光电传感器工作原理
光电传感器的工作原理

光电传感器的工作原理光电传感器是一种能够将光信号转化为电信号的装置,广泛应用于工业自动化、机器人技术、安防监控等领域。
它通过感知光的强度、颜色、位置等特征,实现对环境的检测和控制。
下面将详细介绍光电传感器的工作原理。
一、光电传感器的基本构成光电传感器主要由光源、光电元件和信号处理电路组成。
1. 光源:光源是光电传感器中发出光信号的部分,常用的光源有发光二极管(LED)、激光器等。
光源的选择通常根据应用需求来确定,例如需要检测远距离的物体,可以选择激光器作为光源。
2. 光电元件:光电元件是光电传感器中接收光信号并将其转化为电信号的部分。
常见的光电元件有光敏电阻、光电二极管、光电三极管等。
光电元件的选择也取决于应用需求,例如需要检测光强度变化的,可以选择光敏电阻。
3. 信号处理电路:信号处理电路是光电传感器中负责接收并处理光电元件输出的电信号的部分。
它可以将电信号转化为数字信号或模拟信号,以便后续的数据处理和控制。
二、光电传感器的工作原理可以分为两种类型:反射式和穿过式。
1. 反射式光电传感器:反射式光电传感器通过光源发出的光信号被目标物体反射后,由光电元件接收。
当目标物体接近或离开光电传感器时,光信号的强度会发生变化,光电元件将这个变化转化为电信号输出给信号处理电路。
根据光信号的强度变化,可以判断目标物体的存在与否、离近程度等信息。
2. 穿过式光电传感器:穿过式光电传感器中,光源和光电元件分别位于传感器的两侧,目标物体需要穿过光源和光电元件之间的空间。
当目标物体遮挡住光源发出的光信号时,光电元件接收到的光信号强度会发生变化,从而输出相应的电信号。
通过检测光信号的变化,可以判断目标物体的存在与否、通过时间等信息。
三、光电传感器的应用光电传感器具有灵敏度高、响应速度快、精度高等优点,被广泛应用于各个领域。
1. 工业自动化:光电传感器常用于工业自动化中,用于检测物体的存在与否、位置、颜色等信息。
例如,在生产线上,光电传感器可以用来检测产品的位置,以便进行后续的加工和包装。
光电传感器工作原理

光电传感器工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于光电检测、自动控制、光通信等领域。
它利用光电效应,通过光电元件将光信号转化为电信号,实现对光信号的检测和测量。
一、光电传感器的基本原理光电传感器的基本原理是光电效应,即光能转化为电能的现象。
光电传感器通常由光源、光电元件和信号处理电路组成。
1. 光源:光源是产生光信号的部分,常见的光源包括发光二极管(LED)、激光二极管(LD)等。
光源的选择需要根据具体应用需求来确定。
2. 光电元件:光电元件是将光信号转换为电信号的核心部分。
常见的光电元件有光敏电阻、光敏二极管、光电二极管、光电三极管等。
光电元件的选择需要考虑光电转换效率、响应速度、灵敏度等因素。
3. 信号处理电路:信号处理电路负责将光电元件输出的微弱电信号放大、滤波、调理,以便于后续的信号处理和分析。
信号处理电路通常包括放大器、滤波器、模数转换器等。
二、光电传感器的工作原理光电传感器的工作原理可以分为两种基本模式:发射模式和接收模式。
1. 发射模式:在发射模式下,光电传感器的光源发出光信号,经过传输介质(如空气、光纤等)照射到目标物体上,然后由光电元件接收反射回来的光信号。
光电元件将接收到的光信号转换为电信号,经过信号处理电路处理后输出。
2. 接收模式:在接收模式下,光电传感器的光源发出光信号,经过传输介质照射到目标物体上,被目标物体吸收或散射后,由光电元件接收到一部分光信号。
光电元件将接收到的光信号转换为电信号,经过信号处理电路处理后输出。
三、光电传感器的应用领域光电传感器广泛应用于各个领域,以下是一些常见的应用领域:1. 工业自动化:光电传感器在工业自动化中起到非常重要的作用。
例如,光电传感器可以用于检测物体的存在与否,实现自动化生产线上的物体检测、计数、定位等功能。
2. 机器人技术:光电传感器在机器人技术中用于实现机器人的视觉感知能力。
通过光电传感器,机器人可以检测周围环境的光线强度、颜色等信息,从而实现目标物体的识别和定位。
光电传感器工作原理

光电传感器工作原理光电传感器是一种能够将光信号转化为电信号的装置,广泛应用于光电检测、自动控制、通信以及仪器仪表等领域。
它通过感知光的强度、频率、波长等特性,将光信号转化为电信号,从而实现对光的测量和控制。
光电传感器的工作原理主要包括光电效应、光电二极管和光电三极管的工作原理。
1. 光电效应:光电效应是指当光照射到物质表面时,光子与物质原子发生相互作用,使得物质表面的电子被激发并脱离原子。
根据光电效应的不同特性,可以分为外光电效应和内光电效应。
外光电效应是指光照射到金属表面时,金属中的自由电子被激发并脱离金属表面,形成电流。
内光电效应是指光照射到半导体表面时,光子激发了半导体中的电子,使其跃迁到导带中,形成电流。
2. 光电二极管:光电二极管是一种基于光电效应的光电传感器。
它由一个PN 结构的半导体材料组成,当光照射到PN结上时,光子激发了PN结中的电子,使其跃迁到导带中,形成电流。
光电二极管的导通电流与光照强度成正比,因此可以通过测量电流的大小来确定光的强度。
3. 光电三极管:光电三极管是一种基于光电效应的光电传感器,它由PNP或者NPN结构的半导体材料组成。
与光电二极管不同的是,光电三极管具有放大作用。
当光照射到光电三极管的基区时,光子激发了基区中的电子,使其跃迁到集电区,从而控制集电区的电流。
通过调节光照强度,可以实现对光电三极管的放大倍数的调节。
除了以上所述的光电传感器工作原理,还有其他一些特殊类型的光电传感器,如光电耦合器、光电隔离器等。
它们通过光电效应和光电二极管或者光电三极管的工作原理,实现了光信号的隔离和传输。
总结起来,光电传感器通过感知光的特性,将光信号转化为电信号,从而实现对光的测量和控制。
它的工作原理主要包括光电效应、光电二极管和光电三极管的工作原理。
光电传感器在自动化控制、通信和仪器仪表等领域具有重要的应用价值,为实现智能化和高效化提供了可靠的技术支持。
光电式传感器的工作原理

光电式传感器的工作原理
1.光源:光电式传感器通常使用红外线、激光等辐射源作为光源。
光源会发出一定频率的光信号,这些光信号对于人眼来说是不可见的。
红外线常用于室内和低功耗的应用,而激光则常用于需要高精度和长距离检测的应用。
2.物体:需要检测的物体也是光电式传感器工作的重要组成部分。
物体通常是被检测的目标,它可以反射、散射或吸收光信号,将光信号转换为电信号。
3.光电元件:光电元件是光电式传感器中最核心的部分。
它是将光信号转化为电信号的关键部件。
光电元件通常包括光敏电阻、光敏二极管、光敏三极管、光敏电容等。
其中最常用的是光敏电阻。
首先,光源发出光信号,经过透镜和反射镜的反射,最终照射到物体上。
物体可能会对光信号进行反射、散射或吸收。
当光信号经过物体后,会进入光电元件。
光电元件根据物体的反射、散射或吸收特性,将光信号转换为相应的电信号。
最后,电信号会传输到光电式传感器的电路中进行处理和分析。
根据电信号的变化和特征,我们可以判断物体的位置、速度、颜色等信息。
总结起来,光电式传感器的工作原理是通过光源将光信号照射到物体上,物体将光信号转化为电信号,光电元件将电信号进行处理和分析,从而实现对物体位置、速度、颜色等信息的检测。
光电式传感器在自动化控制和安全监测中有着广泛的应用,为我们的生活带来了便利和安全。
光电传感器工作原理

光电传感器工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于自动化控制、光电测量、光通信等领域。
它通过感知光的强度、颜色、位置等特征,实现对环境的感知和控制。
本文将详细介绍光电传感器的工作原理。
一、光电传感器的分类根据工作原理的不同,光电传感器可以分为光电开关、光电遥感器、光电编码器等多种类型。
其中,光电开关是最常见的一种,它通过感知物体的存在或缺失,实现对设备的控制。
二、光电传感器的工作原理光电传感器的工作原理基于光电效应和光敏元件的特性。
光电效应是指光照射到物质表面时,会引发物质内部电子的运动,产生电信号。
光敏元件是一种能够感受光信号并产生电信号的器件。
光电传感器通常由光源、光敏元件和信号处理电路组成。
光源发出光线,光线经过物体反射或透过后,被光敏元件接收。
光敏元件将光信号转换为电信号,并经过信号处理电路进行放大、滤波等处理,最终输出一个可用的电信号。
三、光电传感器的工作过程1. 光源发射光线:光电传感器中的光源通常是一种发光二极管(LED),它能够发射可见光或红外光线。
光线的发射方式可以是连续发光或脉冲发光。
2. 光线照射到物体表面:光线从光源发出后,照射到待测物体的表面。
物体可以是固体、液体或气体,光线可以被物体反射、吸收或透过。
3. 光线被光敏元件接收:光线经过物体后,被光敏元件接收。
光敏元件通常是一种光敏电阻、光敏二极管或光敏三极管等,它们能够感受到光信号并产生相应的电信号。
4. 信号处理电路处理电信号:光敏元件产生的电信号经过信号处理电路进行放大、滤波等处理,以确保信号的稳定性和可靠性。
5. 输出电信号:经过信号处理后,光电传感器将最终的电信号输出给控制系统或其他设备。
输出的电信号可以是模拟信号或数字信号,根据具体的应用需求而定。
四、光电传感器的应用光电传感器广泛应用于各个领域,如工业自动化、机器人技术、智能交通、医疗设备等。
以下是一些常见的光电传感器应用场景:1. 物体检测:光电开关可以用于检测物体的存在或缺失。
光电传感器的工作原理

光电传感器的工作原理光电传感器是一种能够将光信号转化为电信号的器件,它在现代科技中起着重要的作用。
光电传感器的工作原理是基于光电效应和电子器件原理的。
光电效应是指当光照射到物质表面时,光子能量被物质吸收后,电子从物质的价带跃迁到导带,形成电流的现象。
而光电传感器的关键部件就是光敏元件,它能够将光信号转化为电信号。
光电传感器通常由光敏元件、信号处理电路和输出电路组成。
光敏元件是光电传感器的核心部件,常见的光敏元件有光电二极管、光敏电阻、光电管等。
这些光敏元件在光照射下会产生电流或者电阻的变化,从而实现光信号的转换。
信号处理电路负责对光敏元件输出的电信号进行放大、滤波和处理。
它能够将微弱的光信号转化为可靠的电信号,以便后续的分析和控制。
输出电路将经过信号处理的电信号转化为可用的输出信号。
根据不同的应用需求,输出电路可以是开关型、摹拟型或者数字型。
开关型输出电路通常用于检测物体的存在与否,摹拟型输出电路用于测量光强或者光功率,而数字型输出电路则可以输出数字信号,方便与其他设备进行通信。
光电传感器的工作原理可以通过以下实例进行说明。
假设我们需要设计一个光电传感器用于检测物体的存在与否。
我们可以选择一款光电二极管作为光敏元件,并将其连接到一个信号处理电路和一个开关型输出电路。
当物体挨近光电传感器时,光电二极管会受到物体反射的光照射,产生电流。
这个电流经过信号处理电路放大后,会使得开关型输出电路闭合,输出一个逻辑高电平。
而当物体离开光电传感器时,光电二极管再也不受到光照射,电流减小,开关型输出电路断开,输出一个逻辑低电平。
通过这种方式,我们可以利用光电传感器来检测物体的存在与否。
这种工作原理的光电传感器在工业自动化、机器人技术、安防监控等领域得到了广泛的应用。
总结起来,光电传感器的工作原理是基于光电效应和电子器件原理的。
光敏元件将光信号转化为电信号,信号处理电路对电信号进行处理,输出电路将处理后的信号转化为可用的输出信号。
光电传感器的工作原理

光电传感器的工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于工业自动化、电子设备和光学仪器等领域。
它通过感知光的强度、频率和波长等特性,实现对环境的监测和控制。
下面将详细介绍光电传感器的工作原理。
一、光电传感器的基本组成光电传感器主要由光源、传感器和信号处理器三部份组成。
1. 光源:光源是产生光信号的装置,常见的光源有发光二极管(LED)和激光二极管(LD)等。
光源的选择取决于应用需求,如需要长距离传输信号则选择激光二极管。
2. 传感器:传感器是光电传感器的核心部份,用于感知光信号并将其转换为电信号。
常见的光电传感器有光敏电阻(LDR)、光电二极管(PD)和光电三极管(PT)等。
光敏电阻是一种利用光照强度改变电阻值的元件,光电二极管和光电三极管则是利用光照射后产生电流的元件。
3. 信号处理器:信号处理器用于对传感器输出的电信号进行处理和分析,常见的信号处理器有运算放大器、比较器和模数转换器等。
信号处理器可以根据应用需求对信号进行放大、滤波、计数等处理,以获得更准确的结果。
二、光电传感器的工作原理光电传感器的工作原理基于光的电磁性质和光与物质的相互作用。
1. 光的电磁性质:光是一种电磁波,具有波粒二象性。
在光电传感器中,光被看做是由光子组成的粒子流,它具有能量和动量。
2. 光与物质的相互作用:光与物质相互作用时,会发生吸收、散射、透射和反射等现象。
光电传感器利用物质对光的吸收、散射和反射等特性,来感知环境的光信号。
光电传感器的工作过程如下:1. 光源发出光信号,光信号经过透镜等光学元件聚焦后照射到被测物体上。
2. 被测物体对光信号产生吸收、散射或者反射等作用,改变光信号的特性。
3. 光信号经过传感器感知元件的作用,转换为电信号。
4. 传感器输出的电信号经过信号处理器进行放大、滤波和分析等处理。
5. 处理后的电信号被转换为数字信号,通过数字接口传输给其他设备,如计算机或者控制器。
三、光电传感器的应用领域光电传感器由于其快速、精确、可靠的特点,在许多领域得到广泛应用。
光电传感器工作原理

光电传感器工作原理光电传感器是一种能够将光信号转化为电信号的装置,它在许多领域中被广泛应用,例如自动化控制、光学通信、医疗诊断等。
本文将详细介绍光电传感器的工作原理及其相关知识。
一、光电传感器的分类光电传感器根据其工作原理和应用领域的不同,可以分为多种类型,常见的有光电二极管(Photodiode)、光敏电阻(Photoresistor)、光电三极管(Phototransistor)、光电开关(Photoelectric Switch)等。
二、光电传感器的工作原理光电传感器的工作原理基于光电效应,即光能转化为电能的现象。
不同类型的光电传感器采用不同的光电效应实现光信号到电信号的转换。
1. 光电二极管(Photodiode)光电二极管是一种半导体器件,其工作原理基于内部PN结的光电效应。
当光线照射到PN结时,光子的能量会激发电子从价带跃迁到导带,产生电流。
光电二极管常用于光电测量、光通信等领域。
2. 光敏电阻(Photoresistor)光敏电阻是一种电阻值随光照强度变化的器件,其工作原理基于光敏材料的电阻特性。
当光线照射到光敏电阻上时,光敏材料的电阻值会发生变化,从而改变电路的电流或者电压。
光敏电阻常用于光照控制、光强测量等应用。
3. 光电三极管(Phototransistor)光电三极管是一种具有放大功能的光电器件,其工作原理基于光电二极管和晶体管的结合。
当光线照射到光电三极管的基极-发射极结上时,光电效应会引起电流的变化,从而控制晶体管的放大效果。
光电三极管常用于光电测量、光电开关等应用。
4. 光电开关(Photoelectric Switch)光电开关是一种能够通过光信号控制开关状态的装置,其工作原理基于光电二极管或者光电三极管的光电效应。
当光线照射到光电开关的光敏元件上时,光电效应会触发开关的状态变化,从而实现开关的控制。
光电开关常用于自动化控制、物体检测等领域。
三、光电传感器的应用光电传感器在各个领域中具有广泛的应用,以下列举几个常见的应用领域:1. 自动化控制光电传感器在自动化控制系统中被广泛应用,用于检测物体的位置、速度、颜色等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电传感器工作原理本文来源网络光电传感器工作原理光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。
光电传感器在一般情况下,有三部分构成它们分为:发送器、接收器和检测电路。
发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。
光束不间断地发射,或者改变脉冲宽度。
接收器有光电二极管、光电三极管、光电池组成。
在接收器的前面,装有光学元件如透镜和光圈等。
在其后面是检测电路,它能滤出有效信号和应用该信号。
此外,光电开关的结构元件中还有发射板和光导纤维。
三角反射板是结构牢固的发射装置。
它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。
它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。
分类和工作方式⑴槽型光电传感器把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。
发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。
但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。
输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。
槽形开关的检测距离因为受整体结构的限制一般只有几厘米。
⑵对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。
由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。
它的检测距离可达几米乃至几十米。
使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。
⑶反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。
正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。
正常情况下发光器发出的光收光器是找不到的。
当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号。
关键词:光电开关光电传感器光电式接近开关光电式传感器红外线光电开关红外线开关红外线光电传感器对射式光电开关对射式光电传感器反射式光电开关反射式光电传感器漫反射光电开关漫反射光电传感器光电式传感器光电传感器是采用光电元件作为检测元件的传感器.它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号.光电传感器一般由光源,光学通路和光电元件三部分组成.光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛.由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器.模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系.模拟式光电传感器按被测量(检测目标物体)方法可分为透射(吸收)式,漫反射式,遮光式(光束阻档)三大类.所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上;所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上;所谓遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关.7.1 概述光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化.早期的用来检测物体有无的光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上.在金属圆筒内有一个小的白炽灯作为光源.这些小而坚固的白炽灯传感器就是今天光电传感器的雏形.LED(发光二极管)最早出现在19世纪60年代,现在我们可以经常在电气和电子设备上看到这些二极管作为指示灯来用.LED就是一种半导体元件,其电气性能与普通二极管相同,不同之处在于当给LED通电流时,它会发光.由于LED是固态的,所以它能延长传感器的使用寿命.因而使用LED的光电传感器能被做得更小,且比白炽灯传感器更可靠.不像白炽灯那样,LED抗震动抗冲击,并且没有灯丝.另外,LED所发出的光能只相当于同尺寸白炽灯所产生光能的一部分.(激光二极管除外,它与普通LED的原理相同,但能产生几倍的光能,并能达到更远的检测距离).LED能发射人眼看不到的红外光,也能发射可见的绿光,黄光,红光,蓝光,蓝绿光或白光.1970年,人们发现LED还有一个比寿命长更好的优点,就是它能够以非常快的速度来开关,开关速度可达到KHz.将接收器的放大器调制到发射器的调制频率,那么它就只能对以此频率振动的光信号进行放大.我们可以将光波的调制比喻成无线电波的传送和接收.将收音机调到某台,就可以忽略其他的无线电波信号.经过调制的LED发射器就类似于无线电波发射器,其接收器就相当于收音机.人们常常有一个误解:认为由于红外光LED发出的红外光是看不到的,那么红外光的能量肯定会很强.经过调制的光电传感器的能量的大小与LED光波的波长无太大关系.一个LED发出的光能很少,经过调制才将其变得能量很高.一个未经调制的传感器只有通过使用长焦距镜头的机械屏蔽手段,使接收器只能接收到发射器发出的光,才能使其能量变得很高.相比之下,经过调制的接收器能忽略周围的光,只对自己的光或具有相同调制频率的光做出响应.未经调制的传感器用来检测周围的光线或红外光的辐射,如刚出炉的红热瓶子,在这种应用场合如果使用其它的传感器,可能会有误动作.如果一个金属发射出的光比周围的光强很多的话,那么它就可以被周围光源接收器可靠检测到.周围光源接收器也可以用来检测室外光.但是并不是说经调制的传感器就一定不受周围光的干扰,当使用在强光环境下时就会有问题.例如,未经过调制的光电传感器,当把它直接指向阳光时,它能正常动作.我们每个人都知道,用一块有放大作用的玻璃将阳光聚集在一张纸上时,很容易就会把纸点燃.设想将玻璃替换成传感器的镜头,将纸替换成光电三极管,这样我们就很容易理解为什么将调制的接收器指向阳光时它就不能工作了,这是周围光源使其饱和了.调制的LED改进了光电传感器的设计,增大了检测距离,扩展了光束的角度,人们逐渐接受了这种可靠易于对准的光束.到1980年,非调制的光电传感器逐步就退出了历史舞台.红外光LED是效率最高的光束,同时也是在光谱上与光电三极管最匹配的光束.但是有些传感器需要用来区分颜色(如色标检测),这就需要用可见光源.在早期,色标传感器使用白炽灯做光源,使用光电池接收器,直到后来发明了高效的可见光LED.现在,多数的色标传感器都是使用经调制的各种颜色的可见光LED发射器.经调制的传感器往往牺牲了响应速度以获取更长的检测距离,这是因为检测距离是一个非常重要的参数.未经调制的传感器可以用来检测小的物体或动作非常快的物体,这些场合要求的响应速度都非常快.但是,现在高速的调制传感器也可以提供非常快的响应速度,能满足大多数的检测应用.安装空间非常有限或使用环境非常恶劣的情况下,我们可以考虑使用光纤.光纤与传感器配套使用,是无源元件,另外,光纤不受任何电磁信号的干扰,并且能使传感器的电子元件与其他电的干扰相隔离.光纤有一根塑料光芯或玻璃光芯,光芯外面包一层金属外皮.这层金属外皮的密度比光芯要低,因而折射率低.光束照在这两种材料的边界处(入射角在一定范围内,),被全部反射回来.根据光学原理,所有光束都可以由光纤来传输.两条入射光束(入射角在接受角以内)沿光纤长度方向经多次反射后,从另一端射出.另一条入射角超出接受角范围的入射光,损失在金属外皮内.这个接受角比两倍的最大入射角略大,这是因为光纤在从空气射入密度较大的光纤材料中时会有轻微的折射.光在光纤内部的传输不受光纤是否弯曲的影响(弯曲半径要大于最小弯曲半径).大多数光纤是可弯曲的,很容易安装在狭小的空间.玻璃光纤由一束非常细(直径约50μm)的玻璃纤维丝组成.典型的光缆由几百根单独的带金属外皮玻璃光纤组成,光缆外部有一层护套保护.光缆的端部有各种尺寸和外形,并且浇注了坚固的透明树脂.检测面经过光学打磨,非常平滑.这道精心的打磨工艺能显著提高光纤束之间的光耦合效率.玻璃光纤内的光纤束可以是紧凑布置的,也可随意布置.紧凑布置的玻璃光纤通常用在医疗设备或管道镜上.每一根光纤从一端到另一端都需要精心布置,这样才能在另一端得到非常清晰的图像.由于这种光纤费用非常昂贵并且多数的光纤应用场合并不需要得到一个非常清晰的图像,所以多数的玻璃光纤其光纤束是随意布置的,这种光纤就非常便宜了,当然其所得到的图像也只是一些光.玻璃光纤外部的保护层通常是柔性的不锈钢护套,也有的是PVC或其他柔性塑料材料.有些特殊的光纤可用于特殊的空间或环境,其检测头做成不同的形状以适用于不同的检测要求.玻璃光纤坚固并且性能可靠,可使用在高温和有化学成分的环境中,它可以传输可见光和红外光.常见的问题就是由于经常弯曲或弯曲半径过小而导致玻璃丝折断,对于这种应用场合,我们推荐使用塑料光纤.塑料光纤由单根的光纤束(典型光束直径为0.25到1.5mm)构成,通常有PVC外皮.它能安装在狭小的空间并且能弯成很小的角度.多数的塑料光纤其检测头都做成探针形或带螺纹的圆柱形,另一端未做加工以方便客户根据使用将其剪短.不像玻璃光纤,塑料光纤具有较高的柔性,带防护外皮的塑料光纤适于安装在往复运动的机械结构上.塑料光纤吸收一定波长的光波,包括红外光,因而塑料光纤只能传输可见光.对射式和直反式光纤玻璃光纤和塑料光纤既有"单根的"-对射式,也有"分叉的"-直反式.单根光纤可以将光从发射器传输到检测区域,或从检测区域传输到接收器.分叉式的光纤有两个明显的分支,可分别传输发射光和接收光,使传感器既可以通过一个分支将发射光传输到检测区域,同时又通过另一个分支将反射光传输回接收器由于光纤受使用环境影响小并且抗电磁干扰,因而能被用在一些特殊的场合,如:适用于真空环境下的真空传导光纤(VFT)和适用于爆炸环境下的光纤.7.2 光电元件光电元件是光电传感器中最重要的部件,常见的有真空光电元件和半导体光电元件两大类.它们的工作原理都基于不同形式的光电效应.根据光的波粒二像性,我们可以认为光是一种以光速运动的粒子流,这种粒子称为光子.每个光子具有的能量为(7.1)式中,为光波频率;h为普朗克常数,h=6.63对不同频率的光,其光子能量是不相同的,光波频率越高,光子能量越大.用光照射某一物体,可以看作是一连串能量为Au的光子轰击在这个物体上,此时光子能量就传递给电子,并且是一个光子的全部能量一次性地被一个电子所吸收,电子得到光子传递的能量后其状态就会发生变化,从而使受光照射的物体产生相应的电效应,我们把这种物理现象称为光电效应.通常把光电效应分为三类:1)在光线作用下能使电子逸出物体表面的现象称为外光电效应,基于外光电效应的光电元件有光电管,光电倍增管等.2)在光线作用下能使物体的电阻率改变的现象称为内光电效应.基于内光电效应的光电元件有光敏电阻,光敏晶体管等.3)在光线作用下,物体产生一定方向电动势的现象称为光生伏特效应,基于光生伏特效应的光电元件有光电池等.7.2.1 外光电效应器件7.2.1.1 工作原理光电管是利用外光电效应制成的光电元件,其外形和结构如图7.2.1所示,半圆筒形金属片制成的阴极K和位于阴极轴心的金属丝制成的阳极A封装在抽成真空的玻壳内,当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,从而使自由电子的能量增加h.当电子获得的能量大于阴极材料的逸出功A时,它就可以克服金属表面束缚而逸出,形成电子发射.这种电子称为光电子,光电子逸出金属表面后的初始动能为(1/2)m.根据能量守恒定律有(7.2)式中,m为电子质量;为电子逸出的初速度.由上式可知,要使光电子逸出阴极表面的必要条件是h>A.由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称为"红限".相应的波长λK为(7.3)式中,c为光速;A为逸出功.光电管正常工作时,阳极电位高于阴极,如图7.2.2所示.在人射光频率大于"红限"的前提下,从阴极表面逸出的光电子被具有正电位的阳极所吸引,在光电管内形成空间电子流,称为光电流.此时若光强增大,轰击阴极的光子数增多,单位时间内发射的光电子数也就增多,光电流变大.在图7.2.2所示的电路中,电流IФ和电阻只RL上的电压降U0就和光强成函数关系,从而实现光电转换.图7.2.1 光电管结构示意图图7.2.2 光电管测量电路图阴极材料不同的光电管,具有不同的红限,因此适用于不同的光谱范围.此外,即使入射光的频率大于红限,并保持其强度不变,但阴极发射的光电子数量还会随入射光频率的变化而改变,即同一种光电管对不同频率的入射光灵敏度并不相同.光电管的这种光谱特性,要求人们应当根据检测对象是紫外光,可见光还是红外光去选择阴极材料不同的光电管,以便获得满意的灵敏度.由于真空光电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管.图7.2.3是光电倍增管结构示意图.光电倍增管主要由光阴极K,倍增极D和阳极A组成,并根据要求采用不同性能的玻璃壳进行真空封装.依据分装方法,可分成端窗式和侧窗式两大类.端窗式光电倍增管的阴极通常为透射式阴极,通过管壳的端面接受入射光.侧窗式阴极则是通过管壳的侧面接收入射光,它的阴极通常为反射式阴极.图7.2.3 光电倍增管结构示意图光阴极的量子效率是一个重要的参数.波长为λ的光辐射入射到光阴极时,一个入射光子产生的光电子数,定义为光阴极的量子效率.光阴极有很多种,常用的有双碱,S11及S20三种.光阴极通常由脱出功较小的锑铯或钠钾锑铯的薄膜组成,光阴极接负高压,各倍增极的加速电压由直流高压电源经分压电阻分压供给,灵敏检流计或负载电阻接在阳极A处,当有光子入射到光阴极K上,只要光子的能量大于光阴极材料的脱出功,就会有电子从阴极的表面逸出而成为光电子.在K和D1之间的电场作用下,光电子被加速后轰击第一倍增极D1,从而使D1产生二次电子发射.每一个电子的轰击约可产生3~5个二次电子,这样就实现了电子数目的放大.D1产生的二次电子被D2和D1之间的电场加速后轰击D2,…….这样的过程一直持续到最后一级倍增极Dn,每经过一级倍增极,电子数目便被放大一次,倍增极的数目有8~13个,最后一级倍增极Dn发射的二次电子被阳极A收集.若倍增电极有n级,各级的倍增率为б,则光电倍增管的倍增率可以认为是бn,因此,光电倍增管有极高的灵敏度.在输出电流小于1mA的情况下,它的光电特性在很宽的范围内具有良好的线性关系.光电倍增管的这个特点,使它多用于微光测量.若将灵敏检流计串接在阳极回路中,则可直接测量阳极输出电流.若在阳极串接电阻RL作为负载,则可测量RL两端的电压,此电压正比于阳极电流.图7.2.4 光电倍增管的基本电路图7.2.5 光敏电阻结构示意图及符号图7.2.4所示为光电倍增管的基本电路.各倍增极的电压是用分压电阻R1,R2,……Rn获得的,阳极电流流经负载电阻RL得到输出电压U0.当用于测量稳定的辐射通量时,图中虚线连接的电容C1,C2,…,Cn和输出隔离电容C0都可以省去.这时电路往往将电源正端接地,并且输出可以直接与放大器输入端连接,从而使它能够响应变化缓慢的入射光通量.但当入射光通量为脉冲通量时,则应将电源的负端接地,因为光电倍增管的阴极接地比阳极接地有更低的噪声,此时输出端应接人隔离电容,同时各倍增极的并联电容亦应接人,以稳定脉冲工作时的各级工作电压,稳定增益并防止饱和.7.2.1.2 与测量有关的两个参数(1) 暗电流光电倍增管接上工作电压后,在没有光照的情况下阳极仍会有一个很小的电流输出,此电流即称为暗电流.光电倍增管在工作时,其阳极输出电流由暗电流和信号电流两部分组成.当信号电流比较大时,暗电流的影响可以忽略,但是当光信号非常弱,以至于阳极信号电流很小甚至和暗电流在同一数量级时,暗电流将严重影响对光信号测量的准确性.所以暗电流的存在决定了光电倍增管可测量光信号的最小值.一只好的光电倍增管,要求其暗电流小并且稳定.(2) 光谱响应特征光电倍增管对不同波长的光入射的响应能力是不相同的,这一特性可用光谱响应率表示.在给定波长的单位辐射功率照射下所产生的阳极电流大小称为光电倍增管的绝对光谱响应率,表示为(7.4)式中,P(λ)为入射到光阴极上的单色辐射功率;I(λ)是在该辐射功率照射下所产生的阳极电流;S(λ)是波长的函数,它与波长的关系曲线称为光电倍增管的绝对光谱响应曲线.测量S(λ)十分复杂,因此在一般测量中都是测量它的相对值.为此,可以把S(λ)中的最大值当作一个单位对所有S(λ)值进行归一化,这时就得到(7.5)s(λ)称为光电倍增管的相对光谱响应率,它与波长的关系曲线称为光电倍增管的相对光谱响应曲线.s(λ)≤1,是一个无量纲的量,只表示光电倍增管的光谱响应特征.7.2.2 内光电效应器件7.2.2.1 工作原理光敏电阻是一种光电效应半导体器件,应用于光存在与否的感应(数字量)以及光强度的测量(模拟量)等领域.它的体电阻系数随照明强度的增强而减小,容许更多的光电流流过.这种阻性特征使得它具有很好的品质:通过调节供应电源就可以从探测器上获得信号流,且有着很宽的范围.光敏电阻是薄膜元件,它是由在陶瓷底衬上覆一层光电半导体材料.金属接触点盖在光电半导体面下部.这种光电半导体材料薄膜元件有很高的电阻.所以在两个接触点之间,做的狭小,交叉,使得在适度的光线时产生较低的阻值.光敏电阻的检测:A 用一黑纸片将光敏电阻的透光窗口遮住,此时万用表的指针基本保持不动,阻值接近无穷大.此值越大说明光敏电阻性能越好.若此值很小或接近为零,说明光敏电阻已烧穿损坏,不能再继续使用.B 将一光源对准光敏电阻的透光窗口,此时万用表的指针应有较大幅度的摆动,阻值明显减小,此值越小说明光敏电阻性能越好.若此值很大甚至无穷大,表明光敏电阻内部电路损坏,也不能再继续使用.C 将光敏电阻透光窗口对准入射光线,用小黑纸片在光敏电阻的遮光窗上部晃动,使其间断受光,此时万用表指针应随黑纸片的晃动而左右摆动.如果万用表指针始终停在某一位置不随纸片晃动而摆动,说明光敏电阻的光敏材料已经损坏.光敏晶体管通常指光敏二极管和光敏三极管,它们的工作原理也是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程.光敏二极管的结构和普通二极管相似,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,图7.2.6a是其结构示意图.光敏二极管在电路中通常处于反向偏置状态,如图7.2.6b所示. 我们知道,PN结加反向电压时,反向电流的大小取决于P区和N区中少数载流子的浓度,无光照时P区中少数载流子(电子)和N区中的少数载流子(空穴)都很少,因此反向电流很小.但是当光照PN结时,只要光子能量h大于材料的禁带宽度,就会在PN结及其附近产生光生电子.空穴对,从而使P区和N区少数载流子浓度大大增加,它们在外加反向电压和PN结内电场作用下定向运动,分别在两个方向上渡越PN结,使反向电流明显增大.如果入射光的照度变化,光生电子.空穴对的浓度将相应变动,通过外电路的光电流强度也会随之变动,光敏二极管就把光信号转换成了电信号.图7.2.6 光敏二极管图7.2.7 光敏三极管光敏三极管有两个PN结,因而可以获得电流增益,它比光敏二极管具有更高的灵敏度.其结构如图7.2.7a所示.当光敏三极管按图7.2.7b所示的电路连接时,它的集电结反向偏置,发射结正向偏置.无光照时仅有很小的穿透电流流过,当光线通过透明窗口照射集电结时,和光敏二极管的情况相似,将使流过集电结的反向电流增大,这就造成基区中正电荷的空穴的积累,发射区中的多数载流子(电子)将大量注人基区,由于基区很薄,只有一小部分从发射区注入的电子与基区的空穴复合,而大部分电子将穿过基区流向与电源正极相接的集电极,形成集电极电流IC.这个过程与普通三极管的电流放大作用相似,它使集电极电流IC是原始光电流的(l+β)倍.这样集电极电流IC将随入射光照度的改变而更加明显地变化.7.2.2.2 基本特性1)光谱特性在入射光照度一定时,光敏晶体管的相对灵敏度随光波波长的变化而变化,一种光敏晶体管只对一定波长范围的人射光敏感,这就是光敏晶体管的光谱特性,见图7.2.8.由曲线可以看出,当入射光波长增加时,相对灵敏度要下降,这是因为光子能量太小,不足以激发电子—空穴对.当人射光波长太短时,光波穿透能力下降,光子只在半导体表面附近激发电子—空穴对,却不能达到PN结,因此相对灵敏度也下降.从曲线还可以看出,不同材料的光敏晶体管,光谱峰值波长不同.硅管的峰值波长为0.9μm左右,锗管的峰值波长为1.5μm左右.由于锗管的暗电流比硅管大,因此锗管性能较差.因此在探测可见光或赤热物体时,多采用硅管.但对红外光进行探测时,采用锗管较为合适.2)伏安特性光敏三极管在不同照度下的伏安特性,就象普通三极管在不同基极电流下的输出特性一样,如图7.2.9所示.在这里改变光照就相当于改变一般三极管的基极电流,从而得到这样一簇曲线.3)光电特性它指外加偏置电压一定时,光敏晶体管的输出电流和光照度的关系.一般说来,光敏二极管光电特性的线性较好,而光敏三极管在照度小时,光电流随照度增加较小,并且在光照足够大时,输出电流有饱和现象.这是由于光敏三极管的电流放大倍数在小电流和大电流时都下降的缘故.4)温度特性温度的变化对光敏晶体管的亮电流影响较小,但是对暗电流的影响却十分显著,如图7.2.10所示.因此,光敏晶体管在高照度下工作时,由于亮电流比暗电流大得多,温度的影响相对来说比较小.但在低照度下工作时,因为亮电流较小,暗电流随温度变化就会严重影响输出信号的温度稳定性.在这种情况下,应当选用硅光敏管,这是因为硅管的暗电流要比锗管小几个数量级.同时还可以在电路中采取适当的温度补偿措施,或者将光信号进行调制,对输出的电信号采用交流放大,利用电路中隔直电容的作用,就可以隔断暗电流,消除温度的影响.。