曲柄连杆机构课件
合集下载
《曲柄连杆机构》课件

压缩机中的曲柄连杆机构
总结词
压缩机中的曲柄连杆机构是实现压缩气 体功能的关键部件,通过曲柄的旋转运 动带动连杆的往复运动,从而驱动活塞 在气缸内进行压缩气体的工作。
VS
详细描述
在压缩机中,曲柄连杆机构同样由曲轴、 连杆和活塞组成。曲轴的旋转运动通过连 杆传递给活塞,使活塞在气缸内进行往复 运动,从而实现气体的压缩。这个机构的 设计和优化对于提高压缩机的性能和效率 同样至关重要。
类型与特点
总结词
根据结构和工作原理的不同,曲柄连杆机构可分为多种类型,如单缸、双缸和多缸等。
详细描述
曲柄连杆机构的类型和特点多种多样,根据其结构和工作原理的不同,可以分为单缸、双缸和多缸等多种类型。 不同类型的曲柄连杆机构具有不同的工作特性和应用场景,例如在摩托车、汽车和船舶等领域中都有广泛的应用 。
2023
PART 02
曲柄连杆机构的应用
REPORTING
内燃机中的曲柄连杆机构
总结词
内燃机中的曲柄连杆机构是实现能量转换的关键部件,通过曲柄的旋转运动带动连杆的往复运动,从 而驱动活塞进行吸气、压缩、燃烧和排气工作。
详细描述
在内燃机中,曲柄连杆机构由曲轴、连杆和活塞组成。曲轴是发动机的核心部件,通过曲轴的旋转运 动带动连杆,连杆再将往复运动传递给活塞,使活塞在气缸内进行往复运动。这个机构的设计和优化 对于提高内燃机的性能和效率至关重要。
选择高强度、低摩擦系数的材料,提高机构的使用寿命和传动效率 。
降低曲柄连杆机构的能耗
1 2
优化曲柄连杆机构的运动特性
通过调整机构参数,降低机构在运动过程中的能 量损失。
应用节能技术
采用节能电机或采用能量回收技术,将机构在运 动过程中产生的能量进行回收利用。
《曲柄连杆机构》课件

详细描述
在曲柄连杆机构中,活塞在气缸内进行往复运动,由于连杆的摆动,使得活塞的直线运 动转变为曲轴的旋转运动。在这个过程中,曲轴的旋转运动将能量输出,驱动车辆或其 他机械运动。曲柄连杆机构的特点在于其能够将活塞的往复运动转变为旋转运动,从而
实现能量的高效转换。
分类与应用
总结词
曲柄连杆机构有多种分类方式,如按照曲轴 的形状可分为直列式和V型式,广泛应用于 汽车、摩托车等动力机械中。
缸体的材料选择也很重要,通常采用高强度合金钢或不锈钢制造,以提高其使用寿 命。
03
曲柄连杆机构的工作特性
运动特性
曲柄连杆机构是发动机中的重要 机构,它将活塞的直线运动转化 为曲轴的旋转运动,实现发动机
的做功过程。
曲柄连杆机构的运动特性包括曲 轴的旋转运动、活塞的往复直线
运动以及连杆的摆动运动等。
优化方法
采用数学建模、数值分析和计算机仿 真等方法进行优化设计。
优化流程
建立曲柄连杆机构的数学模型→确定 优化变量和约束条件→选择合适的优 化算法→进行优化计算→分析优化结 果→改进设计。
优化实例与结果分析
优化实例
以某实际应用的曲柄连杆机构为例,进行优化设计。
结果分析
通过对比优化前后的性能指标,分析优化效果。例如,运动性能提升、能耗降 低、振动减小等。同时,对优化后的曲柄连杆机构进行实验验证,确保优化结 果的可靠性和实用性。
05
曲柄连杆机构的常见问题与维护
常见问题与原因分析
01
02
03
04
曲柄连杆机构异响
由于润滑不良、装配间隙不当 或零件疲劳损坏等原因,可能 导致或曲轴轴瓦材料疲劳 极限较低可能导致曲轴轴瓦烧 蚀,影响曲柄连杆机构的正常 运转。
在曲柄连杆机构中,活塞在气缸内进行往复运动,由于连杆的摆动,使得活塞的直线运 动转变为曲轴的旋转运动。在这个过程中,曲轴的旋转运动将能量输出,驱动车辆或其 他机械运动。曲柄连杆机构的特点在于其能够将活塞的往复运动转变为旋转运动,从而
实现能量的高效转换。
分类与应用
总结词
曲柄连杆机构有多种分类方式,如按照曲轴 的形状可分为直列式和V型式,广泛应用于 汽车、摩托车等动力机械中。
缸体的材料选择也很重要,通常采用高强度合金钢或不锈钢制造,以提高其使用寿 命。
03
曲柄连杆机构的工作特性
运动特性
曲柄连杆机构是发动机中的重要 机构,它将活塞的直线运动转化 为曲轴的旋转运动,实现发动机
的做功过程。
曲柄连杆机构的运动特性包括曲 轴的旋转运动、活塞的往复直线
运动以及连杆的摆动运动等。
优化方法
采用数学建模、数值分析和计算机仿 真等方法进行优化设计。
优化流程
建立曲柄连杆机构的数学模型→确定 优化变量和约束条件→选择合适的优 化算法→进行优化计算→分析优化结 果→改进设计。
优化实例与结果分析
优化实例
以某实际应用的曲柄连杆机构为例,进行优化设计。
结果分析
通过对比优化前后的性能指标,分析优化效果。例如,运动性能提升、能耗降 低、振动减小等。同时,对优化后的曲柄连杆机构进行实验验证,确保优化结 果的可靠性和实用性。
05
曲柄连杆机构的常见问题与维护
常见问题与原因分析
01
02
03
04
曲柄连杆机构异响
由于润滑不良、装配间隙不当 或零件疲劳损坏等原因,可能 导致或曲轴轴瓦材料疲劳 极限较低可能导致曲轴轴瓦烧 蚀,影响曲柄连杆机构的正常 运转。
汽车构造课件第二章曲柄连杆机构

曲柄连杆机构的优 化设计
提高发动机的输 出功率
降低发动机的燃 油消耗
提高发动机的可 靠性和耐用性
降低发动机的噪 声和振动
提高发动机的环 保性能
提高发动机的经 济性
优化曲柄连杆机构的设计参数,如曲柄半径、连杆长度等 采用先进的材料和制造工艺,提高曲柄连杆机构的强度和耐磨性 优化曲柄连杆机构的运动轨迹,提高发动机的输出功率和燃油经济性
汽车构造课件第二章 曲柄连杆机构
汇报人:PPT
目录
添加目录标题
曲柄连杆机构概述
曲柄连杆机构的运 动学分析
曲柄连杆机构的受 力分析
曲柄连杆机构的优 化设计
曲柄连杆机构的故 障诊断与维护
添加章节标题
曲柄连杆机构概述
连接发动机曲 轴和活塞,实
现动力传递
控制活塞往复 运动,实现发
动机做功
调节发动机转 速和扭矩,实 现发动机性能
06
曲柄连杆机构的受力平衡条件是保证发动机正常工作的重要因素 曲柄连杆机构的受力平衡条件主要包括曲柄、连杆、活塞等部件的受力平衡 曲柄连杆机构的受力平衡条件需要满足力矩平衡、力平衡和位移平衡等条件 曲柄连杆机构的受力平衡条件可以通过计算和实验方法进行验证和优化
静力分析:分析曲柄连杆机构在静止状态下的受力情况 动力分析:分析曲柄连杆机构在运动状态下的受力情况 应力分析:分析曲柄连杆机构在受力状态下的应力分布 疲劳分析:分析曲柄连杆机构在长期受力状态下的疲劳寿命 振动分析:分析曲柄连杆机构在振动状态下的受力情况 热力分析:分析曲柄连杆机构在受热状态下的受力情况
优化
保护发动机, 防止活塞撞击 缸壁,延长发
动机寿命
曲柄:连接活塞连杆,传递动力 连杆:连接活塞和曲柄,传递动力 活塞:在气缸内上下运动,压缩气体
曲柄连杆机构课件

节能环保设计理念的应用
高效能设计
优化曲柄连杆机构的结构 设计,提高发动机的燃烧 效率,降低燃油消耗和排 放。
绿色制造工艺
采用环保的制造工艺,减 少对环境的污染,同时降 低生产成本。
可回收与再利用
设计可回收和再利用的曲 柄连杆机构,降低资源消 耗和环境污染,实现可持 续发展。
将电动机的旋转运动转化为输送带的往复运动,从而实现货物的输送。
03
曲柄连杆机构的优化设计
减小曲柄连杆机构的振动
1 2
优化曲柄连杆机构的结构设计
通过改进结构设计,降低机构运动时的振动。
选用高刚度材料
采用高刚度材料制造曲柄连杆机构,提高机构的 抗振性能。
3
合理配置平衡块
通过配置平衡块来平衡机构运动时的惯性力,减 少振动。
曲柄连杆机构课件
目录 Contents
• 曲柄连杆机构概述 • 曲柄连杆机构的应用 • 曲柄连杆机构的优化设计 • 曲柄连杆机构的常见问题与解决方案 • 曲柄连杆机构的发展趋势与展望
01
曲柄连杆机构概述
定义与组成
定义
曲柄连杆机构是发动机中的主要运动机构,它将活塞的往复运动转换为曲轴的旋 转运动,同时将作用于活塞上的力转变为曲轴对外输出的转矩,以驱动汽车的运 行。
根据曲柄连杆机构的工作需求,选择 具有合适强度、刚度和耐磨性的材料 。
考虑材料的加工性能
注重环保和可持续性
优先选择可再生、可回收或低环境影 响材料,促进可持续发展。
选用易于加工和制造的材料,降低制 造难度和成本。
04
曲柄连杆机构的常见问题与 解决方案
曲轴断裂问题
曲轴断裂是曲柄连杆机构中常见的问题之一,通常是由于曲轴承受过大的扭矩或 弯曲应力所导致的。
《曲柄连杆机构讲》PPT课件

(2) V型
气缸排成两列,左右两列 气缸中心线的夹角γ<180°, 称为V型发动机,V型发动机 与直列发动机相比,缩短了机 体长度和高度,增加了气缸体 的刚度,减轻了发动机的重量, 但加大了发动机的宽度,且形 状较复杂,加工困难,一般用 于8缸以上的发动机,6缸发动 机也有采用这种形式的气缸体。
缩短了机体的长度和高度, 增加了刚度,减轻了发动 机的重量;形状复杂,加 工困难。八缸以上发动机 使用
磨损均匀
连杆
➢ “全浮式”安装,当发动机工作时,活塞销、连杆小头和 活塞销座都有相对运动,这样,活塞销能在连杆衬套和活 塞销座中自由摆动,使磨损均匀。为了防止全浮式活塞销 轴向窜动刮伤气缸壁,在活塞销两端装有档圈,进行轴向 定位。由于活塞是铝活塞,而活塞销采用钢材料,铝比钢 热膨胀量大。为了保证高温工作时活塞销与活塞销座孔为 过渡配合。装配时,先把铝活塞加热到一定程度,然后再 把活塞销装入,这种安装方式应用较广泛。
气缸套视频
❖ ..\气缸.MPG
2. 曲轴箱
气缸体下部用来安装曲轴的部位称为曲箱 曲轴箱分上曲轴箱和下曲轴箱: 上曲轴箱与气缸体铸成一体,下曲轴箱用来贮存润 滑油,并封闭上曲轴箱,故又称为油底壳。 油底壳受力很小,一般采用薄钢板冲压而成,其形 状取决于发动机的总体布置和机油的容量。油底壳 内装有稳油挡板,以防止汽车颠动时油面波动过大。 油底壳底部还装有放油螺塞,通常放油螺塞上装有 永久磁铁,以吸附润滑油中的金属屑,减少发动机 的磨损。在上下曲轴箱接合面之间装有衬垫,防止 润滑油泄漏。
(3) 对置式
气缸排成两列,左右两列气缸在同一水平面 上,即左右两列气缸中心线的夹角 γ=180°, 称为对置式。它的特点是高度小,总体布置方 便,有利于风冷。这种气缸应用较少。
曲柄连杆机构-优质课件

2、活塞的选配要求有哪些?
1)活塞环的弹力检验 2)活塞环的漏光度检验 3)活塞环“三隙”的检验 端隙0.1----0.6mm 侧隙0.03---0.075mm 背隙0---0.35mm
5、连杆的检修 (1)连杆裂纹检修 (2)连杆大头内孔磨损检修:圆度和 圆柱度误差不大于0.025mm。 (3)连杆螺栓的检修 (4)连杆变形的检验: 弯曲、扭曲,用连杆校正仪进行。
3、飞轮的检修 (1)飞轮齿圈的检修:断齿或齿端耗损 严重,超过30℅或连续损坏4齿,应更换。 (2)飞轮工作平面的修整 飞轮工作平面的有严重烧蚀或磨损沟槽 深弃超过0.5mm,平面度误差为大于 0.2mm,飞轮厚度极限减薄量1mm。应更 换。
(3)飞轮螺栓孔的检修
小结: 作业: 1、曲轴的检修要求是什么? 2、曲轴轴承的选配要求有哪些?修理 方法是什么? 3、飞轮的检修方法是什么?
曲轴飞轮组的组成:曲轴、飞轮、扭转 减振器、皮带轮、正时齿轮等。 一、曲轴 曲轴的组成:
结构: 曲轴轴颈 平衡重 连杆轴颈 前端轴 后端轴
曲柄
曲拐
曲拐:由一个连杆轴颈和它两端曲柄及主轴颈构成。
三、曲轴飞轮给的检修 曲轴的损伤:轴颈磨损、弯扭变形和裂 纹 1、曲轴的检修 (1)裂纹的检修:磁力探伤和染色法, 修复:细小裂纹可用磨削法。 (2)曲轴弯曲的检修:用百分表在V型 架上检测,用冷压校正和敲击校正。 (3)曲轴扭曲变形的检修:用百分表在 V型架上检测。用冷压校正和敲击校正。
3、连杆衬套的修配 (1)连杆衬套的更换:过 盈量0.1—0.2mm
4、活塞环的选配 (1)活塞环的损伤 磨损、弹性减弱和折断等。 (2)活塞环的选配 与气缸、活塞的修理尺寸一致,具有 规定的弹力,以保证气缸的密封性; 环漏光度、端隙、侧隙、和背隙应符 合原厂规定。
《曲柄连杆结构》课件

泵领域
在泵中,曲柄连杆结构用于驱动活 塞进行往复运动,实现液体的吸入 和排出。
曲柄连杆结构的基本组成
01
02
03
曲轴
曲轴是曲柄连杆结构中的 关键部件,其形状通常为 弯曲的轴,具有曲拐或曲 轴臂。
连杆
连杆是连接活塞和曲轴的 部件,通常由钢或铸铁制 成,具有一定的长度和刚 度。
活塞
活塞是曲柄连杆结构中的 另一个关键部件,通常由 金属或合成材料制成,具 有一定的重量和尺寸。
特点
具有高效率、高可靠性、低维护 成本等优点,广泛应用于内燃机 、压缩机、泵等机械设备中。
曲柄连杆结构的应用领域
内燃机领域
曲柄连杆结构是内燃机中的核心 部分,用于将活塞的直线运动转 化为曲轴的旋转运动,从而输出
动力。
压缩机领域
在压缩机中,曲柄连杆结构用于驱 动活塞往复运动,从而实现对气体 的压缩。
结构设计优化
总结词
结构设计优化是提高曲柄连杆工作性能的重要手段,通过对曲柄连杆的结构进行优化设计,可以减小应力集中、 提高疲劳强度和降低振动。
详细描述
结构设计优化主要包括对曲柄连杆的形状、尺寸和连接方式等进行优化设计。通过改变曲柄连杆的形状和尺寸, 可以改善应力分布,减小应力集中;通过优化连接方式,可以提高曲柄连杆的刚度和稳定性。
表面处理工艺需要根据曲柄连杆的工作条件和使用要求进行选择和优化,以确保其性能和使 用寿命。
06
曲柄连杆的应用实例
内燃机中的曲柄连杆机构
总结词
内燃机中的曲柄连杆机构是实现能量转换的 核心部件,通过曲柄连杆机构将活塞的往复 运动转化为旋转运动,从而输出动力。
详细描述
内燃机中的曲柄连杆机构由曲轴、连杆和活 塞组成,通过曲轴的旋转运动带动连杆转动 ,连杆推动活塞在气缸内往复运动,完成吸 气、压缩、做功和排气四个冲程,实现内燃 机的运转。
在泵中,曲柄连杆结构用于驱动活 塞进行往复运动,实现液体的吸入 和排出。
曲柄连杆结构的基本组成
01
02
03
曲轴
曲轴是曲柄连杆结构中的 关键部件,其形状通常为 弯曲的轴,具有曲拐或曲 轴臂。
连杆
连杆是连接活塞和曲轴的 部件,通常由钢或铸铁制 成,具有一定的长度和刚 度。
活塞
活塞是曲柄连杆结构中的 另一个关键部件,通常由 金属或合成材料制成,具 有一定的重量和尺寸。
特点
具有高效率、高可靠性、低维护 成本等优点,广泛应用于内燃机 、压缩机、泵等机械设备中。
曲柄连杆结构的应用领域
内燃机领域
曲柄连杆结构是内燃机中的核心 部分,用于将活塞的直线运动转 化为曲轴的旋转运动,从而输出
动力。
压缩机领域
在压缩机中,曲柄连杆结构用于驱 动活塞往复运动,从而实现对气体 的压缩。
结构设计优化
总结词
结构设计优化是提高曲柄连杆工作性能的重要手段,通过对曲柄连杆的结构进行优化设计,可以减小应力集中、 提高疲劳强度和降低振动。
详细描述
结构设计优化主要包括对曲柄连杆的形状、尺寸和连接方式等进行优化设计。通过改变曲柄连杆的形状和尺寸, 可以改善应力分布,减小应力集中;通过优化连接方式,可以提高曲柄连杆的刚度和稳定性。
表面处理工艺需要根据曲柄连杆的工作条件和使用要求进行选择和优化,以确保其性能和使 用寿命。
06
曲柄连杆的应用实例
内燃机中的曲柄连杆机构
总结词
内燃机中的曲柄连杆机构是实现能量转换的 核心部件,通过曲柄连杆机构将活塞的往复 运动转化为旋转运动,从而输出动力。
详细描述
内燃机中的曲柄连杆机构由曲轴、连杆和活 塞组成,通过曲轴的旋转运动带动连杆转动 ,连杆推动活塞在气缸内往复运动,完成吸 气、压缩、做功和排气四个冲程,实现内燃 机的运转。
汽车构造课件第二章曲柄连杆机构

汽车构造课件第二章曲柄 连杆机构
曲柄连杆机构是汽车发动机的核心部分之一,它由曲轴、连杆、活塞、活塞 销组成,掌控着发动机的能量,是发动机运转的关键。
曲柄连杆机构的概述
定义和作用
曲柄连杆机构是将热能转化为机械能的重要部 件,通过连杆和曲轴的配合,将活塞的往复运 动转化为连续的旋转。
组成部分
曲柄连杆机构包括曲轴、连杆、活塞、活塞销 等零部件。这些零部件的配合精度直接决定了 发动机的性能。
曲柄连杆机构的构造
曲轴
它是曲柄连杆机构的核心部件,完成了能量转化的 关键步骤。曲轴的质量和配合精度直接影响着发动 机的性能。
连杆
它连接了活塞和曲轴,通过连杆小头和大头分别与 活塞销和曲轴配合,将活塞的往复运动转化为了曲 轴的旋转。
活塞
它是曲柄连杆机构的动力源,负责将内燃机燃烧产
曲柄连杆机构的运动分析
1
活塞运动规律
活塞在缸体内做往复直线运动,并在上下止点处停留。
2
连杆运动规律
连杆的小头与活塞销配合,大头与曲轴销配合,实现了从往复运动到旋转运动的 转换。
3
曲轴运动规律
曲轴将连续的活塞运动,曲柄连杆机构的应用
在汽车发动机中的应用
曲柄连杆机构的保养
对发动机进行长期保养,采取科学的驾驶方式,注 意及时更换机油和油滤器,定期送车厂进行维修。
思考题
1 如何改变曲柄连杆机构的运动规律?
可以通过更改连杆长度或者改进曲轴形态,来调整曲柄连杆机构的运动规律。
2 如何设计适合不同工况的曲柄连杆机构?
需要深入了解每种工况下的负载特点,并根据负载特点进行优化设计,以提高曲柄连杆 机构的工作效率和寿命。
曲柄连杆机构是汽车内燃机的核心部分之一,掌控着车辆的动力输出,是汽车发动机的重要 组成部分。
曲柄连杆机构是汽车发动机的核心部分之一,它由曲轴、连杆、活塞、活塞 销组成,掌控着发动机的能量,是发动机运转的关键。
曲柄连杆机构的概述
定义和作用
曲柄连杆机构是将热能转化为机械能的重要部 件,通过连杆和曲轴的配合,将活塞的往复运 动转化为连续的旋转。
组成部分
曲柄连杆机构包括曲轴、连杆、活塞、活塞销 等零部件。这些零部件的配合精度直接决定了 发动机的性能。
曲柄连杆机构的构造
曲轴
它是曲柄连杆机构的核心部件,完成了能量转化的 关键步骤。曲轴的质量和配合精度直接影响着发动 机的性能。
连杆
它连接了活塞和曲轴,通过连杆小头和大头分别与 活塞销和曲轴配合,将活塞的往复运动转化为了曲 轴的旋转。
活塞
它是曲柄连杆机构的动力源,负责将内燃机燃烧产
曲柄连杆机构的运动分析
1
活塞运动规律
活塞在缸体内做往复直线运动,并在上下止点处停留。
2
连杆运动规律
连杆的小头与活塞销配合,大头与曲轴销配合,实现了从往复运动到旋转运动的 转换。
3
曲轴运动规律
曲轴将连续的活塞运动,曲柄连杆机构的应用
在汽车发动机中的应用
曲柄连杆机构的保养
对发动机进行长期保养,采取科学的驾驶方式,注 意及时更换机油和油滤器,定期送车厂进行维修。
思考题
1 如何改变曲柄连杆机构的运动规律?
可以通过更改连杆长度或者改进曲轴形态,来调整曲柄连杆机构的运动规律。
2 如何设计适合不同工况的曲柄连杆机构?
需要深入了解每种工况下的负载特点,并根据负载特点进行优化设计,以提高曲柄连杆 机构的工作效率和寿命。
曲柄连杆机构是汽车内燃机的核心部分之一,掌控着车辆的动力输出,是汽车发动机的重要 组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、油底壳
1、概念: 贮存机油并封闭曲轴箱,又称为下曲轴箱。 2、使用特点: 油底壳底部还装有放油螺塞,通常放油螺塞上装有永 久磁铁,以吸附润滑油中的金属屑,减少发动机的磨损 3、材料: 薄钢板冲压
(2)根据冷却方式不同分:
冷却水
水冷、风冷
散热片
(4)干式气缸套和湿式气缸套
名称 特 点 示意图
斜切口(30°-60° 一般45 °)
连杆轴瓦
1、作用:保护连杆轴颈及连杆大头孔。 2、组成:由钢背和减磨合金层组成。钢背由1mm~3mm的低碳钢制成。 减磨层为0.3mm~0.7mm的减磨合金,层质较软能保护轴颈, 具有保持油膜、减少摩擦阻力和加速磨合的作用。
V型发动机连杆的布置形式
并列式
主副式
(2)预先做成椭圆形 椭圆的长轴方向与销座垂直,短轴方向沿销座方向。这样活塞工作时 趋近正圆。
(3)活塞裙部开槽
横向绝热槽 减少裙部受热 有的兼作油环回油孔 留有膨胀余地 活塞强度降低 绝热槽
纵向膨胀槽
膨胀槽
(4)为了减小铝合金 活塞裙部的热膨胀量, 有些汽油机活塞在活塞 裙部或销座内嵌入钢片。
(四)连杆
作用:连接活塞与曲轴,并把活塞承受的气体压力 传给曲轴,使活塞的往复运动变成曲轴的旋转运 动。
连杆小头 杆身 连 杆
组
件 分 解
连杆 大头
图
连杆大头的连接形式
平切式
斜切式
2、定位方式: A、连杆螺栓定位:靠连杆螺栓的光圆柱部分与螺栓孔的 配合来定位。其定位精度较差,用于平切口连杆。 B、锯齿形定位:依靠接合面的齿形定位。 C、套或销定位:依靠套或销与连杆体(或盖)的孔紧配 合定位。 D、止口定位
恒范钢片式活塞
的结构特点就是这样的, 由于恒范钢为含镍 33%~36%的低碳铁镍合 金,其膨胀系数仅为铝 合金的1/10,而销座通 过恒范钢片与裙部相连, 牵制了裙部的热膨胀变 形量。
6、活塞在工作时的保护措施
(1)在活塞裙部表面涂保护层,可改善铝合金活塞的磨合性; 主要有铅、锡、石墨、磷保护层等。 (2)在安装活塞销时,使活塞销偏置某一方向装,以减少换向 时的敲击声,且使裙部减小磨损; 有的汽油机上,活塞销孔中心线是偏离活塞中心线平面的, 向作功行程中受主侧压力的一方偏移了1~2mm。
气环的泵油作用
气环断面形状:
形状 特点
示意图
矩形环 结构简单、制造方便、易于生产、 应用面广
断面不对称,受力不平衡,使活 扭曲环 塞环扭曲 减少了环与气缸壁的接触面,提 锥面环 高了表面接触压力,有利于磨合 和密封。
梯形环 加工困难,精度要求高 桶面环 外圆为凸圆弧形
(三)活塞销
作用:连接活塞和连杆小头,并把活塞承受的气 体压力传递给连杆。
头部
工作条件最 恶劣,应离 顶部远些。
作用: 1、安装活塞环、与活塞环一起密封气缸、
2、防止可燃混合气漏到曲轴箱内, 3、将顶部吸收的热量通过活塞环传给气缸壁。
(3)活塞裙部
位置:从油环槽下端面起至活塞最下端的部分,包括销座孔。 作用:对活塞在气缸内的往复运动起导向作用,并承受侧压力, 防治破坏油膜。
活塞销的偏置
使活塞从压缩行程到作功行程柔和的从气缸 的一边过渡到另一边,减少敲缸的声音。
偏置销座
1、定义:活塞销座朝向承受作功侧压力的一 面(图示左侧)偏移1mm~2mm。 2、作用:减轻活塞换向时对气缸壁的敲击。
3、原理:因销座偏置,在接近上止点时,作用 在活塞销座轴线以右的气体压力大于左边,使 活塞倾斜,裙部下端提前换向。而活塞在越过 上止点,侧压力反向时,活塞才以左下端接触 处为支点,顶部向左转(不是平移),完成换 向。
(二)活塞环
是具有弹性的开口环,分为气环和油环。 工作条件: 高温、高压、高速、极难润滑。 平均寿命: 6万公里 材料:合金铸铁或球墨铸铁(有时表面涂有保护层)
(1)气环
作用:保证气缸与活塞间的密封性,防止漏气,并把活塞 顶部吸收的大部分热量传给气缸壁,再由冷却水将其带走。
切口
气环
活塞环安装三隙
第二章 曲柄连杆机构
概述
机体组
活塞连杆组 曲轴飞轮组
§2.1
一、曲柄连杆机构的功用
概
述
将燃料燃烧时产生的热能转变为活塞往复运动 的机械能,再通过连杆将活塞的往复运动变为曲 轴的旋转运动而对外输出动力。
二、组成 1、机体组
2、活塞连杆组
3、曲轴飞轮组
多缸发动机的曲柄连杆机构演示
§3.2
机体组组成: 气缸盖
第二节 机体组
功用:
发动机的支架
两大机构和发动机各系统的装配基体 形成燃烧室 冷却系统和润滑系统的组成部分
主要组成:
气缸体、气缸盖、气缸盖衬垫、油底壳
一、气缸体
1、气缸体:水冷发动机的气缸体和上曲轴箱常铸成一体,称
为气缸体——曲轴箱
气缸
上曲轴箱
气缸排列
形式
气缸排列形式
A 刚度和强度应足够大,传力可靠。 B 导热性能好,耐高压、高温、磨损
活塞应具 备的特点 C 质量较小,尽可能减少往复惯性力 D 耐热的活塞顶及弹性的活塞裙 E 活塞与气缸壁间有较小的摩擦系数
4、结构
(1)活塞顶部 功用:是燃烧室的组成部分,主要作用承受气体压力。
顶部:构成燃烧室,承
受气体压力。
头部:安装活塞环,制
(1)金属—石棉垫
(2)纯金属垫
§3.3
活塞连杆组
气环 油环 活塞销 活塞 连杆 连杆螺栓 连杆轴瓦 连杆盖
一、活 塞
1、功用:承受气体压力,并通过活塞销和连杆驱使曲轴旋转。 2、工作环境:高温、散热条件差;顶部工作温度高达600~ 700K,且 分布不均匀;高速,线速度达到10m/s, 承受很大的惯性力。活塞 顶部承受最高可达3~5MPa(汽油机)的压力,使之变形,破坏配合 联结。 3、材料: 铝合金:质量小 导热性好;灰铸铁
叉型式
§3.4
皮带轮
扭转减振器
曲轴飞轮组
飞轮 正时齿轮
一、曲轴飞轮组的组成
起动爪
曲轴
主轴瓦
二、曲轴
1、功用:把活塞连杆组传来的气体压力转变为扭矩对外输出。还用 来驱动发动机的配气机构及其他各种辅助装置。 2、工作条件:受气体压力、惯性力、惯性力矩。承受交变载荷的冲 击。
3、结构:
连杆轴颈 曲轴轴颈 平衡重
单列式
气缸排成一列垂直布置。结构简单, 加工容易,发动机长度、高度大
一般六缸以下采用。如捷达、富康、 红旗轿车所使用
V型
左右两列气缸中心线的夹角γ <180° 与直列式相比,缩短了机体长度和高 度,增加了缸体的刚度,加大了宽度, 形状较复杂,加工困难,一般用于8缸 以上的发动机
对置式:
2、气缸盖罩和气缸垫
气缸盖罩 衬垫
气缸盖 安装火花塞
气缸垫:功用是保证气缸盖与气缸体接触面 的密封,防止漏气,漏水和漏油。
三、气缸盖、气缸垫和气缸盖罩
1、气缸盖
结构: 气缸盖上有冷却水套、燃烧室、进排气门道、气门导管孔和进排气 座、火花塞孔(汽油机)或喷油器座孔。 功用:密封气缸的上部,与活塞、气缸等共同构成燃烧室。 材料:灰铸铁或合金铸铁,铝合金。 工作条件:由于接触温度很高的燃气,所以承受的热负荷很大。
机 体 组
气缸盖罩 气缸垫 油道和水道
气缸体 曲轴箱 气缸 油底壳
§3.3
活塞连杆组
气环 油环 活塞销 活塞 连杆 连杆螺栓 连杆轴瓦 连杆盖
§3.4
皮带轮
扭转减振器
曲轴飞轮组
飞轮 正时齿轮
一、曲轴飞轮组的组成
起动爪
曲轴
主轴瓦
2.工作条件和受力分析 工作条件: 高温、高压、高速、有化学腐蚀 受力分析: 气体作用力、往复惯性力、离心力、摩擦力、外界阻力
侧隙
端隙
背隙
气环的密封
(2)油环
种类 普通油环
刮油片
组合式油环
示 意 图
轴向衬环
刮油片
径向衬环
(2)油环(普通环
刮油片
组合环) 轴向衬环 径向衬环
油环的刮油作用
油环的刮油作用
气环的密封原理: 将2~3道气环的切口相互错开形成“迷宫式”封气装置。 气环的泵油原理:
点此观看录像
动 态 演 示
气环的泵油作用
材料与工艺:优质低碳钢,表面淬火、精磨。
构造:活塞销的内孔形状有圆柱形,两段截锥形, 以及两段截锥与一段圆柱的组合形。
圆柱形
两段截锥与一段圆柱结合
两段截锥形
活塞销
形式:全浮式(工作时自由转动)、半浮式。
活塞销
全浮式:活 塞销能在连 杆衬套和活 塞销座中自 由摆动,使 磨损均匀。
连杆
半浮式: 活塞中部 与连杆小 头采用紧 固螺栓连 接,活塞 销只能在 两端销座 内作自由 摆动。多 用于小轿 车
3、燃烧室
名称 特点
结构紧凑、火焰行程短、 燃烧速率高、热损失小、 热效率高
示意图
应用
桑塔纳 夏利 富康
半球形
楔形
结构简单、紧凑、散热 面积小、热损失少;火 花塞置于燃烧室最高处, 火焰传播距离长
切诺基
盆形
工艺性好、成本低、进 排气效果不如半球形燃 烧室
捷达 奥迪
汽油机燃烧室形状
楔形燃烧室 1)气门斜置,气流导流较好,充气效率高; 半球形燃烧室: 2)有挤气—冷激面,可形成挤气涡流; 1)气门成横向V形排列,气门头部直 3)燃烧速度较快,CO和HC排放较低而NO排 径可以做得较大, 放稍高。 换气好; 2)火花塞位于燃烧室的中部,火焰行 盆形燃烧室 程短,燃烧速度最 1)气门平行于气缸轴线; 高,动力性、经济性最好,是高速发动 2)有挤气—冷激面,可形成挤气涡流; 机常用的燃烧室; 3)盆的形状狭窄,气门尺寸受限,换气质 3)CO和HC排放最少,而NO排放较高。 量较差,燃烧速度较低,CO和HC排放较高 而NO排放较低。