, 390°,-330°角分别是第几象限角?观察这些角,你有什么发现?(3)终边相同的角有何特点?试写出与30°角终边相同的角的集合.[5]问题7与α角终边相同的角的集合如何表示?S={β|β=k·360°+α,k∈Z}.注意以下问题:①k∈Z;②α是任意角;③终边相同的角不一定相等,但是相等的角的终边一定相同;终边相同的角有无数多个,它们相差360°的整数倍.[6]三、数学运用【例1】写出与下列各角终边相同的角的集合S,并把S中在0°360°的角写出来,并分别判断它们是第几象限角.(1) 460°;(2)-21°;(3) 963°14'[7].(见学生用书P1)[处理建议]选例1的第一小题板书来示范解题的步骤,其他例题请几个学生板演,教师针对板演同学所出现的问题及时给予更正,适时引导学生做好总结归纳.[规范板书]解(1)S={β|β=460°+k·360°,k∈Z}.S中在0°360°范围内的角是(-1)×360°+460°=100°,它是第二象限角.(2)S=.S中在0°360°范围内的角是1×360°-21°=339°,它是第四象限角.(3)S={β|β=963°14'+k·360°,k∈Z}.S中在0°360°范围内的角是(-2)×360°+963°14'=243°14',它是第三象限角.[题后反思]只需将这些角表示成k·360°+α(k∈Z)的形式,然后根据角α选择一个适当的整数k值,使得k·360°+α在0°360°的范围内则可.变式写出与下列各角终边相同的角的集合S,并把S中在-360°到720°间的角写出来:(1)-120°;(2) 640°.[处理建议]先由学生讨论,然后让学生回答,互相更正,对出现的错误进行纠正讲解,并要求学生熟练掌握这些常见角的集合的表示方法.[答案](1)S={β|β=k·360°-120°,k∈Z},分别令k=0, 1, 2得S中在-360°到720°间的角为-120°, 240°, 600°.(2)S={β|β=k·360°+640°,k∈Z},分别令k=-2,-1,0得S中在-360°到720°间的角为-80°,280°, 640°.【例2】已知α与320°角的终边相同,判断是第几象限角.[8](见学生用书P2) [处理建议]引导学生先写出的表达式,然后将表达式中的k值具体化,取几个具体的值来发现结论.[规范板书]由α=k·360°+320°(k∈Z),可得=k·180°+160°(k∈Z).若k为偶数,设k=2n(n∈Z),则=n·360°+160°(n∈Z),与160°角的终边相同,是第二象限角;若k为奇数,设k=2n+1 (n∈Z),则=n·360°+340°(n∈Z),与340°角的终边相同,是第四象限角.所以是第二或第四象限角.[题后反思](1)解题的关键在于将表示出来;(2)在判断所在象限的过程中,蕴含着分类讨论的思想,要让学生充分领悟此方法;(3)从本题中可以得到这样的一个结论:若角β可以表示为β=k·180°+α(k∈Z),则β的终边与α的终边所在的直线重合.变式若角β的终边落在x轴上,则β的集合为;若角β的终边落在第一、三象限的角平分线上,则β的集合为.(根据上述题后反思的结论可得到结果)[答案]{β|β=k·180°,k∈Z};{β|β=k·180°+45°,k∈Z}(或{β|β=k·180°+225°,k∈Z})*【例3】(教材第10页习题1.1第11题)如图,写出终边落在阴影部分的角的集合(包括边界).[9](例3)[处理建议]此题较难,引导学生观察、分析阴影部分图形的特点.[规范板书]解(1)方法1:根据例2的变式可得{α|k·180°+45°≤α≤k·180°+90°,k∈Z}.方法2:{α|k·360°+45°≤α≤k·360°+90°,k∈Z}∪={α|k·180°+45°≤α≤k·180°+90°,k∈Z}.(2){α|k·360°-150°≤α≤k·360°+120°,k∈Z}.[题后反思](1)一个角按顺、逆时针旋转k·360°(k∈Z)角后与原来角终边重合,同样一个“区间”内的角,按顺、逆时针旋转k·360°(k∈Z)角后,所得“区间”仍与原区间重叠,因此,解决此类问题,我们可以首先在0°到360°范围内找出满足条件的角,然后在加上k·360°(k∈Z)即可.(2)此类问题要注意角的终边的大小关系,以及按逆时针方向旋转的角是越来越大的.如第二小题表示为{α|k·360°+210°≤α≤k·360°+120°,k∈Z}或{α|k·360°+120°≤α≤k·360°+210°,k∈Z}都是错误的解答.变式若α是第四象限角,判断是第几象限角.[10][处理建议]根据象限角的定义结合不等式的知识求解,最后来确定所在的象限.[规范板书]因为α是第四象限角,所以k·360°+270°<α<k·360°+360°(k∈Z),故k·180°+135°<<k·180°+180°(k∈Z),从而在第二或第四象限.[题后反思]在学生领悟了分类讨论的思想后,在此基础之上可增讲八卦图的巧解法.四、课堂练习1.已知角α为-30°,将角α的终边按逆时针方向旋转三周后的角的度数为1050°.2.钟表经过4小时,时针转了-120度.提示钟表每12个小时,时针顺时针转一圈,即转了-360°,故4小时转过的角度为×4=-120°.3.设A={α|α=k·360°+45°,k∈Z},B={α|α=k·360°+225°,k∈Z},C={α|α=k·180°+45°, k∈Z},D={α|α=k·360°-135°,k∈Z},E={α|α=k·360°+45°或α=k·360°+225°,k∈Z},则相等的角集合为B=D,C=E.提示可通过分类讨论的方法或在直角坐标系中作出角用数形结合的方法来解决.4.写出与下列各角终边相同的角的集合,并将集合中适合不等式-720°≤α<360°的元素α写出来.(1) 60°;(2)-225°解(1)与60°角终边相同的角的集合S={α|α=k·360°+60°,k∈Z},当k=0时,α=60°;当k=-1时,α=-300°;当k=-2时,α=-660°.(2)因为-225°=-360°+135°,所以与-225°角终边相同的角的集合S={α|α=k·360°+135°,k∈Z},当k=0时,α=135°;当k=-1时,α=-225°;当k=-2时,α=-585°.五、课堂小结1.任意角、终边相同的角的概念.2.与角α终边相同的角的集合为S={β|β=k·360°+α,k∈Z},这一结果表示角周而复始的变化规律,同时,它也是研究角之间关系的最为基础的知识.3.本节课主要涉及了数形结合、分类讨论、等价转化的思想方法.。
高中数学必修四任意角教案

1.1.1 任意角【课题】:任意角 【学情分析】:教学对象是高一的学生,首先通过实际问题(拨手表、体操中的转体、齿轮旋转等)引出角的概念的推广,引发学生的认知,然后用具体例子,将初中学过的过0360︒︒~之间的角的概念推广到任意角,在此基础上引出终边相同的角的集合.使学生可以在自己已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念。
【教学三维目标】: 一、知识与技能1、推广角的概念,引入正角、负角、零角的定义;2、象限角的概念;3、终边相同的角的表示方法; 二、过程与方法1、理解并掌握正角、负角、零角的定义;2、掌握所有与α角终边相同的角(包括α角)的表示方法; 三、情感态度与价值观树立运动变化观点,理解静是相对的,动是绝对的,并由此深刻理解推广后的角的概念。
【教学重点】:理解正角、负角和零角的定义,掌握终边相同角的表示法. 【教学难点】:终边相同的角的表示. 【课前准备】:几何画板课件。
【教学过程设计】: 教学环节 教学活动设计意图 一、课程引入教师提问:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?教师讲解:[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.创设问题情景,让学生在问题解决的过程中感知任意角.二、探究新知教师提问:1.过去我们是如何定义的?角的范围是什么?[展示投影] 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1-1-1,教师讲解:一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点. 角的范围是0360︒︒~。
(新课程)高中数学 1.1.1 任意角教案(1) 苏教版必修4

一、课题:任意角(1)二、教学目标:1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
三、教学重、难点:1.判断已知角所在象限;2.终边相同的角的书写。
四、教学过程:(一)复习引入:1.初中所学角的概念。
2.实际生活中出现一系列关于角的问题。
(二)新课讲解:1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。
说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30,390,330-都是第一象限角;300,60-是第四象限角。
(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。
例如:90,180,270等等。
说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”。
因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。
4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同。
从而得出一般规律:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈,即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
说明:终边相同的角不一定相等,相等的角终边一定相同。
[精品教案]重点高中数学教学案必修4第01课时(任意角)(苏教版)
![[精品教案]重点高中数学教学案必修4第01课时(任意角)(苏教版)](https://img.taocdn.com/s3/m/aea625eab9f3f90f76c61be0.png)
问题1、初中,我们已经学习了︒0到︒360的角,它是怎样定义的?问题2、体操,跳水中,有“转体︒720”,“翻腾两周半”这样的动作名称,那︒720是怎样的一个角?1、正角、负角、零角的概念2、象限角、轴线角3、终边相同角的集合练习1、作出角︒390 ,︒30,︒-330,︒750,这些角之间有何关系?结论:一般地,与角α终边相同角的集合为{}Z ∈+︒⋅=k k ,360|αββ例题剖析例1、在︒0到︒360范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)︒650 (2)︒-150 (3)'15990︒-例2、已知α与︒240角的终边相同,判断2α是第几象限角。
思考:(1)终边落在x 轴正半轴上的角的集合如何表示?终边落在x 轴上的角的集合如何表示?(2)终边落在坐标轴上的角的集合如何表示?(3)若α是第三象限角,则2α是第几象限角?巩固练习1、下列命题中正确的是( )A 、第一象限角一定不是负角B 、小于︒90的角一定是锐角C 、钝角一定是第二象限角D 、第一象限角一定是锐角2、分别作出下列各角的终边,并指出它们是第几象限角:(1)︒330; (2)︒-200; (3)︒945; (4)︒-6503、在︒0到︒360范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)︒-55; (2)'8395︒; (3)︒15634、试求出与下列各角终边相同的最小正角和最大负角:(1)︒1140; (2)︒1680; (3)︒-1290; (4)︒-15105、若α是第四象限角,试分别确定α-,α+︒180,α-︒180是第几象限角。
课堂小结正角、负角、零角的概念,象限角的概念;终边相同的角的表示方法。
课后训练班级:高一( )班 姓名__________一、基础题1、以下四个命题中,是真命题的是( )A 、小于︒90的角是锐角B 、第二象限角是钝角C 、锐角是第一象限角D 、负角不可能是第一象限角2、设︒-=60α,则与角α终边相同的角可以表示为( )A 、)(36060Z ∈︒⋅+︒k kB 、)(360300Z ∈︒⋅+︒k kC 、)(36030Z ∈︒⋅+︒-k kD 、)(360120Z ∈︒⋅+︒k k3、若α是第三象限角,则α-是第 象限角,α-︒180是第 象限角。
高一数学必修4第一章第一节导学案

高一数学必修4第一章第一节导学案课题:1.1.1任意角一、学习目标(1)推广角的概念,理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念;(3)掌握所有与角a 终边相同的角(包括角a )的表示方法;教学重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
教学难点: 把终边相同的角用集合和数学符号语言表示出来。
二、问题导学1、角的定义:___________________________;2、角的概念的推广:___________________________;3、正角___________________________; 负角 ___________________________; 零角概念___________________________.4、象限角___________________________。
5.终边相同的角的表示___________________________ 。
三、问题探究例1. 例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.四、课堂练习(1)教材6P 第3、4、5题.(2)补充:时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
注意: (1)k Z ∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍. 五、自主小结 六、当堂检测1.设第一象限的角}=锐角},的角} 小于{G {F 90{o==E ,,那么有().A .B .C .() D .2.用集合表示:(1)各象限的角组成的集合. (2)终边落在轴右侧的角的集合.3.在~间,找出与下列各角终边相同的角,并判定它们是第几象限角(1) ;(2);(3).3.解:(1)∵∴与 角终边相同的角是角,它是第三象限的角;(2)∵∴与 终边相同的角是,它是第四象限的角;(3)所以与 角终边相同的角是 ,它是第二象限角.课后练习与提高1. 若时针走过2小时40分,则分针走过的角是多少?2. 下列命题正确的是: ( )(A )终边相同的角一定相等。
高一数学必修4第一章第一节导学案

高一数学必修4第一章第一节导学案课题:1.1.1任意角一、学习目标(1)推广角的概念,理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念;(3)掌握所有与角a 终边相同的角(包括角a )的表示方法;教学重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
教学难点: 把终边相同的角用集合和数学符号语言表示出来。
二、问题导学1、角的定义:___________________________;2、角的概念的推广:___________________________;3、正角___________________________; 负角 ___________________________; 零角概念___________________________.4、象限角___________________________。
5.终边相同的角的表示___________________________ 。
三、问题探究例1. 例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.四、课堂练习(1)教材6P 第3、4、5题.(2)补充:时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
注意: (1)k Z ∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍. 五、自主小结 六、当堂检测1.设第一象限的角}=锐角},的角} 小于{G {F 90{o==E ,,那么有().A .B .C .() D .2.用集合表示:(1)各象限的角组成的集合. (2)终边落在轴右侧的角的集合.3.在~间,找出与下列各角终边相同的角,并判定它们是第几象限角(1) ;(2);(3).3.解:(1)∵∴与 角终边相同的角是角,它是第三象限的角;(2)∵∴与 终边相同的角是,它是第四象限的角;(3)所以与 角终边相同的角是 ,它是第二象限角.课后练习与提高1. 若时针走过2小时40分,则分针走过的角是多少?2. 下列命题正确的是: ( )(A )终边相同的角一定相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 任意角(1)
一、课题:任意角1
二、学习目标:1.理解任意角的概念;
2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
三、学习重、难点:1.判断已知角所在象限;
2.终边相同的角的书写。
四、学习过程:
课前预习:(1)角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
(2)射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
(3)按__________方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
(一)新授
1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。
说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α.
2.角的分类:
正角:按逆时针方向旋转形成的角叫做正角;
负角:按顺时针方向旋转形成的角叫做负角;
零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:
在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,则
(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30,390,330-都是第一象限角;300,60-是第四象限角。
(2)轴线角:如角的终边在坐标轴上,就认为这个角不属于任何象限。
例如:90,180,270等。
4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同。
一般规律:
所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα=
=+⋅∈, 说明:终边相同的角不一定相等,相等的角终边一定相同。
(二)例题分析:
例1 在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?
(1)650 (2)150- (3)99015'-
例2 若3601575,k k Z α=⋅-∈,试判断角α所在象限。
例3 已知α与240°角的终边相同,判断
2α是第几象限角.
例4 已知0
1910α=-.
(1)把α写成000360(,0360)k k Z ββ+⋅∈≤<的形式,指出它是第几象限角;
(2)求00,0.θθαθ≤<使与的终边相同且-720
(三)课堂小结: 1.正角、负角、零角的定义;
2.象限角、轴线角的定义;
3.终边相同的角的集合的书写及意义;
五、课后作业
1、如图,射线OA绕端点O逆时针旋转450到OB位置,并在此基础上顺时针旋转1200到
达OC位置,则 AOC的度数为 .
2、在平面直角坐标系中,2400是第象限角,-503036′是第象限角.
3、在00~3600范围内与6400终边相同的角是 .
4、下列说法正确的是 .
(1)第一象限角是锐角;
(2)小于900的角是第一象限角;
(3)第一象限角一定不是负角;
(4)钝角是第二象限角.
5、设M={第一象限角},B={锐角},C={小于900的角},那么集合M、B、C的关系是 .
6、在平面直角坐标系中,画出下列各角,并指出它们是第几象限角.
(1)3000; (2)-4800;(3)4200.
7、试求出与下列各角终边相同的最小正角和最大负角.
(1)-5500;(2)16800;(3)-12900;(4)-15100.
8、(1)钟表经过10min ,时针和分针分别转了多少度?
(2)若将钟表拨慢10min ,则时针和分针分别转了多少度?
9、已知0315.α=-
(1)把α改写成000360(,0360)k k Z ββ⋅+∈≤<的形式,并指出它是第几象限角;
(2)求θ,使θ与α终边相同,且-10800<θ0
360.<-
10、已知α与1200的角终边相同,判断2
α是第几象限角.。