有理数的运算复习材料及练习

合集下载

《有理数及其运算》专项练习(含答案)

《有理数及其运算》专项练习(含答案)

《有理数及其运算》专项练习(含答案)第二章《有理数及其运算》专项练习李其明(山东枣庄十五中)同学们,你能用数简便地表示出每天的天气状况吗?你和你的伙伴会玩扑克游戏吗?你能用折线图表示身边的事物的变化吗?……,那么请跟我一起走进五彩缤纷的数字世界,在这里将为你介绍一个新的数---------负数,有了它,数将变得更加绚丽多彩,更加便于应用,本章首先让你认识什么是有理数,然后依次由低带高向你讲述有理数的加、减、乘、除以及乘方运算的意义法则和运算律,你将学会扑克玩“24”点游戏,学会用折线统计图表示水位的变化,用计算器进行数的简单计算,还为你提供丰富的数学活动机会,通过探索规律,体会数学与现实世界的联系.专题一:数怎么不够用了1、下列各数中,大于-21小于21的负数是( )A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A.文具店 B.玩具店 C.文具店西40米处 D.玩具店西60米处6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____.5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____.8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。

有理数的运算期中复习教学案例和课后练习

有理数的运算期中复习教学案例和课后练习

期中复习 第二章 有理数 2.有理数的运算班级:____________ 姓名:____________ 学号:____________ 评价:________【随堂练习】1、设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,d 是倒数等于自身的有理数,则a-b+c-d 的值为 ( )A .1B .3C .1或3D .2或-12.一个有理数与它的相反数积 ( )A .一定为正数B .一定为负数C .一定不大于0D .一定不小于0 3.下列各数中:①-52与(-5)2;②(-3)3与-33;③-(-0.3)5与0.35;④0100与0200;⑤(-1)3与-(-1)2相等的共有几对? ( )A .1B .2C .4D .54.平方等于49的数为 。

5.若|a|=4,|b|=2,且ab<0,则a+b= 。

5.若一个数平方等于它的倒数,那么这个数是 。

6.五个数相乘,积为负,那么负因数的个数是 。

7.数2,-3,7的和比它们的绝对值的和少 。

8.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个),若这种细菌由1个分裂成16个,那么这个过程需要经过 小时。

9.若a+1与-5互为相反数,则a= 。

10.a ,b 为有理数,若a a ||=1,则a 0;若a a ||=-1,则a 0。

11.计算:(1)3.5÷87×43- (2)⎪⎭⎫ ⎝⎛-+-⨯-31432124(3)()()233202(3)⎡⎤-+--÷-⎣⎦ (4)、32422()93-÷⨯-12.若|a|=5,|b|=3,(1)求a+b 的值。

(2)若|a+b|=a+b ,求a-b 的值。

13.规定a ﹡b=5a+2b-1,则(-4)﹡6的值为 。

14.某地实验测得数据表明,高度每增加1千米,气温大约下降6ºC ,若该地面温度为21ºC ,(1)高空某处高度是8km,求此处的温度是多少度;(2)高空某处温度为—24ºC ,求此处的高度是多少千米。

初中七年级上册数学基础习题练习:33.有理数及其运算专题

初中七年级上册数学基础习题练习:33.有理数及其运算专题

有理数及运算专题复习姓名: 日期:【知识要点归纳总结】1. 有理数的分类2. 数轴的三要素3. 若a+b=0,则a 与b 的关系是4. 若两个数的绝对值相等,则这两个数的关系是 5.若a =a -,则a 0,若a =a,则a 0.6.倒数等于它本身的数是 ,平方等于它本身的数是 , 立方等于它本身的是巩固练习A一、选择题.1.下列语句中正确的是( ) A 、若a 为有理数,则必有0||=-a a B 、两个有理数的差小于被减数 C 、两个有理数的和大于或等于每一个加数D 、0减去任何数都得这个数的相反数2.点A 在数轴上距原点3个单位长度,将A 向右移动4个单位长度,再向左移动7个单位长度,此时A 点所表示的数是( ) A 、0B 、-6C 、0或-6D 、0或63.实数b a ,在数轴上的位置如下图所示,下列各式错误的是( ) A 、0<-b aB 、0<+b aC 、0<abC 、a b >|| 4.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为21单位长度,则这个数是( )A 、21或21-B 、41或41-C 、21或41D 、21-或41-5.如果一个有理数的平方是正数,那么这个有理数的立方是( ) A 、正数B 、负数C 、正数或负数D 、整数6.下列各式中不正确的是( ) A |4||4|=-、 B 、)3(|3|--=- C 、|3||7|->- D 、0|5|<-二、填空题1.今年我省元月份某一天的天气预报中,A 市最低温为C ︒-6,B 市最低气温为C ︒2,这一天A 市的最低气温比B 市的最低气温低 .2.绝对值小于3的整数有 .3.在有理数9,4,8,8.3,0,71,6.2,5,4----中,请找出其中的整数 .4.一根长70厘米的弹簧,一端固定,若另一端挂上物体,那么在正常情况下物体的质量每增加1千克,便可使弹簧增长2厘米,则在正常情况下挂x 千克的物体弹簧的长度增长到 厘米. 5.若a a -=||,则a 是 .6.若b a ,互为相反数,d c ,互为倒数,则=++20082003)()(cd b a . 7.数轴上表示3的点和表示-6的点的距离是 .8.87-与1513-的大小关系是 .9.若a a =2,则=a ,若a a =3,则=a 。

新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题

新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题

期末复习二有理数的运算要求知识与方法了解有理数加、减、乘、除、乘方的运算法则倒数的概念,会求一个数的倒数乘方、幂、指数、底数的概念计算器的简单使用理解有理数的混合运算的运算顺序,能进行有理数的混合运算用科学记数法表示较大的数说出一个由四舍五入法得到的有理数的精确位数及根据精确度取近似值运用合理运用运算律简化有理数混合运算的过程利用有理数的混合运算解决简单的实际问题一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________.2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法.二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数.倒数的概念例1 (1)2017的倒数为( )A .-2017B .2017C .-12017D .12017(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________. 【反思】互为倒数的两个数乘积为1,注意互为倒数的两数符号是相同的,不要与相反数混淆起来.有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1;(2)(-112)2-23=114-6=-434; (3)23-6÷3×13=6-6÷1=0.【反思】乘方运算是初中阶段新学的一种运算,要弄清楚它的法则,不要和乘法混淆起来;运算顺序也是学生的一个易错点,特别是乘、除同级运算过程中要遵循从左到右的运算顺序.有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2; (2)-32-[-(12)2-116]×(-2)÷(-1)2017.【反思】有理数的混合运算要注意运算的顺序不要搞错,-32的求值也是学生的一个易错点.有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5); (2)19999899×(-11); (3)(-5)×713+7×(-713)-(+12)×713.【反思】合理地利用加法和乘法的运算律可以加快速度,分配律和分配律的逆向使用也是简便计算的一种重要的方法.近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A .0.361×109B .3.61×108C .3.61×107D .36.1×107(2)下列近似数精确到哪一位?①4.7万 ②17.68(3)用四舍五入法按要求取下列各数的近似数:①0.61548(精确到千分位);②73540(精确到千位).【反思】求带单位的近似数的精确度时,要注意单位也是有效的.有理数混合运算的应用例6 出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置?(2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【反思】用有理数的运算解决实际问题,主要是要抓住题中各数量之间的关系,弄清是求各数之和还是各数的绝对值之和.1.计算:3×(-1)3+(-5)×(-3)____________.2.已知(x -2)2+||2y +6=0,则x +y =____________.3.如图,数轴上A 、B 两点分别对应实数a 、b ,则a 与b 之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x ※y =xy +1.(1)求2※3的值;(2)求(3※5)※(-2)的值;(3)探索a ※(b +c)与a ※b +a ※c 的关系,并用等式把它们表达出来.参考答案期末复习二 有理数的运算【必备知识与防范点】1.1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10【例题精析】例1 (1)D (2)12例2 (1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335; (2)运算法则错.改正为:(-112)2-23=94-8=-234; (3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713.例3 (1)-18 (2)-838例4 (1)-63 (2)-2199989(3)-176 例5 (1)B (2)①千位 ②百分位 (3)①0.615 ②7.4×104例6 (1)正西方向3千米处 (2)67.8元【校内练习】1.12 2.-1 3.答案不唯一,如a >b4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60. (2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31 (3)∵a ※(b +c)=a(b +c)+1=ab +ac +1,a ※b +a ※c =ab +1+ac +1.∴a ※(b +c)+1=a ※b +a ※c.。

七年级数学有理数知识点章节复习与练习题

七年级数学有理数知识点章节复习与练习题
2.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( )
A. B. C. D.
三、相反数
1.概念:只有符号不同的两个数叫做互为相反数。0的相反数仍是0.
2.几何定义:在数轴上原点的两侧,到原点的距离相等的两点所表示数为相反数。
3.任何一个数都有它的相反数
4.相反数性质:a与b互为相反数,则a+b=0.
1.如果a和b是符号相反的两个数,在数轴上a所对应的数和b所对应的点相距6个单位长度,如果a=-2,则b的值为_________________.
2.已知x、y互为相反数,则-15(x+y)=__________________.
3.如果a的相反数是最大的负整数,b的相反数是最小的正整数,a+b=___________.
注意:循环小数是无限小数,也称作无限循环小数。整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。
1.下列说法中正确的是( )
A、一个有理数,不是正数就是负数 B、一个有理数,不是整数就是分数
C、有理数可分为非负有理数和非正有理数 D、整数和小数统称有理数
2.若两个有理数的和是正数,那么一定有结论( )
2.计算:
3.计算
七、科学计数法
将一个大于10的数字表示成 的形式(其中1≤a<10,n表示正整数),这种记数方法叫科学记数法.
1.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( )
A.2.3×105辆 B.3.2×105辆 C.2.3×106辆 D.3.2×106辆
四、绝对值
在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

中考数学一轮复习专题突破练习—有理数的运算(含解析)

中考数学一轮复习专题突破练习—有理数的运算(含解析)

中考数学一轮复习专题突破练习—有理数的运算(含解析)一、单选题1.(2022·陕西西安交大第二附属中学南校区九年级其他模拟)﹣23的倒数是()A.32B.23C.﹣32D.﹣23【答案】C【分析】根据:除0外的数都存在倒数,两个乘积是1的数互为倒数,0没有倒数;判断即可.【详解】解:﹣23的倒数是﹣32.故答案为:C.2.(2022·重庆字水中学九年级三模)下列各数中,相反数最大的是()A.-5 B.-2 C.-1 D.0【答案】A【分析】求得各选项的相反数,然后比较大小即可. 【详解】解:各选项的相反数分别为5,2,1,0∵5210>>>∴-5的相反数最大故答案为A .3.(2022·西安市铁一中学九年级其他模拟)据新浪财经2022年4月2日报到,第一龙头股贵州茅台一路走高,截至收盘涨近6%至2162元,收涨5.75%,市值激增至272000000元.数据272000000用科学记数法表示为( ) A .627210⨯B .82.7210⨯C .90.27210⨯D .927210⨯ 【答案】B 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:8272000000 2.7210=⨯,故选:B.4.(2022·长春市解放大路学校九年级其他模拟)下列各数中,比2021-小的数为()A.2022-B.2020-C.0 D.2020【答案】A【分析】根据有理数的大小比较方法即可求解.【详解】∵2022-<2020-<2021-<0<2020故比2021--小的数为2022故选A.5.(2022·福建泉州市·泉州五中九年级其他模拟)据报道,2020年泉州GDP总量突破万亿大关,约为10159亿元,居全国第18位,其中数10159亿元用科学记数法表示为()A.12⨯元C.4⨯元D.51.0159100.1015910⨯元B.131.015910⨯元0.1015910【答案】A【分析】根据题意,运用科学记数法的表示方法可直接得出答案,要注意绝对值大于1的数字科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为正整数.【详解】解:10159亿用科学记数法表示为121.015910⨯,故选:A .6.(2022·山东省诸城市树一中学九年级三模)若x x +=0,那么实数x 一定是( )A .负数B .正数C .零D .非正数 【答案】D【分析】先整理,然后根据绝对值等于它的相反数进行解答.【详解】解:由x +|x |=0得,|x |=−x ,∵负数或零的绝对值等于它的相反数,∴x 一定是负数或零,即非正数.故选:D .7.(2022·江苏南京·)下列四个实数中,是负数的是( )A .-(-1)B .(-1)2C .|-1|D .(-1)3【答案】D 【分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得. 【详解】解:A .-(-1)=1,是正数,不符合题意;B .(-1)2=1,是正数,不符合题意;C .|-1|=1,是正数,不符合题意;D .(-1)3=-1,是负数,符合题意;故选:D .8.(2022·河南师大附中九年级三模)1长度单位“埃”,等于一亿分之一厘米,那么一本杂志长为35厘米,等于( )埃.A .73.510⨯B .83.510⨯C .93.510⨯D .83.510-⨯ 【答案】C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:35cm=35×108埃=3.5×109埃.故选:C.9.(2019·宁夏)如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.17【答案】C【解析】试题分析:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=4个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12,第五个图案有三角形1+3+4+4+4=16,故选C.考点:规律型:图形的变化类.10.(2022·江苏苏州·)21÷(-7)的结果是()A.3 B.-3 C.13D.13【答案】B【分析】直接根据有理数的除法法则进行求解即可;【详解】21÷(-7)=-3,故选:B.二、填空题11.(2022·厦门市第九中学九年级二模)2022年厦门中考生大约39700人,这个数字可用科学记数法表示为__________【答案】3.97×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:39700=3.97×104.故答案为:3.97×104. 12.(2022·广东)已知a ,b 为有理数,如果规定一种新的运算“※”,规定:23a b b a =-※,例如:122231431=⨯-⨯=-=※,计算:()235=※※_________ .【答案】10 【分析】根据a ※b =2b -3a ,可以计算出所求式子的值. 【详解】解:∵a ※b =2b -3a ,∴(2※3)※5=(2×3-3×2)※5=(6-6)※5=0※5=2×5-3×0 =10-0=10,故答案为:10.13.(2022·贵州)某同学在银行存入1000元,记为1000+元,则支出500元,记为______元.【答案】500【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以,若向银行存入1000元,记作“+1000元”,那么向银行支出500元,应记作“﹣500元”.故答案为:﹣500.14.(2022·浙江)已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=_____.【答案】-1【分析】直接利用互为相反数的定义得出a+b=0,进而化简得出答案.【详解】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.15.(2019·云南)如果x的相反数是2019,那么x的值是__________.【答案】2019-【解析】【分析】根据相反数的定义进行分析即可.【详解】解:∵2019-的相反数是2019,x的值是:2019-.故答案为2019-三、计算题16.(2020·河北九年级一模)小盛和丽丽在学完了有理数后做起了数学游戏(1)规定用四个不重复(绝对值小于10)的正整数通过加法运算后结果等于12,小盛:1+2+3+6=12:丽丽:1+2+4+5=12,问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由:(2)规定用四个不重复(绝对值小于10)的整数通过加法运算后结果等于12;【答案】(1)见解析;(2)答案不唯一,-1-3+7+9=12.【分析】(1)由于1+2+3+4=10,要想和为12,在此基础上要加上2,据此进行思考即可;(2)根据有理数加减法法则按要求进行计算即可(答案不唯一).【详解】(1)没有其他算式了,四个小于10的不同的正整数最小的和为1+2+3+4=10,要想得到和为12,需要加2,则任何两个数加1或者任意一个数加2,又因为数字不能重复,所以只能是3+1或4+1,3+2,或4+2;故符合条件的算式有1+2+4+5,1+2+3+6;只有两个;(2)答案不唯一,如:-1-3+7+9=12,写出一个即可.17.(2020·河北保定市·)计算下列各式的值.(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)﹣3.61×0.75+0.61×3+(﹣0.2)×75%.4【答案】(1)0;(2)-2.4【分析】(1)根据有理数的加减运算法则,先省略括号,再进行计算即可得解;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣90+90=0;(2)33.610.750.61(0.2)75%-⨯+⨯+-⨯4=﹣3.61×0.75+0.61×0.75+(﹣0.2)×0.75=0.75×(﹣3.61+0.61﹣0.2)=0.75×(﹣3.2)=﹣2.4.18.(2022·河南九年级一模)计算下列各题(1)3-----(2)|25|(15)(2)15351-+-+÷-()()2681224(3)23122--⨯--÷-3[(1)()6||]293(4)3331⨯--⨯+-⨯+⨯-2(1)213(1)5(13)7474;(4)-49【答案】(1)4;(2)-9;(3)34【分析】(1)原式先计算乘方及绝对值的代数意义计算即可求出值;(2)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值.【详解】解:(1)原式83154=--+=;(2)原式1535=-+-+⨯-()(24)26812=-+-1220910=-;9(3)原式2723=--⨯--⨯9[()6]8923=-++9943=;4(4)原式3311(25)13(2)=-⨯+-⨯+74410=-⨯-⨯71337=--1039=-;4919.(2018·石家庄市第四十一中学九年级二模)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)【答案】-57.5【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣54﹣9÷(﹣2),=﹣62+4.5,=﹣57.5.20.(2020·河北九年级其他模拟)利用运算律有时能进行简便计算.例198×12=(100-2)×12=1 200-24=1 176;例2-16×233+17×233=(-16+17)×233=233.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845+999×1-5⎛⎫⎪⎝⎭-999×1835.【答案】(1)-14 985;(2)99 900.【详解】(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×413 118-18555⎡⎛⎫⎤+-⎪⎢⎥⎣⎝⎭⎦=999×100=99 900.21.(2019·浙江中考模拟)计算:–23+6÷3×23.圆圆同学的计算过程如下:原式=–6+6÷2=0÷2=0,请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】–203.【详解】圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+2×23=﹣8+43=﹣203.22.(2022·山东课时练习)求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【答案】(1)38;(2)0.15;(3)﹣a;(4)3b;(5)2﹣a;(6)a﹣b≥0时,a ﹣b;a﹣b<0时,b﹣a.【详解】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.23.(2022·全国课时练习)某沙漠可以粗略看成一个长方体,该沙漠的长度约是4800000m,沙层的深度大约是366cm,已知该沙漠中的体积约为33345km3立方千米.(1)请将沙漠中沙的体积用科学记数法表示出来(单位:m3);(2)该沙漠的宽度是多少米(精确到万位)?(3)如果一粒沙子体积大约是0.036mm3,那么,该沙漠中有多少粒沙子(用科学记数法表示)?【答案】(1)3.334 5×1013m3;(2)1.90×104m;(3)9.26×1023【详解】【分析】(1)首先把3 3345km3换算成33 345 000 000 000m3,再写成科学记数法.(2)沙漠的体积÷撒哈拉沙漠的长度÷沙层的深度=撒哈拉沙漠的宽度.(3)沙漠的体积÷一粒沙子体积=沙漠沙子的粒数.(1)33 345km3=33 345 000 000 000m3=3.334 5×1013m3;(2)3.334 5×1013m3÷4800000m÷366m≈1.90×104m.答:沙漠的宽度是1.90×104m.(3)3.334 5×1013m3=3.334 5×1022mm3,3.3345×1022mm3÷0.036mm3=9.26×1023(粒).答:沙漠中有9.26×1023粒沙子.。

七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习

七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习

第4讲有理数的加减乘除乘方运算知识点1 加减运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数. .有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果. 加减混合运算技巧:把符号相同的加数相结合; 把和为整数的加数相结合;把分母相同或便于通分的加数相结合; 既有小数又有分数的运算要统一后再结合; 把带分数拆分后再结合; 分组结合; 先拆项后结合.【典例】⎧⎪⎨⎪⎩加减运算有理数的运算乘除运算乘方运算()a b a b -=+-a b b a +=+()()a b c a b c ++=++1.计算:(1)4+(﹣6);(2)(﹣116)+(-23);(3)-2-(﹣3.5);(4)|(﹣7)+(﹣2)|-(﹣3);(5)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).【方法总结】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.注意:绝对值有括号的作用.2.【题干】计算:(1)﹣2.4+3.5﹣4.6+3.5;(2)(−478)−(−512)+(−414)−(+3178);(3)−200956−(+200823)−(−401834)+(−112);(4)1+(﹣2)+3+(﹣4)…+2015+(﹣2016)+2017+(﹣2018).【方法总结】(1)把和为整数的数结合在一起;(2)把分母相同或容易通分的数结合在一起;(3)拆项法,把带分数拆成整数和分数,再把所有整数和分数分别结合在一起;(4)找规律,相邻两数之和为﹣1.本题考查的是有理数加减混合运算,掌握有理数加减混合运算的方法“将有理数加减法统一成加法”是解题的关键.能使用运算律的要使用运算律,以简化计算,减少计算错误. 【随堂练习】1.(2017秋•小店区校级月考)计算:(1)﹣3+(﹣4)﹣(﹣5); (2)1+(﹣2)+|﹣2|﹣5; (3)﹣5﹣(+11)+;(4).2.(2016秋•靖远县校级月考)计算题: (1)27﹣28+(﹣7)﹣32 (2)1+(﹣2)﹣(﹣3)﹣4; (3)0.5+(﹣)﹣(﹣2.75)+0.25 (4)3+(﹣1)+(﹣3)+1+2.知识点2 乘除运算有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同相乘,都得.有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 多个有理数相乘:(1)几个不是的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为,那么积等于. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.00000ab ba(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.倒数的概念:乘积是的两个数互为倒数.整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).【典例】1.计算:(1)(﹣2)×(﹣8); (2)(﹣8)÷(﹣1.25); (3)11÷17×(−411); (4)(−1.5)×45÷(−25)×34.【方法总结】(1)根据有理数的乘法运算法则进行计算即可得解; (2)根据有理数的除法运算法则进行计算即可得解;(3)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(4)把小数转化为分数,除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解.()()ab c a bc =()a b c ab ac +=+1本题考查了有理数的乘法和除法,熟记运算法则是解题的关键.2.计算:(1)37×(﹣45)×712×58;(2)292324÷(﹣112);(3)﹣5×(﹣115)+13×(﹣115)﹣3×(﹣115).【方法总结】(1)利用乘法交换律和乘法结合律,把分子或分母容易约分的因数结合;(2)先把除法转换为乘法,再利用乘法的分配律计算;(3)利用乘法分配律的逆运用,即可解答.本题考查了有理数的乘除法的运算,解决本题的关键是选用合适的乘法运算律进行计算.【随堂练习】1.(2017秋•夏邑县期中)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.2.(2017秋•兴化市期中)小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果; (2)如果小丽一开始想的那个数是2m ﹣3n ,请列式并计算结果; (3)根据(1)、(2),尝试写出一个结论.3.(2017秋•盐都区校级月考)阅读下列材料: 计算:÷﹙﹣+﹚. 解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4. 所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.知识点3 乘方乘方的概念:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,个相同的因数相乘,即,记作,读作“的次方”;(2)在中,叫做底数,叫做指数;(3)当看作的次方的结果时,读作的次幂. 注意:,其底数为,;,其底数为,;,其底数为,; n n a n a a a a ⋅⋅⋅⋅⋅⋅⋅ 个n a a n n a a n n a a n a n ()224-=()2-()()()22224-=-⨯-=224-=-2()()222121224-=-⨯=-⨯⨯=-239=749⎛⎫⎪⎝⎭372333977749⎛⎫=⨯= ⎪⎝⎭,其底数为,; ,带分数的乘方运算,一定要先化成假分数后再运算.一个数可以看作这个数本身的一次方,例如,就是,指数通常省略不写. 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方. 科学记数法:把一个大于的数表示成的形式(其中,是正整数). 用科学记数法表示一个位整数,其中的指数是,的指数比整数的位数少. 万,亿 .【典例】1.一张纸的厚度为 0.09mm (毫米),将这张纸连续对折8次,这时它的厚度是多少?假设连续对折始终是可能的,那么对折15次后,所得的厚度是否可以超过你的身高?先猜猜,然后计算出实际答案.【方法总结】根据乘方的定义和题意可计算出折第一次、第二次、第三次、第四次得厚度,由此可算出折第8次的厚度.一张纸的厚度为0.09mm ,对折1次后纸的厚度为0.09×2mm ;对折2次后纸的厚度为0.09×2×2=0.09×22mm ;对折3次后纸的厚度为0.09×23mm ;对折n 次后纸的厚度为0.09×2n mm ,据此列出算式.即可求解.本题主要考查从实际问题中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积. 2.若|x −2|+(y −23)2=0,则y x =__________.【方法总结】绝对值和偶次方具有非负性,由“若几个非负数的和为0,则这几个非负数都为0”可求出x 、y 的值,然后将x 、y 的值代入计算即可求解.239=77323339777⨯==221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭51511010n a ⨯110a ≤<n n 101n -101410=810=3.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000km,比太阳到地球的距离还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光的速度大约是300000km/s,那么你能计算出从暗星发出的光线到地球需要多少秒吗?用科学记数法表示出来.【方法总结】用科学记数法表示较大数的形式为a×10n,其中1≤|a|<10,n为正整数.确定n的值时,要看由原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是要正确确定a的值以及n的值.【随堂练习】1.(2017秋•石景山区期末)(﹣1)2018÷.2.(2017秋•蚌埠期中)﹣32×(﹣)3=______.3.(2017秋•浦东新区期中)用简便方法计算:﹣35×(﹣)5×(﹣5)6(结果可用幂的形式表示)综合运用1.若|a|=2,b=﹣3,c是最大的负整数,a+b﹣c的值为_______.2.2.5+(﹣214)﹣1.75+(﹣12)=____.3.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为___________.4.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是_______ 米;第n次后剩下的绳子的长度是_______ 米.5.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第10次对折后得到的折痕比第9次对折后得到的折痕多_______条.6.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75).7.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?8.计算下列各式:(1)(﹣14)×(﹣100)×(﹣6)×(0.01);(2)91819×15;(3)﹣100×18﹣0.125×35.5+14.5×(﹣12.5%);(4)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).9.已知(x+3)2+|3x+y+m|=0中,y的平方等于它本身,求m的值.。

有理数的运算技巧及练习题附答案解析

有理数的运算技巧及练习题附答案解析

有理数的运算技巧及练习题附答案解析一、选择题1.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.为促进义务教育办学条件均衡,2019年某地区计划投入4200000元资金为该地区农村学校添置实验仪器,4200000这个数用科学记数法表示为( )A .44210⨯B .64.210⨯C .84210⨯D .60.4210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4200000=4.2×106,故选:B .【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.9万亿1388900000000008.8910==⨯,故选A .【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n 次幂的形式(1≤a <10,n 为正整数.)4.计算﹣6+1的结果为( )A .﹣5B .5C .﹣7D .7【答案】A【解析】【分析】根据有理数的加法法则,|﹣6|>|1|,所以结果为负号,并把它们的绝对值相减即可.【详解】解:﹣6+1=﹣(6﹣1)=﹣5故选:A .【点睛】本题考查了有理数的加法,注意区别同号相加与异号相加,把握运算法则是关键.5.23+23+23+23=2n ,则n =( )A .3B .4C .5D .6【答案】C【解析】【分析】原式可化为:23+23+23+23=4×23235222=⨯=,之后按照有理数乘方运算进一步求解即可.【详解】∵23+23+23+23=4×23235222=⨯=∴5n =,所以答案为C 选项.【点睛】本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.6.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.7.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A.6⨯D.51.20710⨯12.07101.20710⨯B.70.120710⨯C.5【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1207000=1.207×106,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.10.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为()A.2.56×107B.2.56×108C.2.56×l09D.2.56×l010【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:2.56亿=256000000=2.56×108,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.2019年我省实施降成本的30条措施,全年为企业减负960亿元以上,用科学记数法表示数据960亿为()A.79.610⨯B.89.610⨯C.99.610⨯D.109.610⨯【答案】D【解析】科学记数法的表示形式为a 10n ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:960亿=96000000000=109.610⨯故选:D.【点睛】此题主要考查科学记数法,熟练确定a 和n 是解题的关键.12.清代·袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为( ) A .8.4×10-5B .8.4×10-6C .84×10-7D .8.4×106【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】13.近似数2.864×104精确到( )A .千分位B .百位C .千位D .十位【答案】D【解析】解:2.864×104=28640,数字4在十位上,故选D .14.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )A .81810⨯B .81.810⨯C .91.810⨯D .100.1810⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1800000000=1.8×109,【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105 B.8.5×106C.85×105 D.85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n,其中1≤|a|<10,n为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为()A.1269×108B.1.269×108C.1.269×1010D.1.269×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】1269亿=1.269×1011故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题关键.17.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( )A .80.34210⨯B .73.4210⨯C .83.4210⨯D .634.210⨯【答案】B【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将34200000用科学记数法表示为:3.42×107.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.19.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D.【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.20.2018年汕头市龙湖区的GDP总量约为389亿元,其中389亿用科学记数法表示为()A.3.89×1011B.0.389×1011C.3.89×1010D.38.9×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】389亿用科学记数法表示为89×1010.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思元教育七升八数学资料: 第二讲 有理数的运算 2016年7月8号
1. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.
练习:△同号两数相加
1、(–3)+(–9)
2、85+(+15)
3、(–361)+(–33
2) 4、(–3.5)+(–532) △绝对值不相等的异号两数相加
1、(–45) +(+23)
2、(–1.35)+6.35
2、3、4
12+(–2.25) 4、(–9)+7 △一个数同0相加
1、(–9)+ 0=______________;
2、0 +(+15)=_____________。

2.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).
练习:
1、(–1.76)+(–19.15)+ (–8.24)
2、23+(–17)+(+7)+(–13)
2、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–5
2)
3有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).
练习:
1、(–3)–(–5)
2、3
41–(–143) 3、0–(–7)
4. 有理数乘法法则:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

练习:
1、(–4)×(–9)
2、(–
5
2)×81
2、3、(–6)×0 4、(–253)×13
5
5、(–5)×8×(–7)
6、(–6)×(–5)×(–7)
7、(–12)×2.45×0×9×100
5. 有理数乘法的运算律:
(1)乘法的交换律:ab=ba ; (2)乘法的结合律:(ab )c=a (bc );
(3)乘法的分配律:a (b+c )=ab+ac .(简便运算)
练习:
(-4)×15×(-53) (2)(-54)×21×74×(-8
35)
(2)100×(0.7–
103–254+ 0.03) (4)(–11)×5
2+(–11)×953
6.有理数除法法则:除以一个数等于乘以这个数的倒数;
注意:零不能做除数,无意义即0
a . 有理数的除法可以转化为_______来进行,转化的“桥梁”是____________。

除法法则一:除以一个不等于0的数,等于__乘这个数的倒数_。

除法法则二:两数相除,同号得____,异号得____,并把绝对值相______. 0除以任何一个不等于0的数,都得____.
1. (–18)÷(–9)
2. (–63)÷(7)
3. 0÷(–105)
4. 1÷(–9)
7、加减乘除混合运算有理数加减乘除混合运算,无括号时,“先_乘除_,后__加减_”,有括号时,先算括号内的,同级运算,从_左_到_右_. 计算时注意符号的确定,还要灵活应用运算律使运算简便。

1. 3×(–9)+7×(–9)
2. 20–15÷(–5)
3. [
65÷(–21–3
1)+281]÷(–181)
8.有理数乘方的法则:
(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;
9.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;
(4)据规律 ⇒⎪⎪⎭
⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 练习:
1、()42--
2、3
211⎪⎭⎫ ⎝⎛ 3、()20031-
4、()33131-⨯--
5、()2332-+-
6、()2
233-÷-
综合练习:
一、选择
1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元
(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯
2、大于–3.5,小于2.5的整数共有( )个。

(A )6 (B )5 (C )4 (D )3
3、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )
(A )2 (B )–2 (C )1 (D )–1
4、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )
(A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大
(C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大
5、在下列说法中,正确的个数是( )
⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数
A 、1
B 、2
C 、3
D 、4
6、如果一个数的相反数比它本身大,那么这个数为( )
A 、正数
B 、负数
C 、整数
D 、不等于零的有理数
7、下列说法正确的是( )
A 、几个有理数相乘,当因数有奇数个时,积为负;
B 、几个有理数相乘,当正因数有奇数个时,积为负;
C 、几个有理数相乘,当负因数有奇数个时,积为负;
D 、几个有理数相乘,当积为负数时,负因数有奇数个;
8、在有理数中,绝对值等于它本身的数有()
A.1个
B.2个
C. 3个
D.无穷多个
9、下列计算正确的是()
A.-22=-4
B.-(-2)2=4
C.(-3)2=6
D.(-1)3=1
10、如果a<0,那么a 和它的相反数的差的绝对值等于( )
A.a
B.0
C.-a
D.-2a
二、填空题
1、()642=。

2、小明与小刚规定了一种新运算*:若a 、b 是有理数,则a*b = b a 23-。

小明计算出2*5=-4,请你帮小刚计算2*(-5)= 。

3、若056=++-y x ,则y x -=
4、大于-2而小于3的整数分别是_________________、
5、(-3.2)3中底数是______,乘方的结果符号为______。

6、在数轴上表示两个数, 的数总比 的大。

(用“左边”“右边”填空)
7、仔细观察、思考下面一列数有哪些..
规律:-2 ,4 ,-8 ,16 ,-32 ,64 ,…………然后填出下面两空:(1)第7个数是 ;(2)第 n 个数是 。

8、若│-a │=5,则a=________.
9、写出三个有理数数,使它们满足:①是负数;②是整数;③能被2、3、5 整除。

答:____________。

10、计算:()()()20002
1111-+-+- =_________。

11、已知()02|4|2=-++b a a ,则b a 2+=_________。

12、____________________范围内的有理数经过四舍五入得到的近似数3.142。

13、已知|a|=3,|b|=5,且a<b ,则a-b 的值为 。

三、计算下列各题(要求写出解题关键步骤):
1、 ()()()54321132---⨯---
2、(-81)÷214×(-49
)÷(-16)
3、()2523-⨯-
4、)1611318521(48-+-⨯-。

相关文档
最新文档