江苏省盐城中学-学年高一数学上学期期末考试试题苏教版

合集下载

苏教版高中数学必修4第一学期期末考试 (2).docx

苏教版高中数学必修4第一学期期末考试 (2).docx

高中数学学习材料马鸣风萧萧*整理制作江苏省盐城中学2013—2014学年度第一学期期末考试高一年级数学试题命题人:胥容华 朱丽丽 审题人:张万森一、填空题(本大题共14小题,每小题5分,计70分)1.0600cos 的值是 .2.化简=--+CD AC BD AB .3.函数()21log 3y x x=++的定义域是 . 4.函数tan()23y x ππ=-的最小正周期是 . 5.若02<<-απ,则点)cos ,(tan αα位于第 象限. 6.函数()1cos (),f x x x R =-∈取最大值时x 的值是 .7.若函数-=3)(x x f 2)21(-x 的零点),)(1,(0Z n n n x ∈+∈则=n _________. 8.函数(5)||y x x =--的递增区间是 .9.为了得到函数-=x y 2sin(3π)的图象,只需把函数sin 2y x =的图象向右平移个___长度单位. 10.若1,2a b ==,且()a b a -⊥,则向量a 与b 的夹角为 . 11.已知扇形的周长为8cm ,则该扇形的面积S 的最大值为 .12.设,0>ϖ若函数x x f ϖsin 2)(=在]4,3[ππ-上单调递增,则ϖ的取值范围是________. 13.如图,在△ABC 中,,1,2,==⊥AD BD BC AB AD 则=⋅AD AC ________.A14.在直角坐标系中, 如果两点(,),(,)A a b B a b --在函数)(x f y =的图象上,那么称[],A B 为函数()f x 的一组关于原点的中心对称点([],A B 与[],B A 看作一组).函数4sin ,0()2log (1),0x x g x x x π⎧<⎪=⎨⎪+>⎩关于原点的中心对称点的组数为 .二、解答题(本大题共6小题,计80分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.A 、B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限.记AOB θ∠=且4sin 5θ=. (1)求B 点坐标; (2)求sin()2sin()22cos()ππθθπθ++--的值.16.平面内给定三个向量()()()3,2,1,2,4,1a b c ==-=.(1)若()()2a kc b a +⊥-,求实数k ;(2)若向量d 满足//d c ,且34d =,求向量d .17.已知函数2()2sin 1f x x x θ=+⋅-(θ为常数),31[,]22x ∈-. (1)若()f x 在31[,]22x ∈-上是单调增函数,求θ的取值范围; (2)当θ∈0,2π⎡⎤⎢⎥⎣⎦时,求()f x 的最小值.18. 已知OAB ∆的顶点坐标为(0,0)O ,(2,9)A ,(6,3)B -, 点P 的横坐标为14,且OP P B λ=,点Q 是边AB 上一点,且0OQ AP ⋅=.(1)求实数λ的值与点P 的坐标;(2)求点Q 的坐标;(3)若R 为线段OQ (含端点)上的一个动点,试求()RO RA RB ⋅+的取值范围.19.已知函数()sin()f x A x h ωϕ=++(0,0,)A ωϕπ>><.在一个周期内,当12x π=时,y 取得最大…………… 值6,当712x π=时,y 取得最小值0. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间与对称中心坐标;(3)当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()1y mf x =-的图像与x 轴有交点,求实数m 的取值范围.20. 定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0≥M ,都有M x f ≤)(成立,则称)(x f 是D 上的有界函数,其中M 称为函数)(x f 的一个上界.已知函数x x a x f ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=41211)(,11log )(21--=x ax x g . (1)若函数)(x g 为奇函数,求实数a 的值;(2)在(1)的条件下,求函数)(x g 在区间]3,35[上的所有上界构成的集合;(3)若函数)(x f 在),0[+∞上是以3为上界的有界函数,求实数a 的取值范围.江苏省盐城中学2013—2014学年度第一学期期终考试数学答题纸一、填空题(14*5分) 1、12- 2、03、(3,0)(0,)-⋃+∞4、25、二6、2,k k Z ππ+∈7、18、5(0,)29、6π 10、4π 11、4 12、(0 ,1.5]_13、2 14、1二、解答题15、(12分)解:(1)34(,)55B - (2)53- 16、(12分) 解:(1)1118k =- (2)(42,2)d =或(42,2)--17、(12分) 解:(1)22,2,33k k k Z ππθππ⎡⎤∈++∈⎢⎥⎣⎦; (2)min 213sin ,,432()sin 1,0,3f x ππθθπθθ⎧⎡⎤--∈⎪⎢⎥⎪⎣⎦=⎨⎡⎫⎪--∈⎪⎢⎪⎣⎭⎩.18、(14分) 解:(1)设(14,)P y ,则(14,),(8,3)OP y PB y ==---,由OP PB λ=,得(14,)(8,3)y y λ=---,解得7,74y λ=-=-,所以点(14,7)P -。

苏教版高一上册数学期末综合试题及答案

苏教版高一上册数学期末综合试题及答案

苏教版高一上册数学期末综合试题及答案1.已知向量a=(cos75°,sin75°),b=(cos15°,sin15°),求|a-b|的值。

解:|a-b|=|(cos75°-cos15°,sin75°-sin15°)|=√[(cos75°-cos15°)²+(sin75°-sin15°)²]2-2cos60°]=√32.函数y=sin(2x+π/6)的图象的对称中心的坐标是?解:sin(2x+π/6)=sin(2x+π/3-π/6)=sin(2(x+π/6)),所以函数y=sin(2x+π/6)的图象以x=-π/6为对称中心。

3.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x|x(x-2)<1},那么P-Q=?解:P={x|log2x<1}={x|0<x<2},Q={x|x(x-2)<1}={x|1<x<2},所以P-Q={x|0<x<1}。

4.定义在R上的函数f(x)满足关系式:f(x)+f(1-x)=2,则f(1/2)+f(1/4)+…+f(1/2^n)的值等于多少?解:将x=1/2代入关系式得f(1/2)+f(1/2)=2,所以f(1/2)=1.将x=1/4代入关系式得f(1/4)+f(3/4)=2,所以f(1/4)=f(3/4)=3/4.以此类推,可以得到f(1/2^n)=1/2^n。

所以f(1/2)+f(1/4)+…+f(1/2^n)=1+3/4+5/8+…+(2n-1)/2^n=2-1/2^n。

5.已知向量a=(1,1,1),b=(2,2,-1),则向量a+b,a-b,a·b的夹角的大小分别是多少?解:a+b=(3,3,0),a-b=(-1,-1,2),a·b=1×2+1×2+1×(-1)=3.所以a+b与a-b的夹角的cos值为(a+b)·(a-b)/(∣a+b∣∣a-b∣)=0,即它们垂直;a与b的夹角的cos值为a·b/(∣a∣∣b∣)=1/√3,所以它们的夹角的大小为arccos(1/√3)。

2023-2024学年江苏省盐城市亭湖高级中学高一(上)期末数学试卷【答案版】

2023-2024学年江苏省盐城市亭湖高级中学高一(上)期末数学试卷【答案版】

2023-2024学年江苏省盐城市亭湖高级中学高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知非空集合A ⊆{x ∈N |x 2﹣x ﹣2<0},则满足条件的集合A 的个数是( ) A .1B .2C .3D .42.已知扇形弧长为π3,圆心角为π6,则该扇形面积为 ( )A .π6B .π4C .π3D .π23.已知点P (﹣4,3)是角α终边上的一点,则cos α﹣sin α等于( ) A .75B .−75C .15D .−154.已知函数f(x)={2x (x ≤1)log 12x(x >1),则f (1﹣x )的图象是( )A .B .C .D .5.设a =log 52,e b =12,c =ln32,则( )A .c >a >bB ..c >b >aC ..a >b >cD ..a >c >b6.已知函数f (x )=(2m ﹣1)x m 为幂函数,若函数g (x )=lnx +2f (x )﹣6,则y =g (x )的零点所在区间为( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.已知a ∈Z ,关于x 的一元二次不等式x 2﹣8x +a ≤0的解集中有且仅有3个整数,则a 的值不可能是( ) A .13B .14C .15D .168.已知函数f (x )定义域为(0,+∞),f (1)=e ,对任意的x 1,x 2∈(0,+∞),当x 2>x 1时,有f(x 1)−f(x 2)x 1x 2>e x 2x 1−e x 1x 2.若f (lna )>2e ﹣alna ,则实数a 的取值范围是( )A .(﹣∞,e )B .(e ,+∞)C .(0,1)D .(1,e )二、多项选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分。

高一年级上学期数学期末试题(苏教版)

高一年级上学期数学期末试题(苏教版)

高一年级上学期数学期末试题〔苏教版〕数学是研究现实世界空间形式和数量关系的一门科学。

小编准备了高一年级上学期数学期末试题,希望你喜欢。

一、填空题(每题5分,共70分)1. 不等式x21的解集为________。

2. 甲、乙、丙三名同学站成一排,甲站在中间的概率是__________。

3. 给定以下四个命题:①假设一个平面内的两条直线与另一个平面都平行,那么这两个平面互相平行;点击进入???高一数学期末试卷②假设一个平面经过另一个平面的垂线,那么这两个平面互相垂直;③垂直于同一直线的两条直线互相平行;④假设两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。

其中,为真命题的是________(填序号)。

4. 设点P(x,y)在圆x2+(y-1)2=1上,那么的最小值是__________。

5. 如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,那么这个多面体最长的一条棱的长为________。

6. 设等差数列{an}的前n项和为Sn,假设a1=-11,a4+a6=-6,那么当Sn取最小值时,n等于________7. 设x,y满足约束条件,那么z=x-2y的取值范围为________。

8. 直线y=x+b,b[-2,3],那么直线在y轴上的截距大于1的概率是________。

9. 等比数列中,各项都是正数,且a1、a3、2a2成等差数列,那么的值为________。

10. 一个算法:(1)m=a。

(2)假如b(3)假如c假如a=3,b=6,c=2,那么执行这个算法的结果是________。

11. 在边长为a的等边三角形ABC中,ADBC于点D,沿AD折成二面角B-AD-C后,BC=a,这时二面角B-AD-C的大小为________。

12. M(x0,y0)为圆x2+y2=a2 (a0)内异于圆心的一点,那么直线x0 x+y0 y=a2与该圆的位置关系为________。

江苏省盐城市高一上学期数学期末考试试卷

江苏省盐城市高一上学期数学期末考试试卷

江苏省盐城市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·孝义模拟) 已知集合,,全集,则()A .B .C .D .2. (2分) (2016高二上·鞍山期中) 过点M(2,1)的直线l与x轴、y轴分别交于P、Q两点,O为原点,且S△OPQ=4,则符合条件的直线l有()A . 1条B . 2条C . 3条D . 4条3. (2分) (2016高一上·绍兴期中) 函数f(x)= 的定义域为R,则实数a的取值范围为()A . (0,1)B . [0,1]C . (0,1]D . [1,+∞)4. (2分)设函数,则是()A . 奇函数,且在上是增函数B . 奇函数,且在上是减函数C . 偶函数,且在上是增函数D . 偶函数,且在上是减函数5. (2分) (2017高一上·福州期末) 已知直线l1:2x﹣y+1=0,直线l2与l1关于直线y=﹣x对称,则直线l2的方程为()A . x﹣2y+1=0B . x+2y+1=0C . x﹣2y﹣1=0D . x+2y﹣1=06. (2分)(2018·普陀模拟) 如图所示的几何体,其表面积为,下部圆柱的底面直径与该圆柱的高相等,上部圆锥的母线长为,则该几何体的主视图的面积为()A . 4B . 6C . 8D . 107. (2分)若,则满足不等式的x的范围是()A .B .C .D .8. (2分)已知直线⊥平面α,直线m平面β,给出下列命题:①α∥βl⊥m②α⊥βl∥m③l∥m α⊥β④l⊥mα∥β,其中正确命题的序号是()A . ①②③B . ②③④C . ①③D . ②④9. (2分)两条直线l1:2x+y﹣1=0和l2:x﹣2y+4=0的交点为()A . (,)B . (-,)C . (, -)D . (-, -)10. (2分)已知为抛物线上的两点,且的横坐标分别为,过分别作抛物线的切线,两切线交于点,则的纵坐标为()A . 1B . 3C . -4D . -811. (2分)如图,已知正三棱柱ABC﹣A1B1C1的,底面边长是侧棱长2倍,D、E是A1C1、AC的中点,则下面判断不正确的为()A . 直线A1E∥平面B1DCB . 直线AD⊥平面B1DCC . 平面B1DC⊥平面ACC1A1D . 直线AC与平面B1DC所成的角为60°12. (2分)(2017·南阳模拟) 中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数“有无数个”;②函数可以是某个圆的“优美函数”;③正弦函数y=sinx可以同时是无数个圆的“优美函数”;④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是()A . ①③B . ①③④C . ②③D . ①④二、填空题 (共4题;共5分)13. (1分)函数为奇函数,则实数a=________.14. (1分)(2016·四川文) 已知某三棱锥的三视图如图所示,则该三棱锥的体积是________.15. (2分) (2018高二上·台州月考) 已知直线,直线,若,则 ________;若,则两平行直线间的距离为________.16. (1分)(2018·枣庄模拟) 若函数在上单调递减,则实数的取值范围是________.三、解答题 (共6题;共55分)17. (10分) (2016高一上·湖南期中) 已知A={x|2x2+ax+2=0},B={x|x2+3x﹣b=0},且A∩B={2}.(1)求a,b的值;(2)设全集U=AUB,求(∁UA)U(∁UB).18. (5分) (2016高二上·佛山期中) 平面直角坐标系中,△ABC的三个顶点为A(﹣3,0),B(2,1),C (﹣2,3),求:(Ⅰ)BC边上高线AH所在直线的方程;(Ⅱ)若直线l过点B且横、纵截距互为相反数,求直线l的方程.19. (10分)(2018·成都模拟) 如图,在四棱锥中,底面是平行四边形,,侧面底面,, .(1)求证:面面;(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求三棱锥的体积.20. (10分) (2017高一上·山东期中) 已知是定义在上的奇函数,且当时, =(1)求的解析式;(2)解不等式21. (10分) (2018高二上·武邑月考) 已知直线:x+y﹣1=0,(1)若直线过点(3,2)且∥ ,求直线的方程;(2)若直线过与直线2x﹣y+7=0的交点,且⊥,求直线的方程.22. (10分)因发生交通事故,一辆货车上的某种液体溃漏到一池塘中,为了治污,根据环保部门的建议,现决定在池塘中投放一种与污染液体发生化学反应的药剂,已知每投放a(1≤a≤4,a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)= .若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间可达几天?(2)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值.参考答案一、选择题 (共12题;共24分)1、答案:略2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分)17、答案:略18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。

最新苏教版高一数学第一学期期末试卷--好题精选

最新苏教版高一数学第一学期期末试卷--好题精选

高一上学期期末测试题第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{0,1,2,4,5,7},{1,3,6,8,9},{3,7,8}X Y Z ===,那么集合()X Y Z I U 是( )(湖南版必修一69P 第2题)A. {0,1,2,6,8}B. {3,7,8}C. {1,3,7,8}D. {1,3,6,7,8}2. 设集合A 和集合B 都是自然数集N ,映射:f A B →把集合A 中的元素n 映射到集合B 中的元素2n n +,则在映射f 下,像20的原像是( )(湖南版必修一71P 第15题) A. 2 B. 3 C. 4 D. 5 3. 与函数y x =有相同的图像的函数是( )(湖南版必修一144P 第2题)A. y =B. 2x y x=C. log a xy a=01)a a >≠(且 D.log xa y a = 01)a a >≠(且 4. 方程lg 3x x =-的解所在区间为( )(苏教版必修一78P 例2改编) A. (0,1) B. (1,2) C. (2,3) D. (3,4) 5. 设()f x 是(,)-∞+∞上的奇函数,且(2)()f x f x +=-,当01x ≤≤时,()f x x =, 则(7.5)f 等于(湖南版必修一147P 第20题)A. 0.5B. 0.5-C. 1.5D. 1.5-6. 下面直线中,与直线230x y --=相交的直线是( )(苏教版必修二90P 第1 题) A. 4260x y --= B. 2y x = C. 25y x =+ D.23y x =-+7. 如果方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x = 对称,那么必有( )(苏教版必修二105P 第6题)A. D E =B. D F =C. E F =D. D E F ==8. 如果直线//,//a b a α直线且平面,那么b α与的位置关系是( )(北师大版必修二37P 第2题)A. 相交B. //b αC. b α⊂D. //b α或b α⊂ 9. 在空间直角坐标系中,点(3,2,1)P -关于x 轴的对称点坐标为( )(北师大版必修二113P 第3题改编)A. (3,2,1)-B. (3,2,1)--C. (3,2,1)--D. (3,2,1)10. 一个封闭的立方体,它的六个表面各标出ABCDEF 这六个字母.现放成下面三中不同的位置,所看见的表面上字母已标明,则字母A 、B 、C 对面的字母分别为( ) (苏教版必修二65P 第4题)A. D 、E 、FB. E 、D 、FC. E 、F 、DD. F 、D 、E第二部分 非选择题(共100分)二、填空题:本大题共4小题, 每小题5分,满分20分.11. 幂函数()y f x =的图象过点(2,2,则()f x 的解析式为_______________(人教A 版必修一91P 第10题)12. 直线过点(5,6)P ,它在x 轴上的截距是在y 轴上的截距的2倍,则此直线方程为__________________________(苏教版必修二120P 第5题)13.集合22222{(,)|4},{(,)|(1)(1),0}M x y x y N x y x y r r =+≤=-+-≤>,若M N N =I ,则实数r 的取值范围为_____________(苏教版必修二120P 第12题)(苏教版必修一29P 第8题)三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.(其中15题和18题每题12分,其他每题14分)15. 已知函数2()2||1f x x x =--,作出函数的图象,并判断函数的奇偶性.(苏教版必修一43P 第6题)16. 已知函数()log (1)(0,1)xa f x a a a =->≠.(1)求函数()f x 的定义域; (2)讨论函数()f x 的单调性.17. 正方体1111ABCD A B C D -中,求证:(1)11AC B D DB ⊥平面;(2)11BD ACB ⊥平面.(17题图) (18题图)18. 一个圆锥的底面半径为2cm ,高为6cm ,在其中有一个高为x cm 的内接圆柱. (1)试用x 表示圆柱的侧面积;(2)当x 为何值时,圆柱的侧面积最大?19. 求二次函数22()2(21)542f x x a x a a =--+-+在[0,1]上的最小值()g a 的解析式.20. 已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=.(1)求证:直线l 恒过定点;(2)判断直线l 被圆C 截得的弦何时最长,何时最短?并求截得的弦长最短时m 的值以及最短弦长.高一上学期期末复习题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算. 共10小题,每小题5分,满分5 0分. 题号 1 2 3 4 5 6 7 8 9 10 答案CCDCBDADAB二、填空题:本大题主要考查基本知识和基本运算. 共4小题,每小题5分,满分2 0分.11. 12()f x x-=12. 650x y -=或2170x y +-= 13. (0,22]- 14. 2; 3三、解答题:15. 本小题主要考查分段函数的图象,考查函数奇偶性的判断. 满分12分.解:2221,(0)()21,(0)x x x f x x x x ⎧--≥=⎨+-<⎩ ……2分函数()f x 的图象如右图 ……6分函数()f x 的定义域为R ……8分Q 2()2||1f x x x =--22()2||12||1()f x x x x x f x -=----=--=()所以()f x 为偶函数. ……12分16. 本小题主要考查指数函数和对数函数的性质,考查函数的单调性. 满分14分. 解:(1)函数()f x 有意义,则10xa -> ……2分当1a >时,由10xa ->解得0x >;当01a <<时,由10x a ->解得0x <.所以当1a >时,函数的定义域为(0,)+∞; ……4分当01a <<时,函数的定义域为(,0)-∞. ……6分 (2)当1a >时,任取12,(0,)x x ∈+∞,且12x x >,则12xxa a >1121222121()()log (1)log (1)log log (1)11x x x x x a a a a x x a a a f x f x a a a a ---=---==+--1212212,()()log (1)log 101x x x x a a x a a a a f x f x a ->∴-=+>=-Q ,即12()()f x f x >由函数单调性定义知:当1a >时,()f x 在(0,)+∞上是单调递增的. ……10分 当01a <<时,任取12,(,0)x x ∈-∞,且12x x >,则12xxa a <1121222121()()log (1)log (1)log log (1)11x x x x x a a a a x x a a a f x f x a a a a ---=---==+--1212212,()()log (1)log 101x x x x a a x a a a a f x f x a -<∴-=+>=-Q ,即12()()f x f x >由函数单调性定义知:当01a <<时,()f x 在(,0)-∞上是单调递增的. ……14分 17. 本小题主要考查空间线面关系,考查空间想象能力和推理证明能力. 满分14分. 证明:(1)正方体1111ABCD A B C D -中,1B B ⊥平面ABCD ,AC ⊂平面ABCD ,1AC B B ∴⊥ ……3分又AC BD ⊥Q ,1BD B B B =I ,∴11AC B D DB ⊥平面 ……7分(2)连接11,AD BC ,11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,111B C D C ∴⊥ 又11B C BC ⊥Q ,1111BC D C C =I ,∴111B C ABC D ⊥平面1BD ⊂Q 11ABC D 平面,11BD B C ∴⊥ ……10分由(1)知11AC B D DB ⊥平面,1BD ⊂平面ABCD ,1BD AC ∴⊥1,AC B C C =∴Q I 11BD ACB ⊥平面 ……14分18. 本小题主要考查空间想象能力,运算能力与函数知识的综合运用. 满分12分. 解:(1)如图:POB V 中,1DB OB D D PO =,即26DB x = ……2分 13DB x ∴=,123OD OB DB x =-=- ……4分 圆柱的侧面积1122(2)3S OD D D x x ππ=⋅⋅=-⋅∴2(6)3S x x π=-⋅ (06x <<) ……8分(2)222(6)(3)633S x x x πππ=-⋅=--+3x ∴=时,圆柱的侧面积最大,最大侧面积为26cm π ……12分19. 本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想. 满分14分.解:22()2(21)542f x x a x a a =--+-+=22[(21)]1x a a --++ 所以二次函数的对称轴21x a =- ……3分 当210a -≤,即12a ≤时,()f x 在[0,1]上单调递增, 2()(0)542g a f a a ∴==-+ ……6分当211a -≥,即1a ≥时,()f x 在[0,1]上单调递减,2()(1)585g a f a a ∴==-+ ……9分当0211a <-<,即112a <<时,2()(21)1g a f a a =-=+ ……12分 综上所述2221542,()21()1,(1)2542,(1)a a a g a a a a a a ⎧-+≤⎪⎪⎪=+<<⎨⎪-+≥⎪⎪⎩……14分20. 本小题主要考查直线和圆的位置关系,考查综合运用数学知识分析和解决问题能力. 满分14分.(1)证明:直线l 的方程可化为(27)(4)0x y m x y +-++-=. ……2分联立27040x y x y +-=⎧⎨+-=⎩ 解得31x y =⎧⎨=⎩所以直线l 恒过定点(3,1)P . ……4分 (2)当直线l 过圆心C 时,直线l 被圆C 截得的弦何时最长. ……5分 当直线l 与CP 垂直时,直线l 被圆C 截得的弦何时最短. ……6分设此时直线与圆交与,A B 两点. ,mmmmmmmmmmmmmm直线l 的斜率211m k m +=-+,121312CP k -==--. 由 211()112m m +-⋅-=-+ 解得 34m =-. ……8分此时直线l 的方程为 250x y --=.圆心(1,2)C 到250x y --=的距离d == ……10分||||AP BP ====所以最短弦长 ||2||AB AP == ……14分。

江苏省盐城中学2022-2023学年高一上数学期末考试试题含解析

江苏省盐城中学2022-2023学年高一上数学期末考试试题含解析
【解析】利用诱导公式证明 f x f x 可判断 A;利用 f x f 2 x 可判断 B;利用三角函数的性质可判
断 C;利用复合函数的单调性可判断 D.
【详解】对于 A, f x sin sin x cos cos x sinsin x coscos x sinsin x coscos x f x,
时,存在 , ,故 B 项错误;
C 项,, 可能相交或垂直,当
时,存在 , ,故 C 项错误;
D 项,垂直于同一平面的两条直线相互平行,故 D 项正确,故选 D. 本题主要考查的是对线,面关系的理解以及对空间的想象能力. 考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质. 11、C
有“飘移点”,求 a 的取值范围
21.已知函数 f (x) x2 x 2 .求:
(1) f (x) 的值域; (2) f (x) 的零点;
(3) f (x) 0 时 x 的取值范围
22.已知函数
(且
),再从条件①、条件②这两个条件中选择一个作为已知.
(1)判断函数 的奇偶性,说明理由;
(2)判断函数 在
2
2
二、选择题(本大题共 4 小题,每小题 5 分,共 20 分,将答案写在答题卡上.)
13.求值:2
log2
1 4
(
8
2
)3
27
+ lg 1 100
(
2 1)lg1=____________
14.若函数 f x log2 x2 ax 3a 在区间 2, 上是增函数,则实数 a 取值范围是______
故选:A 【点睛】本题考查幂函数解析式的求解,涉及对数运算,属综合简单题. 3、A 【解析】利用半径之和与圆心距的关系可得正确的选项.

2020-2021学年江苏省盐城市高一(上)期末数学试卷(附解析)

2020-2021学年江苏省盐城市高一(上)期末数学试卷(附解析)

ሺ1 1 ‫ݔ‬,再由对数的运算性质求解.
ሺ1 1 ‫ݔ‬
本题主要考查了函数的实际应用,以及对数的运算性质,是基础题.
9.【答案】AD
【解析】解:因为不等式
ܾ
的解集为ሺ 1 ‫ݔ‬,
所以相应的二次函数 ሺ ‫ݔ‬
由 2 和 1是方程
ܾ
ܾ 的图象开口向下,即
,所以 A 正确.
的两个根,则有
1 ,ܾ 3 ;
质,也常用函数的解析式来琢磨函数的特征,如函数
1的图象大致为ሺ ‫ݔ‬
A.
B.
C.
D.
7. 已知
, ,且
1,则1 1的最小值是ሺ ‫ݔ‬
A.
1
B. 3
C.
1
D. 3
. 中国的 5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:
ሺ1 ‫ݔ‬.它表示在受噪声干扰的信道中,最大信息传递速度 C 取决于信道带

,所以 ܾ , ,所以 B 错误.
由二次函数的图象可知 ሺ1‫ݔ‬
ܾ
, ሺ 1‫ݔ‬
ܾ
,所以 D 正确、
C 错误.
故选:AD.
根据一元二次不等式与对应的二次函数和方程的关系,对选项中的命题判断正误即可.
本题考查了一元二次不等式与对应的二次函数和方程的关系应用问题,是基础题.
10.【答案】ACD
【解析】解:对于 A,令 ሺ ‫ݔ‬
本题主要考查三角函数的周期性,利用了
thሺ
‫ ܾ ݔ‬的最小正周期为 ,属
于基础题.
2.【答案】A
【解析】解:
h 1,3,5,6, t, h1 5, t,
ሺ‫ݔ‬
h 3, t h t h1,0,2,3, t,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏盐城2013-2014高一上学期期末考试数学试题
一、填空题(本大题共14小题,每小题5分,计70分)
1.0600cos 的值是 .
2.化简=--+CD AC BD AB .
3.函数()21log 3y x x
=++的定义域是 . 4.函数tan()23
y x ππ=-的最小正周期是 . 5.若02
<<-απ,则点)cos ,(tan αα位于第 象限. 6.函数()1cos (),f x x x R =-∈取最大值时x 的值是 .
7.若函数-=3)(x x f 2)2
1(-x 的零点),)(1,(0Z n n n x ∈+∈则=n _________. 8.函数(5)||y x x =--的递增区间是 .
9.为了得到函数-
=x y 2sin(3π)的图象,只需把函数sin 2y x =的图象向右平移个__长度单位. 10.若1,2a b ==,且()a b a -⊥,则向量a 与b 的夹角为 . 11.已知扇形的周长为8cm ,则该扇形的面积S 的最大值为 .
12.设,0>ϖ若函数x x f ϖsin 2)(=在]4
,3[ππ-上单调递增,则ϖ的取值范围是________. 13.如图,在△ABC 中,
,=⊥AB AD
14.在直角坐标系中, 如果两点(,),(,)A a b B a b --在函数)(x f y =的图象上,那么称[],A B 为函数()f x 的一组关于原点的中心对称点([],A B 与[],B A 看作一组).函数
4sin ,0()2log (1),0x x g x x x π⎧<⎪=⎨⎪+>⎩关于原点的中心对称点的组数为 . 二、解答题(本大题共6小题,计80分. 请在答题卡指定区域内作答,解答时应写出文字说
C
明、证明过程或演算步骤.)
15.A 、B 是单位圆O 上的点,点A是单位圆与x 轴正半轴的交点,点B 在第二象限.记
AOB θ∠=且4sin 5
θ=. (1)求B 点坐标; (2)求sin()2sin()22cos()
ππθθπθ++--的值.
16.平面内给定三个向量()()()3,2,1,2,4,1a b c ==-=.
(1)若()()
2a kc b a +⊥-,求实数k;(2)若向量d 满足//d c ,且34d =,求向量d .
17.已知函数2()2sin 1f x x x θ=+⋅-(θ为常数
),1[]2x ∈. (1)若()f x
在1[]2
x ∈上是单调增函数,求θ的取值范围; (2)当θ∈0,2π⎡⎤⎢⎥⎣⎦
时,求()f x 的最小值.
18. 已知OAB ∆的顶点坐标为(0,0)O ,(2,9)A ,(6,3)B -, 点P的横坐标为14,且OP PB λ=,点Q 是边AB 上一点,且0OQ AP ⋅=.
(1)求实数λ的值与点P 的坐标; (2)求点Q 的坐标;
(3)若R 为线段OQ (含端点)上的一个动点,试求()RO RA RB ⋅+的取值范围.
19.已知函数()sin()f x A x h ωϕ=++(0,0,)A ωϕπ>><.在一个周期内,当12x π=时,y 取
得最大值6,当712x π=时,y 取得最小值0. (1)求函数()f x 的解析式;
(2)求函数()f x 的单调递增区间与对称中心坐标;
(3)当,126x ππ⎡⎤∈-⎢⎥⎣⎦
时,函数()1y mf x =-的图像与x 轴有交点,求实数m 的取值范围.
20. 定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0≥M ,都有M x f ≤)(成立,则称)(x f 是D 上的有界函数,其中M 称为函数)(x f 的一个上界. 已知函数x
x a x f ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=41211)(,11log )(21--=x ax x g . (1)若函数)(x g 为奇函数,求实数a 的值;
(2)在(1)的条件下,求函数)(x g 在区间]3,3
5[上的所有上界构成的集合; (3)若函数)(x f 在),0[+∞上是以3为上界的有界函数,求实数a 的取值范围.
参考答案
二、解答题
15、(1)
34
(,)
55
B-(2)
5
3
-
16、(1)
11
18
k=-(2)(42,2)
d=或(42,2)
--
17、(12分)
解:(1)
2
2,2,
33
k k k Z
ππ
θππ
⎡⎤
∈++∈
⎢⎥
⎣⎦
;(2)
min
2
1
3sin,,
432
()
sin1,0,
3
f x
ππ
θθ
π
θθ
⎧⎡⎤
--∈
⎪⎢⎥
⎪⎣⎦
=⎨
⎡⎫
⎪--∈


⎪⎣⎭

.
(3)因为R为线段OQ上的一个动点,故设(4,3)
R t t,且01
t
≤≤,则(4,3)
RO t t
=--,(24,93)
RA t t
=--,(64,33)
RB t t
=---,+(88,66)
RA RB t t
=--,则
()4(88)3(66)RO RA RB t t t t ⋅+=----25050(01)t t t =-≤≤,故()RO RA RB ⋅+的取值范围为25[,0]2
-
. 19、(14分) 解:(1)()3sin(2)33
f x x π=++; (2)递增区间51,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦
;对称中心(,3),32k k Z ππ+∈; (3)91(),6,()2f x f x m ⎡⎤∈=⎢⎥⎣⎦,所以12,69m ⎡⎤∈⎢⎥⎣⎦
. 20、(16分)
解:(1)因为函数)(x g 为奇函数,
所以)()(x g x g =-,即1
1log 11log 21
21---=--+x ax x ax , 即ax
x x ax --=--+1111,得1±=a ,而当1=a 时不合题意,故1-=a . (2)由(1)得:11log )(2
1-+=x x x g , 下面证明函数11log )(21
-+=x x x g 在区间(1,)+∞上单调递增, 证明略. 所以函数11log )(21
-+=x x x g 在区间]3,35[上单调递增, 所以函数11log )(2
1-+=x x x g 在区间]3,35[上的值域为]1,2[--, 所以2)(≤x g ,故函数)(x g 在区间]3,3
5[上的所有上界构成集合为),2[+∞. (3)由题意知,3)(≤x f 在),0[+∞上恒成立.
3)(3≤≤-x f ,x
x x a ⎪⎭
⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛--41221414. x x x x a ⎪⎭
⎫ ⎝⎛-⋅≤≤⎪⎭⎫ ⎝⎛-⋅-∴21222124在),0[+∞上恒成立. min
max 21222124⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅-∴x x x x a 设t x =2,t t t h 14)(--=,t
t t p 12)(-=,由),0[+∞∈x 得 1≥t 设0)14)(()()(,12121212121>--=-<≤t t t t t t t h t h t t , ()()12121212
21()()0
t t t t p t p t t t -+-=<, 所以)(t h 在),1[+∞上递减,)(t p 在),1[+∞上递增,
p在)
,1[+∞上的最小值为1
)1(=
p .
)(t
h,)(t
h在)
=
,1[+∞上的最大值为5
)1(-
所以实数a的取值范围为]1,5
[-.。

相关文档
最新文档