2012杨春数学物理方程与特殊函数期末考试题评分细则

合集下载

数学物理方程与特殊函数

数学物理方程与特殊函数

第7页/共20页
例3、热传导
热传导现象:当导热介质中各点的温度分布不均匀时,有 热量从高温处流向低温处。
所要研究的物理量:
温度 u(x, y, z,t)
根据热学中的傅立叶试验定律
在dt时间内从dS流入V的热量为:
S n
M V
S
dQ k u dSdt ku nˆdSdt ku dSˆdt
热场
横向: T cos T 'cos '
纵向: T sin T 'sin ' gds ma y
其中: cos 1 cos ' 1
sin tan u(x,t)
x
sin ' tan ' u(x dx,t)
x
M'
ds
T'
'
M
gds
T
x
x dx x
第3页/共20页
T T'
其中: m ds
和高阶微分方程。
3、线性偏微分方程的分类
按未知函数及其导数的系数是否变化分为常系数和变系数微分方 程
按自由项是否为零分为齐次方程和非齐次方程
第17页/共20页
思考判断下列方程的类型
2u 2t
a2
2u 2x
x
2u x2
a2
u t
xu
2u x2
a2
2u t 2
u1u源自122u2
0
4、叠加原理
线性方程的解具有叠加特性
第13页/共20页
2、边界条件——描述系统在边界上的状况
A、 波动方程的边界条件 (1)固定端:对于两端固定的弦的横振动,其为:
u |x0 0, 或: u(a,t) 0

浅谈工科《数学物理方程》的教学

浅谈工科《数学物理方程》的教学

浅谈工科《数学物理方程》的教学作者:付红斐来源:《科技创新导报》 2011年第28期付红斐(中国石油大学数学学院山东东营 257061)摘要:本文针对目前《数学物理方程》教学中存在的一些问题,结合教学实际,对《数学物理方程》的教学思路、教学准备、教学方法及考核方法等提出了一些改革措施和建议,以激发学生的学习积极性,提高教学质量。

关键词:数学物理方程教学内容教学方法考核方法问题教学法中图分类号:G642 文献标识码:A 文章编号:1674-098X(2011)10(a)-0158-01在物理学、力学、工程技术和其它自然学科中,经常会出现大量的偏微分方程,它们反映了未知函数关于时间和空间变量导数之间的制约关系,描述了物理现象和过程的基本规律。

这些来自物理、力学等自然学科的偏微分方程,被称作数学物理方程。

《数学物理方程》作为工科相关专业的一门重要的专业基础课程,对于工科大学生相关课程的学习和将来的工程技术研究至关重要。

然而,近几年在《数学物理方程》的教学安排上,教学总学时在减少,目前我校计划学时为48学时。

对于教师来说,如何在较少的学时内,既能保持原有教学内容的总体框架,又能结合专业知识与特点,使本课程成为一门生动的、充满现代气息的课程,面临着很大的挑战。

而对广大大学生而言,如何从数学和物理的双重角度去学好这门课程,也是相当困难的。

那么,应该怎样教、学这门课程呢?我认为以下几点需要引起重视。

1 把握好课程的主脉以高等教育出版社王元明教授主编的《数学物理方程与特殊函数》为例,简短的概括本教材内容就是:三类典型方程(抛物型方程、双曲型方程和椭圆型方程)、四种主要方法(分离变量法、行波法、积分变换法与格林函数法)和两个特殊函数(贝塞尔函数与勒让德多项式)。

把握好了这个主脉,教学中才能做到有的放矢,游刃有余。

具体来说,每一个物理问题的处理,通常需要三个步骤。

(1)建立数学模型,即利用物理、力学等自然科学定律将“自然科学问题”翻译成“数学问题”(通常为偏微分方程)。

数学物理方程第一章、第二章习题全解

数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x

数学物理方程与特殊函数试题及答案

数学物理方程与特殊函数试题及答案

数学物理方程与特殊函数试题及答案猜你喜欢: 1. 2. 3. 4. 5.数学物理方程与特殊函数是一门专业性比拟强的课程,要学好这门课程,同学们还是要用心去学才能学好数学物理方程与特殊函数。

下面是给大家的数学物理方程与特殊函数试题及答案,欢送大家学习参考。

1.对于一般的二阶线性偏微分方程0(1) 它的特征方程为,假设在域内ACB那么此域内称(1) 椭圆型假设在域内B那么此域内称(1)为抛物型假设在域内 B 那么此域内称(1)为双曲型。

2. 第一类格林公式第二类格林公式 . 已那么 ;而函数按1xP的展开式4.一维热传导方程可用差分方程似代替。

二维拉普拉斯方程可用差分方0 近似代替。

5. 勒让德多项式的正交性???。

二.用别离变量法求?的解。

(15分) 解:用别离变量法求解,先设满足边界条件且是变量被别离形式的特解为tTxXtxu?代入方程(1)上式左端不含有x,右端不含有t,从而得到两个线性常微分方程解(6)得 x由(2)得,及相应的固有函数为xlnBxXnn?sin? 7?? ,再由(5)得,? 由(7),(8)得由(1),(3)得又由(3) 得所以,原定解问题的解为?三.求方程? 的解。

(15分) 解:对(1)两端积分的通解为任意二阶可导函数,令(4)满足(2),(3)得解之得6(5),(6)代入(4)得u 四.求柯西问题的解。

(12分) 解;先确定所给方程的特征线。

为此,写出它的特征方程 dy2-2dxdy-3dx20 它的两族积分曲线为作特征变换4?经过变换原方程化它的通解为中21ff 是两个任意二次连续可微的函数。

方程(1)的通解为由(2。

数理方程与特殊函数(杨春)27PPT课件

数理方程与特殊函数(杨春)27PPT课件
探讨了特殊函数的应用领域,如物理学、工程 学和金融学等,并详细介绍了常见的特殊函数
及其性质。
强调了数理方程和特殊函数在数学建模和科学计算中 的重要性,并提供了相关练习题以帮助学生巩固所学
知识。
介绍了数理方程的基本概念、分类和求解方法 ,包括一阶、二阶常微分方程、偏微分方程等 。
通过实例演示了如何运用数理方程和特殊函数解 决实际问题,包括近似解法和数值解法等。
特殊函数的应用场景
06 数理方程与特殊函数的结 合应用
数理方程与特殊函数的关系
数理方程是描述数学模型中数量关系的一类方程,而特殊函数则是满足某 些特定条件的函数。
数理方程与特殊函数在许多领域中都有广泛的应用,如物理学、工程学、 经济学等。
特殊函数在数理方程中常常作为解或解的组成部分出现,因此理解数理方 程与特殊函数的关系对于解决实际问题至关重要。
数理方程与特殊函数的基本概念、性质、方法和应用。
主题目的
通过学习本课程,使学生掌握数理方程与特殊函数的 基本理论和方法,培养其解决实际问题的能力。
课程目标和意义
课程目标
通过本课程的学习,学生应掌握数理方程与特殊函数的基本理论和方法,能够解 决一些实际问题,提高数学素养和思维能力。
课程意义
数理方程与特殊函数是数学中的重要分支,对于培养学生的数学思维、分析问题 和解决问题的能力具有重要意义。同时,本课程的学习也有助于学生更好地理解 其他数学分支和应用学科,为其未来的学习和工作打下坚实的基础。
04
随着数学教育的普及和深入,数理方程与特殊函数将成为更多学生了 解和掌握的数学工具,为他们的学术和职业发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
结合应用实例分析

2012年全国高中数学联赛一试及加试试题参考答案及详细评分标准(A卷word版)

2012年全国高中数学联赛一试及加试试题参考答案及详细评分标准(A卷word版)

2012年全国高中数学联赛一试及加试试题参考答案及详细评分标准(A 卷word 版)一、填空题:本大题共8小题,每小题8分,共64分.把答案填在题中的横线上.1. 设P 是函数2y x x=+(0x >)的图像上任意一点,过点P 分别向 直线y x =和y 轴作垂线,垂足分别为,A B ,则PA PB ⋅的值是 .解:方法1:设0002(,),p x x x +则直线PA 的方程为0002()(),y x x x x -+=--即0022.y x x x =-++由00000011(,).22y xA x x y x x x x x=⎧⎪⇒++⎨=-++⎪⎩又002(0,),B x x +所以00011(,),(,0).PA PB x x x =-=-故001() 1.PA PB x x ⋅=⋅-=- 2. 设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a Bb Ac -=,则tan tan A B的值是 . 解:由题设及余弦定理得222223225c a b b c a a b c ca bc +-+-⋅-⋅=,即22235a b c -=故222222222222228tan sin cos 2542tan sin cos 5a cb ac A A B ca b ac b c a B B A b c a c b +-⋅+-=====+-+-⋅. 3.设,,[0,1]x y z ∈,则M=.解:不妨设01,x y z≤≤≤≤则M=所以 1.M ≤=当且仅当1,0,1,2y x z y x z y -=-===时上式等号同时成立.故max 1.M = 4.抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N ,则||||MN AB 的最大值是 . 解:由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得2222cos3AB AF BF AF BF π=+-⋅2()3AF BF AF BF =+-⋅22()3()2AF BF AF BF +≥+-22().2AF BF MN +==当且仅当AF BF =时等号成立.故MNAB的最大值为1.5.设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的侧面与底面所成的角为45,则正三棱锥Q ABC -的侧面与底面所成角的正切值是 .解:如图.连结PQ ,则PQ ⊥平面ABC ,垂足H 为正ABC ∆的中心,且PQ 过球心O ,连结CH 并延长交AB 于点M ,则M 为AB 的中点,且CM AB ⊥,易知,PMH QMH ∠∠分别为正三棱锥,P ABC Q ABC --的侧面与底面所成二角的平面角,则45PMH ∠=,从而12PH MH AH ==,因为90,,PAQ AH PQ ∠=⊥所以2,AP PH QH =⋅即21.2AH AH QH =⋅所以24.QH AH MH ==,故tan 4QHQMH MH∠==6. 设()f x 是定义在R 上的奇函数,且当0x ≥时,()f x x 2=.若对任意的[,2]x a a ∈+,不等式()2()f x a f x +≥恒成立,则实数a 的取值范围是 .解:由题设知22(0)()(0)x x f x x x ⎧≥⎪=⎨-<⎪⎩,则2()).f x f =因此,原不等式等价于()).f x a f +≥因为()f x 在R 上是增函数,所以,x a +≥即1).a x ≥又[,2],x a a ∈+所以当2x a =+时,1)x 取得最大值1)(2).a +因此,1)(2),a a ≥+解得a ≥故a 的取值范围是).+∞7.满足11sin 43n π<<的所有正整数n 的和是 .解:由正弦函数的凸性,有当(0,)6x π∈时,3sin ,x x x π<<由此得131sin ,sin ,1313412124πππππ<<>⨯=131sin ,sin .10103993πππππ<<>⨯=所以11sin sin sin sin sin .134********πππππ<<<<<< 故满足11sin 43n π<<的正整数n 的所有值分别为10,11,12,它们的和为33.8.某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .(用最简分数表示)解:用k P 表示第k 周用A 种密码的概率,则第k 周末用A 种密码的概率为1k P -.于是,有11(1),3k k P P k N *+=-∈,即1111()434k k P P +-=--由11P =知,14kP ⎧⎫-⎨⎬⎩⎭是首项为34,公比为13-的等比数列。

1-2_初始条件与边界条件chen

1-2_初始条件与边界条件chen
数学物理方程与特殊函数 主页 上一页 下一页 退出
练习题: 考虑长为 l 的均匀杆的导热问题. 若 1.杆的两端温度保持零度;
2.杆的一端为恒温零度,另一端绝热. 写出杆在上面两种情况下的边界条件. 答案: u
= 0, u = 0;
u = 0, u x = 0;
x=0
x=l
x=0
x=l
数学物理方程与特殊函数 主页 上一页 下一页
退出
退出
偏微分方程要给出 n 个初始条件才能确定一个特 解.
初始条件的个数的确定:关于时间 t 的 n 阶
边界条件的个数的确定:关于空间变量 x 的 n 阶 偏微分方程不一定要给出 n 个边界条件.
数学物理方程与特殊函数 主页 上一页 下一页
退出
练习题: 若 考虑长为 l 的均匀杆的导热问题. 1.杆的两端温度保持零度; 2.杆的一端为恒温零度,另一端绝热. 写出杆在上面两种情况下的边界条件. 答案:
∂u = f . 外法线方向的方向导数,即 ∂n s 2
第二类边界条件.
第一类边界条件. 三是在边界 S 上给出了未知函数 u 及其沿 S
的外法线方向的方向导数某种线性组合的
⎛ ∂u ⎞ + σ u ⎟ = f3 . 值,即 ⎜ ∂n 第三类边界条件. ⎝ ⎠s
数学物理方程与特殊函数 主页 上一页 下一页
M
初始条件:
u(M ,t)
t=0
= ϕ (M )
退出
数学物理方程与特殊函数 主页 上一页 下一页
泊松方程与拉 普拉斯方程
泊松方程与拉 普拉斯方程都是描 述稳恒状态的,与初 始状态无关,不提初 始条件.
数学物理方程与特殊函数 主页 上一页 下一页
退出

数理方程与特殊函数杨春24

数理方程与特殊函数杨春24

k
m
Jk (x)Jm ( y)zkm
k m
J
k
(
x)
J
nk
(
y)
z
n
n k
所以得到:
J n ( x y) J k ( x)J nk ( y)
k
24
第25页/共29页
2、整数阶Bessel函数的积分表达式
罗朗展式的系数公式为:
x ( 1 )
Jn
(x)
1
2 i
e2
(一)、贝塞尔方程的引入
例1、 设有半径为R的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零度, 且初始温度为已知。求圆盘内的瞬时温度分布规律
定解问题为:
u
t
a2
2u x2
2u y 2
,
x2 y2 R2
u t0 x, y
u x2 y2 R2 0
采用分离变量法求解
1
第2页/共29页
x
例2、求如下贝塞尔方程通解
x2
d2y dx2
x
dy dx
(x2
1)y 4
0
解:这是1/2阶贝塞尔方程
J 1 (x)
2
2 sin x
x
J1 (x) 2
2 cos x
x
y C1
2
x
sin
x
C2
2 cos x
x
16
第17页/共29页
整数阶贝塞尔函数
性质:对于n 阶整数阶贝塞尔函数有:
证明:
Jn (x) (1)n Jn (x)
y AJ n ( x) BYn ( x)
20
第21页/共29页
(三)、贝塞尔函数的母函数及其递推公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年数学物理方程与特殊函数期末考试题评分细则
1、(10分) 把方程22222320u u u x x y y
∂∂∂++=∂∂∂∂化为标准型,指出其类型,求出其通解。

解:2
1211229204a a a ∆=-=
->,方程属于双曲型。

2分 特征方程为:2320dy dy dx dx ⎛⎫-+= ⎪⎝⎭
,于是得: 122,y x C y x C -=-= 2分
所以,令:2y x y x ξη=-⎧⎨=-⎩,则:2111x y x
y Q ξξηη-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦ 111212223110212122113
1112022a a a a ⎡⎤⎡⎤-⎢⎥⎢⎥---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦
, 120,0,0b L c b L c c f ξξηη=-==-===
所以,标准型为:0u ξη=; 4分
两边积分:()u c ξξ=,两边再积分得112()()()()u c d c f f ξξηξη=+=+⎰
所以,方程通解为:12(,)(2)()u x y f y x f y x =-+-。

2分
2、(20分) 长为l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为()x ϕ,求杆内温度分布(,)u x t 。

解:定解问题为: 200(0)0,0,()
t xx x x x l t u a u x l u u u x ϕ===⎧=<<⎪⎪==⎨⎪=⎪⎩ 4分 分离变量得固有值为:22
2
1()2,(0,1,2.....)n n n l πλ+== 2分 固有函数为:12()sin n n X x x l
π+= 2分
另一个常微分方程的解为:2222(21)4(),0,1,2....n a t l n n T t A e
n π+-== 2分 于是:2222(21)412(,)sin ,(0,1,2,.....)n a t l n n n u x t a e
x n l ππ+-+== 1分 一般解为:
2222(21)4012(,)sin n a t
l n n n u x t a e
x l ππ++∞-=+=∑ 4分
由初始条件得:
012()sin
n n n x a x l ϕπ+∞=+=∑ 2分 所以:0(21)()sin ,(0,1,2,....)2l n n x a x dx n l
πϕ+==⎰ 2分 2222(21)4001(21)2(,)()sin sin 2n a t
l l n n n x u x t x dx e x l l ππϕπ++∞-=++⎛⎫= ⎪⎝⎭∑⎰ 1分。

2、(10分)设定解问题:
2000(),0,0,,0
(),(),0.
tt xx x x l t t t u a u f x x l t u A u B t u x u x x l ϕψ====⎧-=<<>⎪⎪==>⎨⎪==≤≤⎪⎩ 将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。

解:令(,)(,)()u x t V x t w x =+ 2分
代入原定解问题中得:
22000()(),0,0(,)(),(,)(),0(,)()(),(),0.
tt xx x x l t t t V a V a w x f x x l t V x t w x A V x t w x B t V x t x w x V x x l ϕψ====⎧''--=<<>⎪⎪+=+=>⎨⎪=+=≤≤⎪⎩ 4分 于是定解问题可分解为: (1) 20000,0(,)0,(,)0,0(,)()(),(),0.
tt xx x x l t t t V a V x l t V x t V x t t V x t x w x V x x l ϕψ====⎧-=<<>⎪⎪==>⎨⎪=+=≤≤⎪⎩与
(2)、20()(),0(),()x x l a w x f x x l w x A w x B
==''⎧-=<<⎪⎨==⎪⎩ 对于(2)容易求出其解,将其解代入(1),得到可直接分离变量定解问题。

4分。

相关文档
最新文档