人教版七年级的数学工程问题.doc

合集下载

初一数学方案工程问题

初一数学方案工程问题

初一数学方案工程问题一、实际中的数学问题1. 建筑工程中的测量与计算在建筑工程中,测量和计算是必不可少的。

比如,工地上需要测量地基的深度、建筑物的高度和角度等,这些都需要运用数学知识来进行计算。

而在建筑物的设计中,也需要考虑到数学原理,比如建筑的结构、材料的用量等。

如何利用数学知识来解决这些问题是初一学生需要思考的问题。

2. 财务管理中的数学运算无论是个人的日常开支还是企业的财务管理,都需要进行数学运算。

比如,计算每月的生活费用、制定月度财务预算,以及进行利润和成本的核算等,都离不开数学知识。

初一学生如何运用数学知识来进行有效的财务管理,是一个需要思考和解决的问题。

3. 环境保护中的数学模型在环境保护领域,人们常常需要建立数学模型来分析和预测环境变化。

比如,气候变化、水资源利用、污染物排放等,都需要建立相关的数学模型进行分析和预测。

初一学生如何运用数学知识来建立环境保护模型,是一个具有挑战性的问题。

二、解决问题的数学方案1. 引导学生将数学知识运用到实际问题中在初一数学课程中,教师可以引导学生将所学的数学知识应用到实际问题中。

比如,通过课堂讨论和小组合作,让学生分析建筑工程中的测量与计算问题,找出解决问题的数学方法和途径。

这样不仅可以提高学生的数学运用能力,也可以增强他们对数学的兴趣和信心。

2. 培养学生的数学建模能力在初一数学课程中,可以引导学生建立数学模型来解决实际问题。

比如,让学生通过测量和实验,建立一些简单的数学模型,如小车的运动模型、生活用水的消耗模型等。

通过这些实践活动,可以培养学生的数学建模能力,提高他们的问题解决能力。

3. 培养学生的财务管理意识在初一数学课程中,可以通过实际案例分析,引导学生了解财务管理的相关知识和技能。

比如,让学生做一份家庭财务预算表,分析家庭的收入和支出情况,寻找节约开支的方法;让学生做一份小型企业的盈亏表,分析企业的盈利状况和成本控制方法。

通过这些实践活动,可以培养学生的财务管理意识,提高他们的理财能力。

人教版七年级数学上册5.3第1课时配套问题与工程问题课件

人教版七年级数学上册5.3第1课时配套问题与工程问题课件

解析 设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,
由题意,得2x+(x+x-2)=26,
解得x=7,则x-2=5,
所以甲工程队每天掘进7米,乙工程队每天掘进5米,
146=1206(天).
75
答:甲、乙两个工程队还需联合工作10天.
9.(2023山东潍坊昌邑期末,24,★★☆)一项工程,甲队单独完 成需30天,乙队单独完成需45天. (1)现甲队先单独做20天,之后两队合作,甲、乙两队合作多 少天才能把该工程完成? (2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工 程款2万元,则由甲、乙两队全程合作完成该工程,需付多少 工程款?
们一起做4小时,正好完成这项工作的 3,假设每人的工作效率
4
相同,那么应该安排多少人先工作?
解析 解法一(根据总工作量列方程):
设安排x人先工作,
由题意,得4× 1 x+ 1 (x+3)×4= 3,
80 80
4
整理,得 x + x =3 3,
20 20 4
解方程,得x=6.
答:应该安排6人先工作.
2.(易错题)(2024四川绵阳游仙期中)某工厂中秋节前要制作 一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月 饼要用0.05 kg面粉,1块小月饼要用0.02 kg面粉.若制作若干 盒月饼共用了640 kg面粉,请问制作大、小两种月饼各用了 多少面粉?
解析 易错点:易用错配套比.
设用x kg面粉制作大月饼,则用(640-x)kg面粉制作小月饼,由
解析 设A工程队整治河道x米,
由题意得 x +280=2x5,
12 10
解方程,得x=180.

人教版七年级上册数学第三章一元一次方程应用题--工程问题

人教版七年级上册数学第三章一元一次方程应用题--工程问题

人教版七年级上册数学第三章一元一次方程应用题--工程问题1.整理一批图书,如果由一个人单独做要花40小时.现先由一部分人用1小时整理,随后增加5人和他们一起又做了2小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?2.整理一批快递,如果由一个人单独做要用20小时,现先安排一部分人用1小时整理,随后又增加4人和他们一起做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么应先安排多少人整理这批快递?3.整理一批数据,由一人做需100h完成.现计划由一部分人先做2h,然后增加5人和他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?4.某公司需要加工一批零件,甲每天可以加工16个零件,乙每天可以加工24个零件,甲单独加工这批零件比乙单独加工这批零件多用20天,甲每天的人工费为80元,乙每天的人工费为120元.(1)问这批零件共有多少个?(2)在加工零件过程中,公司要派一名质量监督员,并且每天支付他15元补助费,现有三种加工方案:①由甲单独加工这批零件;①由乙单独加工这批零件;①甲、乙合作同时加工这批零件,你认为哪种方案最省钱,为什么?5.某公司计划租用甲、乙两辆车运送一批货物,已知甲车单独运送这批货物需要20天,乙车单独运送需要10天,现由甲车先运5天,然后甲、乙两车合作运完剩下的货物.(2)已知甲车每天的租金比乙车少100元,运完这批货物公司共支付了租金6650元,则甲乙两车的租金每天分别是多少元?6.一项工程由甲工程队单独完成需要12天,由乙工程队单独完成需要16天,甲工程队单独施工5天后,为加快工程进度,又抽调乙工程队加入该工程施工,问还需多少天可以完成该工程?7.现有一工程打算让甲、乙两个工程队完成,甲队单独完成这项工程需要60天,乙队单独完成这项工程需90天;若由甲队先做10天,剩下的工程由甲、乙两队合作完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款4万元,乙队施工一天需付工程款2.5万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?8.一项工程由甲单独完成需要20天;由乙单独完成需要30天.(1)若该项工程由甲、乙合作完成,则需要多少天?(2)由于场地限制,两人不能同时施工,若先安排甲单独施工完成一部分后,再由乙单独施工完成剩余工程.已知完成该项工程共用了25天,问甲、乙分别单独施工了几天?9.“开福,开启幸福的地方”,开福区绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对开福大道的某段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元,购买两种树苗的总金额为90000元.(1)求需购买甲、乙两种树苗各多少棵?(2)若栽种一棵甲种树苗需人工费50元,栽种一棵乙种树苗需人工费40元,则这批树苗共需人工费多少元?10.完成一项工作,一个工人需要16天才能完成.开始先安排几个工人做1天后,又增加1人和他们一起做2天,结果完成了这项工作的一半,假设每个工人的工作效率相同.(1)开始安排了多少个工人?(2)如果要求再用2天做完剩余的全部工作,还需要再增加多少个工人一起做?11.某车间的工人,分两队参加义务植树活动,甲队人数是乙队人数的两倍,由于任务的需要,从甲队调16人到乙队,则甲队剩下的人数是乙队人数的一半少3人,求甲、乙两队原有的人数12.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间,且单独粉刷这些墙面甲工程队比乙工程队要多用20天.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?13.新学期校服公司计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服80件,乙工厂每天能加工这种校服120件,且单独加工这批校服甲工厂比乙工厂要多用20天.(1)求这批校服共有多少件?(2)若校服公司决定由甲乙两厂合作完成,甲、乙两厂按原工作效率合作一段时间后,甲工厂停工了,而乙工厂改进加工技术,每天的工作效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间是甲工厂工作时间的3倍还多2天,若在加工过程中,该校服公司需付甲工厂每天费用300元,付乙工厂每天费用450元.这批校服全部加工完成后,校服公司需支付甲、乙两工厂共多少元?。

七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题

七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题

例2 某项工作,甲单独做需要 4 小时,乙单独做需要 6 小 时,甲先做 30分钟,然后甲、乙合作.甲、乙合作还需要多少 小时才能完成全部工作?
解法1:设甲、乙合作还需要x小时才能完成全部工作.
根据题意,得
1 4
1 2Βιβλιοθήκη x1 6x
1.
解方程,得 x=2.1.
答:甲、乙合作还需要2.1小时才能完成全部工作.
归纳
工程问题中的等量关系 (1)在工作总量不明确、不具体的情况下,通常把工作总量看 成单位____1__. (2)工作总量=_工__作__效__率__×__工__作__时__间__. (3)甲、乙合作的工作效率=_甲__的__工__作__效__率_+_乙__的__工__作__效__率__. (4)所有人工作量的和等于__总__工__作__量__.
为 8(x+2) .
40
40
思考 根据前面的分析,完成表格:
项目
人均效率 人数 时间/h 工作量
第一阶段工作
1
40
第二阶段工作
1 40
x
4
x+2
8
4x 40
8(x 2) 40
问题 列出方程,对本题进行解答.
解:设安排 x 人先做 4 h. 根据先后两个时段的工作量之和应等于总工作量,列出方程
4x 8(x 2)=1.
第2课时 一元一次方程的 应用——工程问题
上节课,我们学习了如何运用一元一次方程来解决实际问 题中的配套问题,本节课,我们来探究一元一次方程与实际问 题——工程问题.
在学习新课之前,先完成下面的填空: 工作量=__工__作__效__率__×__工__作__时__间__; 工作效率=_工___作__量__÷__工__作__时__间__; 工作时间=__工__作__量__÷__工__作__效__率__.

人教版七年级上册数学第三章一元一次方程应用题——工程问题训练

人教版七年级上册数学第三章一元一次方程应用题——工程问题训练

人教版七年级上册数学第三章一元一次方程应用题——工程问题训练1.有一批零件,甲单独生产需要40天完工,乙单独生产需要80天完工.(1)若甲、乙共同生产20天,乙再单独生产,求共需要多少天才能完工?(2)若乙因工作需要,他生产的时间不超过30天,求甲至少需要生产多少天才能完工?2.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要12天,乙修理组单独完成任务需要24天.()1若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅()2若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与乙又合作3天,恰好完成任务.问:甲修理组离开几天?3.某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50米,结果只用了7天就完成了全部任务.求:(1)按照原计划,平均每天铺设多少米?(2)这段输油管道有多长?4.为了保证某机场按时通航,通往机场公路需要及时翻修完工,已知甲队单独做需要10天完成,乙队单独做需要15天完成,若甲乙合作5天后,再由乙队单独完成剩余工作量,共需要多少天?5.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若租用甲、乙两车各运12趟需支付运费4800元,且乙车每趟运费比甲车少200元.求单独租用一台车,租用哪台车合算?6.一项工程,甲队单独完成需60天,乙队单独完成需75天.(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?7.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,求该班组原计划要完成的零件任务是多少个?8.一段长为250km的高速公路需要维修,现由甲、乙两个工程队先后接力完成,共用时15天,已知甲工程队每天维修20km,乙工程队每天维修15km.求甲、乙两个工程队分别维修了多长的高速公路?(用一元一次方程解决问题)9.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.10.一项工程,甲队独做10h完成,乙队独做15h完成,丙队独做20h完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h,问甲队实际工作了几小时?11.完成一项工作,如果安排两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?12.整理一批图书,由一个人完成需要20h.现计划由一部分人先做4h,然后增加4人与他们一起做2h,完成这项工作.假设这些人的工作效率相同.(1)先安排整理的人员有多少人?(2)先安排的这部分人员一共完成了多少工作量?13.某地为了打造风光带,将一段长为360米的河道整治任务交由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治16米,乙工程队每天整治20米,求甲、乙工程队分别整治了多长的河道?14.某工人计划在一定时间内加工一批零件,如果每天加工44个就比任务量少加工20个,如果每天加工50个则超额加工10个,求计划加工的天数15.整理一批图书,由一个人做要20 h完成.现计划由一部分人先做2 h,然后增加2人与他们一起再做4 h,完成了这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?16.一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合作8天后,余下的工程由乙队完成。

人教版 七年级上册 一元一次方程 工程问题练习题【有答案】

人教版 七年级上册 一元一次方程 工程问题练习题【有答案】

工程问题应用一元一次方程解决工程问题. 此类题目重要的一点是找到工作总量是什么:如果题目中有提到,则直接使用即可;如果题目中没有告诉工作总量,一般情况下用1表示工作总量.工程问题的基本关系式:工作总量=工作效率×工作时间.1.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【详解】设应先安排x人工作,根据题意得:48(2)1 4040x x++=解得:x=2,答:应先安排2人工作.2.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.【详解】设甲队整治了x天,则乙队整治了天,由题意,得24x+16(20-x)=360,解得:x=5,∴乙队整治了20-5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.3.一件工作,甲单独完成需5小时,乙单独完成需3小时,先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?【详解】解:设由甲、乙两人合做1小时,再由乙单独完成剩余部分,还需x小时完成,由题意,得:(1153)×1+13x=1,解得:x=75,即剩余部分由乙单独完成剩余部分,还需75小时完成,则共需1+75=125小时完成任务,答:先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需125小时完成任务.4.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?【详解】设乙工程队再单独做此工程需x个月能完成,∵甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,∴甲每个月完成14,乙工程队每个月完成16,现在甲、乙两队先合作2个月, 则完成了112()46, 由乙x 个月可以完成16x , 根据等量关系甲完成的+乙完成的=整个工程,列出方程为:1112()1466x解得x=1.5.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?试题解析:设先安排整理的人员有x 人,依题意得,2(15)16060x x ++= 解得, x=10.答:先安排整理的人员有10人.6.一件工程,由甲、乙两个工程队共同合作完成,工期不得超过一个月,甲独做需要50天才能完成,乙独做需要45天才能完成,现甲乙合作20天后,甲队有任务调离,由乙队单独工作,问此工程是否能如期完工.(列方程计算) 【详解】设剩余工程乙独做需要x 天完成,根据题意可得:()11202014550x ++⨯=, 解得x=7,∵20+7<30∴此工程能如期完成.7.某项工作,甲单独做4天完成,乙单独做8天完成,现在甲先做一天,然后和乙共同完成余下的工作,问完成这项工作共需多少天?【详解】设完成这项工作共需x 天, 根据题意得:1148x x -+=, 解得x =3,答:完成这项工作共需3天.8.整理一批图书,由甲单独完成需要15小时,由乙单独完成需要20小时.现在先让甲整理1小时,之后甲乙两人合作整理完这批图书,那么乙工作多少小时?【详解】设乙工作x 个小时,根据题意得到甲、乙的工作效率分别是111520、,得: 111()1151520x ++= 解得:8x =.答:乙工作8小时.9.青岛市某实验学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?解:(1)11511=2.44612⎛⎫÷+=÷⎪⎝⎭(天).答:两个人合作需要2.4天完成. (2)设还需x天可以完成这项工作,根据题意,得11 64x x++=.解得=2x.答:还需2天可以完成这项工作.10.一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?试题解析:设乙还要x小时完成,根据题意得:1 12×9+18x=1,解得:x=2.答:乙还要2小时完成.11.一项工程,甲单独做要10天,乙单独做要15天,丙单独做要20天.三人合做期间,甲因故请假,工程6天完工,请问甲请了几天假?解:设甲请了x天假,由题意知,11661 152010x-⎛⎫++=⎪⎝⎭.解得x=3.答:甲请了3天假.12.一项工程,需要在规定的天数内完成.现由甲先做3天,乙再参加合做,正好如期完成.若甲独做需8天完成,乙独做需12天完成,那么规定的天数为几天? 解:设规定的天数为x 天 依题意可得,11x -3812x +() =1,解得x=6 答:规定的天数为6天.13.某校整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体先安排多少人工作?(列方程解答)试题解析:解:设先安排x 人工作4小时,则依题意得:46(3)14848++=x x ; 解得x=3;答:应先安排3人工作.14.一件工程,甲、乙、丙单独做各需10天、12天、15天才能完成,现在计划开工7天完成,乙、丙先合做3天后,乙队因事离去,由甲队代替,在各队工作效率都不变的情况下,能否按计划完成此工程?解:设甲、丙两队还需x 天才能完成这工程, 列方程得:x 33+x ++101215=1, 解得:x =3.3.因为3+3.3=6.3<7,所以能在计划规定的时间内完成.故在各队工作效率都不变的情况下,能按计划完成此工程.15.一项工程,甲单独做要10天完成,乙单独做要15天完成,甲单独做5天,然后甲、乙合作完成,共得到1000元,如果按照每人完成工作量计算报酬,那么甲、乙两人该如何分配?详解:因为甲单独完成需10天,乙单独完成需15天,故甲每天可完成工程的110,乙可完成工程的115,设甲先做5天后,两人再合作x天完成工程,则1 10×5+(110+115)x=1解得:x=3,故甲应得报酬为:1000×810=800元,乙应得报酬为:1000×315=200元.16.甲、乙两工程队合作完成一项工程,需要12天完成,工程费用共36000元,若甲、乙两工程队单独完成此项工程,乙工程队所用的时间是甲工程队的1.5倍,乙工程队每天的费用比甲工程队少800元.(1)问甲、乙两工程队单独完成此项工程各需多少天?(2)若让一个工程队单独完成这项工程,哪个工程队的费用较少?【详解】解:(1)设甲单独完成需要x天,则乙单独完成需要1.5x天,由题意得121211.5x x+=,解得20x天,。

2022—2023学年人教版数学七年级上册3

2022—2023学年人教版数学七年级上册3

3.4一元一次方程的应用—工程问题学习目标1、会列一元一次方程解决实际问题中的工程问题。

一、温故互查一项工作甲3天完成,乙5天完成,那么:1.(1)当工作总量未给出具体数量时,常设工作总量为(2)甲的工作时间是,乙的工作时间是(3)甲的工作效率是,乙的工作效率是(4)甲乙合作一天完成的工作量为2.上述3个量:工作效率、工作时间、工作总量之间有什么关系?二、设问导读:阅读课本P100例2完成下列问题:(1)人均效率(一个人做1小时完成的工作量)为,x人效率。

(2)有x人先做4小时,完成的工作量为,再增加2人和前一部分人一起共人,做8小时完成的工作量为。

(3)这项工作分两段完成,两段完成的工作量之和等于。

(4)①等量关系是什么?②列出方程并解决。

三、自学检测:1.一项任务,甲单独做20小时完成,乙单独做12小时完成,现由甲单独做4小时,剩下的甲、乙合做,还要几小时完成?若设剩下部分要x小时完成,下列方程正确的是()12202041.xxA--=12202041.xxB-+=12202041.xxC++=12202041.xxD+-=四、巩固训练:题组一1.有一批零件加工任务,甲单独做40小时完成,乙单独做30小时完成,甲做了几个小时后另有任务,剩下的任务由乙单独完成,乙比甲多做了2小时,求甲做了几小时。

题组二一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?题组三一个水池有甲、乙、丙三个水管,甲乙是进水管,丙是排水管,单开甲管20分钟可将水池注满,单开乙管15分钟可将水池注满,单开丙管25分钟可将水池放完,现在先开甲乙两管,4分钟后关上甲管开丙管,问又经过多少分钟才能将水注满?五、拓展延伸某地为了打造风光带,将一段长为360米的河道整治任务交给甲乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24米,乙工程队每天整治16米,求甲乙两个工程队分别整治了多长的河道。

人教版七年级数学上册第三章一元一次方程常见题型分类

人教版七年级数学上册第三章一元一次方程常见题型分类

一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。

关系式为:①工作量=工作效率×工作时间。

②工作时间=工作效率工作量,③工作效率=工作时间工作量。

工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t 1。

常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。

②如果以时间作相等关系,完成同一工作的时间差=多用的时间。

例题:例1.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。

现在三管齐开,需多少时间注满水池?例2.一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1.某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独工作,需要5小时完成。

如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3.整理一批图书,由一个人做要40小时完成。

现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体先安排多少人工作。

4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.整理一批数据,由一个人做需80小时完成任务。

现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。

怎样安排参与整理数据的具体人数?行程问题行程问题中有三个基本量:路程、时间、速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学工程问题
备课时间: 2013 年 11 月 19 日备课组:七年级数学
上课时间:第12 周星期三执教老师:向清旺陈春凤王本江杨春艳向庶
学习目标: 1. 会根据实际问题中数量关系列方程解决实际问题,熟练掌握一元一次方程的解法
2.培养学生数学建模能力 ,分析问题、解决问题的能力。

学习重点:用一元一次方程解决工程等问题。

学习难点:实际问题中 ,如何建立等量关系,并根据等量关系列出方程。

学习要求: 1. 阅读课本P101 的例 5;
2.完成书上的填空;
3.限时 25 分钟完成本导学案(独立或合作);
4.课前在组内交流展示,组长对组员进行等级评价。

一、自主学习:
1.一件工作 ,如果甲独做 a 小时完成 ,则甲独做 1 小时 ,完成全部工作量的__________ . 2.工作量、工作时间、工作效率之间有怎样的关系?
(1)工作量= ___________ × _____________ ;
(2)工作时间= ___________ ÷ _____________ ;
(3)工作效率= ___________ ÷ _____________ 。

3.水池一个进水管,8 小时可以注满空池,池底有一个出水管,12 小时可以放完满池的水,如果同时打开进水管和出水管,那么 ,多少小时可以把空池注满?
提示:( 1)注满一池水的工作量为“____” .
(2)进水管工作效率为 ________ ,出水管工作效率为 ________ .
(3)若设经过 x 小时可以注满水池 ,则进水管的进水量为 ______________ ,出水管的出水量为 _____________ .
(4 )相等关系为:___________ - ___________ = 1 , 则列出方程为:
__________________________ , 解得: x= ________ .
二、合作探究:
1.阅读教材 P101,并完成下列填空:
(1)把总工作量看着 ______ ;
(2)人均效率为 _______ ,若设先安排 x 人工作 4 小时 ,则完成的工作量为 ___________ , 再增加 2 人和前一部分人一起做 8 小时 ,完成的工作量为 ______________ ,
(3)这段工作分两段完成 ,两段完成的工作量之和为 ____________________________ .
则列方程为 __________________________________ . 你会解吗?试一试。

提示:①此时工作量=人均效率×人数×工作时间② 如果一件工作分几段完成,则各阶段工作量的和=总工作量。

思考:你还能用其他的方法解吗?试一试。

2.一个道路工程 ,甲队单独施工 8 天完成 ,乙队单独施工 12 天完成 ,现在甲、乙两队共同施工 4
天,由于甲另有任务 ,剩下的工程由乙队完成 ,问乙队还需几天才能完成?
3x 1
3x 2 2 x 3 3.解方程:
2
2
3
5
4.若 a -
a
1 与 a
2 2 的值互为相反数 ,则 a 值为 _______ .
2 5
2
的时候 ,决定提高
5.小王抄写一份材料 ,每分钟抄写 30 个字 ,若干分钟可以抄完 ,当抄写了
5
效率 50% ,结果提前 20 分钟完成 ,则这份材料有 __________ 字。

三、能力提升 :
一项工程 ,甲独做需 9 天完成 ,乙单独做 12 天完成 ,丙单独做需 15 天完成 ,若甲、丙先做
3 天后 ,甲因故离开 ,由乙接替甲的工作 ,要完成这项工作的
5 ,还需要多少天?
6
四、学习小结:
五、课后作业 :
1.习题 3.3 第 9、 10 题
+ 5=0 是一元一次方程 ,求方程
5x
3m mx
3
2.已知关于 x 的方程( m +2)x
|m| 1
1
3 2m
的解。

相关文档
最新文档