二次根式知识点归纳

合集下载

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。

以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。

•平方性:对于任何非负实数a,(√a)2=a。

•唯一性:每个非负实数都有唯一的平方根。

2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。

下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。

•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。

•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。

•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。

3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。

以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。

•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。

•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。

•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。

4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。

以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。

•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。

5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。

以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结二次根式是数学中的一种常见的根式表达式,它可以表示为$\sqrt{a}$ 的形式,其中 $a$ 是一个非负实数。

在学习二次根式时,常常会涉及到以下几个方面的知识点。

一、二次根式的性质:1. 非负性:对于任何非负实数 $a$,二次根式 $\sqrt{a}$ 都是非负实数。

2. 平方性:相对应的,对于任何非负实数 $a$,二次根式$\sqrt{a}$ 的平方等于 $a$,即 $(\sqrt{a})^2=a$。

3. 两个二次根式可以相等:如果两个二次根式 $\sqrt{a}$ 和$\sqrt{b}$ 相等,那么 $a$ 和 $b$ 必须相等,即$\sqrt{a}=\sqrt{b}$ 可推出 $a=b$。

二、二次根式的运算:1. 加减运算:两个二次根式可以进行加减运算,只要它们的被开方数相同即可。

即 $\sqrt{a} \pm \sqrt{b}=\sqrt{a \pm b}$。

2. 乘法运算:两个二次根式相乘,可以将它们的被开方数相乘并开方。

即 $\sqrt{a} \cdot \sqrt{b}=\sqrt{ab}$。

3. 除法运算:两个二次根式相除,可以将它们的被开方数相除并开方。

即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$。

4. 有理化分母:当二次根式的分母不含二次根式时,可以通过有理化分母的方法将其转化为含有二次根式的形式。

有理化分母的基本方法是将分母有理化,即乘以一个适当的形式为 $\sqrt{x}$ 的分子与分母相等的有理数,从而使得分母成为没有二次根式的有理数。

三、二次根式的化简:1.合并同类项:当二次根式相加或相减时,可以合并同类项,即将其中具有相同被开方数的二次根式相加或相减,并保持其他二次根式不变。

2.分解因式:当一个二次根式的被开方数可以分解成互质因子的乘积时,可以利用分解因式的方法进行化简。

3.化简根式:当二次根式的被开方数可以开方时,可以进行化简,即将其转化为整数、分数或者更简单的二次根式的形式。

二次根式的知识点汇总

二次根式的知识点汇总

二次根式的知识点汇总知识点一:二次根式的概念形如仁.)的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以匚二丨是仁为二次根式的前提条件,如门,∖i ' ,等是二次根式,而辰,y∣-x-l等都不是二次根知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≥0时,二;有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a< 0时,仁没有意义。

知识点三:二次根式化I)的非负性仁(匚二I)表示a的算术平方根,也就是说,仁(匚二I )是一个非负数,即仁二O ( = _ I )。

注:因为二次根式仁(「:_ .∣)表示a的算术平方根,而正数的算术平方根是正数,O的算术平方根是0,所以非负数(「:_.)的算术平方根是非负数,即■'-:上0^|),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若丄V ,则a=0,b=0 ;若S L' '■;" r,贝Ua=0,b=0 ;若-Jl-■- ÷∙-' :J I,则a=0,b=0。

知识点四:二次根式(仁)*的性质文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

知识点五:二次根式的性质知识点六:V:'1与「的异同点1、不同点:与= 表示的意义是不同的,表示一个正数a的算术平方根的平方,而二表示一个实数a的平方的算术平方根;在'x-1''中匸二1,而中a可以是正实数,0,负实数。

但\-.:|;'与都是非负数,即J";」," H。

因而它的运算的结果是有差别的■山,2、相同点:当被开方数都是非负数,即一丨时,■」£「;时,A「无意义,而=-■.知识点七:二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面•(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算•【例题精选】二次根式有意义的条件:例1:求下列各式有意义的所有X的取值范围O 3 - 2x;2)x T;⑶____ 3解:(1)要使∙∙3-2X有意义,必须3-2x_ 0,由3-2x_0得x_?, .当X空?时,,ab =、. a ∙ b (a≥0 b≥0 ;式子..、3-2X在实数范围内有意义。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

数学中的二次根式知识点

数学中的二次根式知识点

数学中的二次根式知识点一、定义与性质二次根式是指具有以下形式的数:√a,其中a为非负实数。

其中,√a被称为二次根式的根号形式,a被称为二次根式的被开方数。

二次根式的一些重要性质如下:1. 非负性质:对于任意非负实数a和b,如果a<b,则√a<√b。

2. 非负完全平方值:对于任意非负实数a,若存在非负实数b满足b^2=a,则称b为a的平方根,记作√a=b。

3. 非负根式相等:对于任意非负实数a和b,如果a≥0,b≥0且√a=√b,则a=b。

4. 非负根式与绝对值:对于任意实数a,有√(a^2)=|a|。

二、化简与运算1. 化简(1)合并同类项:对于形如√a±√b的二次根式,可以根据运算规则合并同类项。

(2)有理化分母:对于形如1/√a的二次根式,可以通过有理化分母的方法,将分母中的二次根式消去。

(3)去除分母内的二次根式:对于形如a/√b的二次根式,可以通过有理化分母的方法,去除分母内的二次根式。

2. 运算(1)加减运算:对于形如√a±√b的二次根式,可以根据运算规则进行加减运算。

(2)乘法运算:对于形如√a*√b的二次根式,可以根据运算规则进行乘法运算。

(3)除法运算:对于形如√a/√b的二次根式,可以根据运算规则进行除法运算。

(4)幂运算:对于形如(√a)^n的二次根式,可以根据运算规则进行幂运算。

三、应用与解题思路1. 求解二次根式的值:根据给定的被开方数,利用二次根式的定义和运算规则,可以求解二次根式的值。

2. 化简二次根式:根据给定的二次根式,利用化简的方法,将其化简为最简形式,以便于进行运算或比较大小。

3. 比较大小:根据二次根式的性质,可以通过比较被开方数的大小,来比较二次根式的大小关系。

4. 解方程与不等式:在数学中的各种问题中,经常会涉及到二次根式的方程或不等式,可以利用二次根式的性质以及运算规则,对方程或不等式进行求解。

综上所述,二次根式是数学中重要的知识点之一。

二次根式知识点归纳

二次根式知识点归纳

二次根式知识点归纳二次根式是数学中的一个重要概念,也是我们在中学阶段学习的数学知识之一、学好二次根式的知识,不仅可以提高我们的数学实力,还能够帮助我们更好地理解和应用数学。

下面是对二次根式的知识点进行归纳总结。

一、二次根式的定义与性质1.二次根式的定义:如果一个数x的平方等于一个有理数a,那么称x是a的二次根,记作√a=x。

其中,a是被开方数,x是二次根。

2.二次根式的性质:二次根式具有以下基本性质:-非负性:对于所有的a≥0,√a≥0。

-唯一性:对于任意一个正数a,二次根√a是唯一确定的。

-传递性:对于任意的a≥0和b≥0,如果√a=√b,那么a=b。

-加减性:对于任意的a≥0和b≥0,有√a±√b=√(a±b)。

-乘除性:对于任意的a≥0和b≥0,有√(a×b)=√a×√b,√(a/b)=√a/√b(其中,b不为零)。

二、二次根式的化简1.因式分解法:将二次根式的被开方数进行因式分解,然后利用乘除性质化简。

2.合并同类项法:将二次根式中相同的根号项合并,然后根据加减性质化简。

三、二次根式的比较大小1.当被开方数相同时,二次根式相等,即√a=√b,当且仅当a=b。

2.当被开方数不同时,可以通过平方的方式来比较大小。

即对于a≥b≥0,有√a≥√b。

四、二次根式的运算1.加减运算:对于任意的a≥0和b≥0,可以进行二次根式的加减运算。

-加法:√a+√b=√(a+b)。

-减法:√a-√b=√(a-b)(需要满足a≥b)。

2.乘法运算:对于任意的a≥0和b≥0,可以进行二次根式的乘法运算。

-乘法:√a×√b=√(a×b)。

3.除法运算:对于任意的a≥0和b>0,可以进行二次根式的除法运算。

-除法:√a/√b=√(a/b)(需要满足b≠0)。

五、二次根式的应用二次根式在实际问题中的应用非常广泛1.几何问题:二次根式可以用来表示长度、面积、体积等物理量,例如计算一个正方形的对角线长度、一个圆的半径等等。

二次根式的知识点归纳

二次根式的知识点归纳

二次根式的知识点归纳
二次根式的知识点主要有以下几点:
1、定义:二次根式是一种特殊的多项式,其定义为ax²+bx+c=0,其中a≠0。

2、判断:二次根式可以通过相应的判断条件来判断是否有解,即判断b²-4ac的值是否大于等于0,若大于等于0,则表明此二次方程有解;若小于0,则表明此二次方程无解。

3、解法:当判断出此二次方程有解时,可以使用相应的解法来求解,如利用一元二次方程的判别式求解法、利用一元二次方程的因式分解法等。

4、应用:二次根式在数学中有广泛的应用,如根据二次函数的性质,可以用来求解相关问题;又如可以利用它来求解最佳拟合方程等。

二次根式的知识点的总结

二次根式的知识点的总结

二次根式的知识点的总结二次根式是高中数学中重要的一个内容,也是学习代数的基础。

在学习二次根式时,需要了解其定义、性质、运算法则等知识点。

下面是对二次根式知识的总结:一、二次根式的定义和性质:1. 定义:对于非负实数a,b,如果存在非负实数x使得$x^2=a$,则称x为a的平方根,记作$x=\sqrt{a}$。

简记作$\sqrt{a}$,a称为二次根式的被开方数。

2.性质:(1)非负实数的平方根是唯一的。

即对于非负实数a,其平方根也是非负实数且唯一(2)非负实数a的平方根如果记作±$\sqrt{a}$,则规定非负实数a的平方根仅指称为非负实数$\sqrt{a}$。

(3)非负实数a的平方根的平方等于a。

即$(\sqrt{a})^2=a$。

(4)非负实数的平方根存在且非负。

即对于非负实数a,总是存在非负实数x使得$x^2=a$,且x唯一(5)相等的二次根式具有相等的平方根。

即如果$\sqrt{a}=\sqrt{b}$,则有a=b。

(6)平方根的运算:$\sqrt{ab}=\sqrt{a}\sqrt{b}$、$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。

二、二次根式的化简:1. 因式分解法:将二次根式的被开方数进行因式分解,然后利用性质$\sqrt{ab}=\sqrt{a}\sqrt{b}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$对二次根式进行简化,最后利用性质$\sqrt{a^2}=,a,$化简。

2. 合并同类项法:对于同根号的二次根式,可以合并同类项进行简化。

如$\sqrt{2}+\sqrt{3}+\sqrt{2}=\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{2}+\sqrt{3}$。

3.有理化法:对于含有分母的二次根式,可以通过有理化的方法将其化简为一个无理数。

三、二次根式的比大小:1. 利用性质$\sqrt{a^2}=,a,$,我们可以对二次根式的大小进行比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式知识点归纳定义:一般的,式子a(a≥0)叫做二次根式。

其中“”叫做二次根号,二次根号下的a叫做被开方数。

性质:1、a(a≥0)是一个非负数.即a≥02、2a=│a│即a≥0,等于a;a<0,等于-a3、4、a·b=ab.(a≥0,b≥0)反过来: ab=a·b(a≥0,b≥0)5、ab=ab(a≥0,b>0)反过来,ab=ab(a≥0,b>0)6、最简二次根式:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.7、同类二次根式:几个二次根次化成最简二次根式以后如果被开数相同,这几个二次根式就叫做同类二次根式8、数的平方根与二次根式的区别:①4的平方根为±2,算术平方根为2;②4=2,二次根式即是算术平方根9、二次根式化运算及化简:①先化成最简②合并同类项二次根式中考试题精选一.选择题:(a)2=a(a≥0)1.【05宜昌】化简20的结果是 ( ).A. 25B.52C. 210.D.54 2.【05南京】9的算术平方根是 ( ).A.-3B.3C.± 3D.813.【05南通】已知2x <,则化简244x x -+的结果是( ).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是( ).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D .2832+= 5.【05无锡】下列各式中,与y x 2是同类项的是( )A 、2xyB 、2xyC 、-y x 2D 、223y x 6.【05武汉】若a ≤1,则化简后为( ).A.B.C.D.7.【05绵阳】化简52-时,甲的解法是:52-=3(52)(52)(52)+-+=52,乙的解法是:52-(52)(52)52+--52,以下判断正确的是( ).A. 甲的解法正确,乙的解法不正确B. 甲的解法不正确,乙的解法正确C. 甲、乙的解法都正确D. 甲、乙的解法都不正确8.【05杭州】设32,23,52a b c ==-=,则,,a b c 的大小关系是: ( ).(A)a b c >> (B)a c b >> (C)c b a >> (D)b c a >> 9.【05丰台】4的平方根是( ). A. 8B. 2C. ±2D. ±210.【05北京】下列根式中,与3是同类二次根式的是( ).A.24B.12C.32D.1811.【05南平】下列各组数中,相等的是( ).A.(-1)3和1 B.(-1)2和-1 C.|-1|和-1 2(1)- 112.【05宁德】下列计算正确的是( ).A 、x 2·x 3=x 6B 、(2a 3)2=4a 6C 、(a -1)2=a 2-1 D 、 4 =±2 13.【05毕节2(3)a -―a 的正整数a 的值有( ).A .1个B .2个C .3个D .4个14.【05黄岗】已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ).A .3B .– 3C .1D .– 115.【05湘潭】下列算式中,你认为错误的是 ( ). A .aa b++b a b+=1 B .1÷ba×a b=1 C D .21()a b +·22a b a b --=1a b+二、填空题1.【05连云港】计算:)13)(13(-+= .2.【05南京】10在两个连续整数a 和b 之间,a<10<b, 那么a , b 的值分别是 。

3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0= .6.【05南平= .7.【05漳州,2,,…, (第n 个数). 8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是 . 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab = . 10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝 块,这个大正方体的棱长为 .(不计损耗) 11.【05黄岗】立方等于– 64的数是 。

12.【05梅山】计算:2= . 13.【05湘潭】计算:+―= .三、解答题1、【05连云港】计算 2(2+. 2、【05青岛】计算:2251220+⎪⎭⎫⎝⎛--.3.【05苏州)11212-÷+-4.【05温州】计算:12+12-3-(2+3)2; 5.【05丰台】计算:1218--6.【05曲靖】计算:(12 )1-+(3.14-π)0-8+22;7.【05玉林】18)21(1221+---8.【05泉州】先化简下面的代数式,再求值:)1(2)2)(2(++-+x x x ,其中2=x9.【05梅山】已知:y <3,化简:(13y +)-110.【05黄石】计算:0232)17()2(27)21(|5|-----++--11.计算:210(2)(1--- 12.计算:(13-)0+(31)-1-2)5(--|-1|13.【05台州】我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+-=222222241c b a b a s ……①(其中a 、b 、c 为三角形的三边长,s 为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:))()((c p b p a p p s ---= ……②(其中2cb a p ++=). ⑴ 若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②, 计算该三角形的面积s ; ⑵ 你能否由公式①推导出公式②?请试试.练习:一、选择题1、下列判断⑴123 和1348 不是同类二次根式;⑵145和125不是同类二次根式;⑶8x 与8x不是同类二次根式,其中错误的个数是()A、3B、2C、1D、02、如果a是任意实数,下列各式中一定有意义的是()A、 aB、1a2C、3-a D、-a23、下列各组中的两个根式是同类二次根式的是()A、52x 和3xB、12ab 和13abC、x2y 和xy2D、 a 和1a24、下列二次根式中,是最简二次根式的是()A、8xB、x2-3C、x-yxD、3a2b5、在27 、112 、112中与 3 是同类二次根式的个数是( ) A 、0 B 、1 C 、2 D 、36、计算:⑴)36)(16(3--⋅-; ⑵521312321⨯÷;⑶; (4)375-12532272-+(5))21218(3+-⨯ (6)xx x x 1246932-+7. 你见过像324-,625-等这样的根式吗?这一类根式叫做复合二次根式,有一些复合二次根式可以化简。

如()1313113233242-=-=+⨯-=-⑴、请用上述方法化简625+;⑵、请自已编一道有上述特点的复合二次根式并化简; ⑶、思考:你会化简154+吗?请试一试。

练习1。

1. 下列各式属于最简二次根式的是( )A 、12+xB 、32y xC 、12D 、5.0 2、下列各组二次根式中,是同类二次根式的是( ) A 、122与 B 、183与 C 、182与 D 、93与 3、式子21+-x x 的取值范围是( )A 、x ≥1 ;B 、x>1且x ≠-2;C 、x ≠-2;D 、x ≥1 且 X ≠-2 4、10的整数部分是x ,小数部分是y ,则y (x+10)的值是( ) A 、1 B 、2 C 、3 D 、4 5、把-33a根号外的因式移到根号内,所得的结果正确的是( ) A 、-aB 、-a -C 、-a 3D 、a 36、若a<0,则|a 2 -a|的值是( ) A 、0 B 、2a C 、2a 或-2a D 、-2a7、把(a -1)11-a根号外的因式移入根号内,其结果是( ) A 、1-a B 、-1-a C 、a -1 D 、-a -18、若a+b4b 与3a +b 是同类二次根式,则a 、b 的值为( )A 、a=2、b=2B 、a=2、b=0C 、a=1、b=1D 、a=0、b=2 或a=1、b=19、下列说法错误的是( )A 、(-2)2的算术平方根是2B 、 3 - 2 的倒数是 3 + 2C 、当2<x<3时,x 2-4x+4(x -3)2= x -2x -3 D 、方程x+1 +2=0无解10、若 a + b 与 a - b 互为倒数,则( ) A 、a=b -1 B 、a=b+1 C 、a+b=1 D 、a+b=-1 11、若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a可化简为( ) A 、1-a 1+a B 、a -11+a C 、1-a 2 D 、a 2-1二、填空题 1、要使1-2xx+3+(-x)0有意义,则x 的取值范围是 。

2、若a 2 =( a )2,则a 的取值范围是 。

3、若x 3+3x 2 =-x x+3 ,则x 的取值范围是 。

4、观察下列各式:1+13=213,2+14=314,3+15=415,……请你将猜想到的规律用含自然数n(n ≥1)的代数式表示出来是 。

5、若a>0,化简-4ab = 。

6、若o<x<1,化简(x -1x)2+4 -(x+1x)2-4 = . 7、化简:||-x 2 -1|-2|= 。

8、在实数范围内分解因式:x 4+x 2-6= . 四、化简求值 1、已知x= 2 +12 -1,y=3 -13 +1,求x 2-y 2的值。

2、已知x=2+ 3 ,y=2- 3 ,求x +y x -y-x -yx +y的值。

五、已知x +1x =4,求x -1x 的值。

练习2。

认真填一填(3*12=36)1、3的同类二次根式是 (写出一个即可)2、当x 时,根式1-x 有意义。

3、在实数范围内,因式分解a 2 – 3 =4、化简:=8 ,=971, 5、如果化简后的二次根式 —7535321-+x x 与 是同类二次根式,则x= 6、(1)2)12(-= ,(2)若a>b ,则 2)(a b - =7、如果5-a +2-b = 0,那么以a ,b 为边长的等腰三角形的周长是 8、在ΔABC 中,a ,b ,c 为三角形的三边,则b a c c b a ---+-2)(2= 9、计算:(20072007)154()415-⋅+=10、小明和小芳在解答题目:“先化简下式,再求值:a+221a a +-,其中a=9”时,得出了不同答案,小明的解答是:原式=a+2)1(a -=a+(1-a )= 1;小芳的解答是:原式=a+2)1(a -=a+a+1=2a-1=2×9-1=17。

相关文档
最新文档