八上 1.4 线段、角是轴对称性(2)
八上 线段、角的轴对称性 知识点+例题+练习 (非常好 分类全面)

两点,EC=4,ABC∆的周长为的垂直平分线分别交AC,AD,的对称点,线段MN分⊥,延长AE,BE,BE AE8.如图,D是ABC∆的边BC的中点,过AD延长线上的点E作AD的垂线EF,垂足为E,EF 与AB的延长线交于点F,点O在AD上,AO COBC EF.=,//求证:(1)AB AC= ;(2)点O是ABC∆三边垂直平分线的交点.【知识点4】最值问题1.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是()A.10 B.15 C.20 D.303.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC 上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是.4.如图,在△ABC 中,∠C=90°,AB=4,∠A 的平分线交BC 于点D ,若点P 、Q 分别是AC 和AD 上的动点,则CQ+PQ 的最小值是 .5.如图,已知等边△ABC ,点D 为AC 的中点,BD=4,点E 为BC 的中点,点P 为BD 上一动点,则PE+PC 的最小值为角平分线的性质知识点1 角平分线的性质1. 如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,有下列结论:①CD ED =;②AC BE AB +=;③BDE BAC ∠=∠; ④DA 平分CDE ∠.其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个2. 若△ABC 的周长为41 cm ,边BC =17 cm .AB<AC ,角平分线AD 将△ABC 的面积分成3:5的两部分,则AB =______cm .3.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一动点,若3PA =,则PQ 的最小值为( )A.32B. 2C. 3D.不能确定的平分线BE,CD,平分BAC=;∠;③AP PC2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺的一边与射线OB重合,另一把直尺的一边与射线OA重合并且与第一把直尺交于点P,小明说:“射线OP就是BOA∠的平分线.”他这样做的依据是( )A.角的内部到角两边的距离相等的点在角的平分线上B.角平分线上的点到角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确3.如图,已知点P到,,AE AD BC的距离相等,下列说法:①点P在BAC∠的平分线上;②点P 在CBE∠,BCD∠,CBE∠的平分∠的平分线上;④点P是BAC∠的平分线上;③点P在BCD线的交点.其中所有正确的序号是( )A.①②③④B.①②③C.④D.②③4.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2 B.3 C.4 D.55.如图,已知射线OC上的任意一点到AOBD E F分别在边∠的两边的距离相等,点,,OC OA OB上,如果想要证明OE OF,,=,只需要添加以下四个条件中的某一个即可,请写出所有可能条件的序号 .①ODE ODF⊥.∠=∠;②OED OFD∠=∠; ③ED FD=;④EF OC6.如图,已知CE AB=.⊥,垂足分别为点,E F,BF交CE于点D,BD CD⊥,BF AC(1)求证:点D在BAC∠的平分线上;(2)若将条件“BD CD∠的平分线上”互换,成立吗?试说明=”与结论“点D在BAC理由.知识点3 角平分线的性质在生活中的应用1.如图,△ABC中,∠C=90°,(1)在BC上找一点D,使点D到AB的距离等于DC的长度;(2)连接AD,画一个三角形与△ABC关于直线AD对称.3. 如图,直线123,,l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到4. 三条公路的距离都相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处3.如图,两条公路OA 和OB 相交于点O ,在AOB ∠的内部有两个工厂C ,D ,现要在AOB ∠内部修建一个货站P ,使货站P 到两条公路的距离相等,且到两个工厂C ,D 的距离也相等,用尺规作出货站尸的位置.(要求:保留作图痕迹,不写作法)4.如图,三家公司A 、B 、C 准备共建一个污水处理站M ,使得该站到B 、C 两公司的距离相等,且使A 公司到污水处理站M 的管线最短,试确定污水处理站M 的位置.5.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB:(2)在直线l上求一点Q,使l平分∠AQB.。
八年级数学复习考点1 轴对称及轴对称图形的意义

ABCDP八年级数学复习考点1 轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。
4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。
二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。
变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。
变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。
三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2.(2006 山西省3分)下列图形中是轴对称图形的是( )。
3.(2006河南省3分)下列图形中,是轴对称图形的有( )ABABlB A CDA.4个B.3个C.2个D.1个4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.(2006苏州市3分)如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1100.那么∠BCD 的度数等于 ( ) A. 400B.500C .60D.7006.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )7.(2006 湛江市6分)如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.(2006宜昌市3分)从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。
八上 轴对称 第4节 线段、角的轴对称性(2)含答案

第4节线段、角的轴对称性(2)一、选择题1.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点2.点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )A.3 B.4 C.5 D.63.如图,在△ABC中,点O是∠ABC的平分线与线段BC的垂直平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB.垂足分别为D、E、F,则下列结论不一定成立的是( ) A.OB=OC B.OD=OF C.OA=OB=OC D.BD=DC4.已知:如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°.在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是( )A.60°B.80°C.100°D.120°5.如图,将矩形ABCD沿AE折叠,使D点落在BC边上的F点处.如果∠BAF=60°,则∠AEF等于( )A.45°B.55°C.65°D.75°二、填空题6.如图.射线OC平分∠AOB,点P在OC上,且PM⊥A于M.PN⊥OB于N,当PM =2 cm时,则PN=__________cm.7.如图,如果点P在射线OC上,PD⊥OA,PE⊥OB,垂足分别为D、E,且PD=PE,那么∠1=∠2.理由是:____________________________________.8.如图,在Rt△ABC中,∠C=90°.AD平分∠BAC交BC于D.(1)若BC=8,BD=5,则点D到AB的距离是____________.(2)若BD:DC=3:2,点D到AB的距离为6,则BC的长是______.9.若△ABC的周长为41 cm,边BC=17 cm.AB<AC,角平分线AD将△ABC的面积分成3:5的两部分,则AB=______cm.10.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,且AB=10 cm,则△DEB的周长是______.三、解答题11.如图,△ABC中,∠C=90°,(1)在BC上找一点D,使点D到AB的距离等于DC的长度;(2)连接AD,画一个三角形与△ABC关于直线AD对称.12.“西气东输”是造福子孙后代的创世工程,现有两条高速公路l1、l2和两个城镇A、B (如图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置.(保留画图痕迹,不写画法)13.如图,在△ABC中,∠ABC和∠BAC的角平分线交于点O,OD⊥BC,OE⊥AC,OF⊥AB,垂足分别为D、E、F.(1) OD与OF相等吗?为什么?(2) OE与OF相等吗?为什么?(3) OD与OE相等吗?为什么?(4) OC平分∠ACB吗?为什么?14.如图,直线a,b,c表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?如何选?参考答案1.C2.A3.C4.B5.D6.27.角的内部到角两边距离相等的点在这个角的平分线上.8.(1)3 (2)15 9.9 10.10 cm11.(1)作∠A的平分线与BC相交于点D (2)图略12.。
苏科版数学八年级上册教学设计《2-4线段、角的轴对称性(1)》

苏科版数学八年级上册教学设计《2-4线段、角的轴对称性(1)》一. 教材分析《苏科版数学八年级上册》第三章是关于几何图形的对称性,本节课是该章节的第一节,主要内容是2-4线段和角的轴对称性。
教材通过引入日常生活中的实例,让学生感受对称性的存在,从而引导学生探究线段和角的对称性质。
教材先从线段的对称性入手,让学生了解线段的对称轴和轴对称的性质,再引入角的对称性,让学生探究角的对称轴和轴对称的性质。
二. 学情分析学生在七年级时已经学习了平面几何的基本概念,对图形的性质有一定的了解。
但对称性这一概念对学生来说较为抽象,需要通过实例和活动让学生感受和理解。
学生在学习过程中,需要从实际问题出发,通过观察、操作、猜想、验证等环节,体会对称性的存在和意义。
三. 教学目标1.理解线段和角的对称性质,掌握线段和角的对称轴的定义。
2.能够判断一个线段或角是否具有对称性,并找出其对称轴。
3.会用对称性解释一些实际问题,提高解决问题的能力。
四. 教学重难点1.教学重点:线段和角的对称性质,对称轴的定义。
2.教学难点:如何判断一个线段或角是否具有对称性,如何找出其对称轴。
五. 教学方法采用问题驱动法、实例教学法、操作验证法、小组讨论法等,引导学生从实际问题中发现对称性,通过操作和验证理解对称性,通过小组讨论深化对对称性的理解。
六. 教学准备1.准备一些具有对称性的线段和角的实例,用于导入和呈现。
2.准备一些操作工具,如直尺、量角器等,用于学生操练。
3.准备一些练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过展示一些具有对称性的线段和角的实例,如折纸、剪纸等,引导学生观察和思考:这些图形有什么共同的特点?它们是如何形成的?从而引出对称性的概念。
2.呈现(10分钟)介绍线段和角的对称性质,讲解对称轴的定义。
通过展示线段和角的轴对称的动画,让学生直观地理解对称性质。
同时,让学生尝试判断一些线段和角是否具有对称性,并找出其对称轴。
初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题基础知识测试题(南京下关)一、填空题(共6小题,每空0.5分,计10分)1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步发展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近发展区理论”认为学生的发展有两种水平:一种是学生的___________发展水平;另一种是学生_________________发展水平,两者之间的差异就是最近发展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论发展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著《怎样解题》中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表”有两个特点,即普遍性和_____________性.二、简答题(共3小题,每小题5分,计15分)7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.《义务教育数学课程标准》(2011年版)从知识与技能等四个方面对总目标进行了阐述.(1)请写出其他三个方面目标的名称;(2)请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等”这一结论在苏教版义务教育数学教材八上的《1.4线段、角的轴对称性》以及九上的《1.2直角三角形全等的判定》中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.基础知识、基本技能、基本思想、基本活动经验.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,(试验结果的)有限性,(每个结果的)等可能性.6.弄清问题、拟定计划、实施计划、回顾反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等.8.(1)数学思考、问题解决、情感态度;(2)四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上《1.4线段、角的轴对称性》中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上《1.2直角三角形全等的判定》是通过严格的推理论证,采用自己画图、写已知、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进行严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知发展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括基础知识测试和解题能力测试两部分.基础知识测试内容包括数学文化(数学史)常识和数学教育基础知识(教材、课程标准、教育学、心理学、教学论、教学法等).解题能力测试内容包括基础题(教材中的基本定理、公式的证明,教材例题、习题、复习题)与综合题(与中考中档题难度相当).2.第1、2、8题考查对《课标》学习和理解情况(称为课标板块);第4、5、7题结合苏教版初中数学教科书的教学内容对数学史进行简单的考查(称为数学史板块);第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考查(称为综合板块).2012年雨花台区小学数学青年教师教学基本功比赛教育教学知识常识比赛试卷(满分100分,时间60分钟)姓名成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。
八年级上十二章轴对称知识点总结(最全最新)

轴对称知识点(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
关于谁谁不变,关于原点都相反(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称(七)点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
线段、角的轴对称性(2)苏教版八年级上册数学ppt课件

教学目标
• 1、掌握线段垂直平分线的判定定理; • 2、能从集合的角度来理解线段垂直平分 线; • 3、会用线段垂直平分线的性质与判定解 决有关问题;
观察与思考
• 观看动画; • 可以得到什么结论?
线段垂直平分线的 判定定理
• 内容:到线段两端距离相等的点,在这条线 段的垂直平分线上;
•
例题 如图,已知ΔABC。分别作出
A
AB,AC的垂直平分线m,n,交于 点O。 • (1)测量一下,OA=OB=OC吗? 为什么? • (2)如果三角形的形状变化了, B 上述结论是否仍然成立?由此, 你可以得出什么结论? • (3)点O在BC的垂直平分线上 吗?
C
简写成: AM=BM,AN=BN AB是MN的垂直平分线
怎么证明?
解: 过点P作PO AB,垂足为O PO AB AOP BOP ____ 在___ AOP和___ BOP中 AP BP PO PO Rt AOP Rt BOP AO ___ _____________ PO是AB的垂直平分线
P A B
怎么证明?
P A O B
如果开始作的是中线PO,那么要 证明PO是垂直平分线,只要再 证明什么?
尺规作线段的垂直平分线
• 1、如何作线段的垂直平分线? • 2、看动画; • 3、步骤:画弧,作直线;
从集合的角度来看线段
线段的垂直平分线是到线段 两端距离相等的点的集合。
练习
• 课本P19;
PA PB 点P在AB的垂直图, AM=AN,BM=BN.
AM AN 点A在线段MN的________; BM=BN 点B在线段MN的________;
中学数学青年教师基本功大赛笔试试卷(专业知识)

中学数学青年教师基本功比赛——理论部分(一)填空题1.数学课堂教学的三维目标是知识与技能、过程与方法、情感与价值观。
2.法国哲学家、物理学家、数学家、生理学家勒奈笛卡尔被称为解析几何学的创始人。
3.今天,世界各国的科学家们都在试探寻找“外星人”,科学家们一次又一次地向宇宙发射了地球上人类的形象、问候语言、自然音响、世界名曲等信号,尝试与“他们”通话、建立友谊。
数学家曾建议用勾股定理作为人类探寻“外星人”并与“外星人”联系的语言。
4.1900年前后,在数学的集合论中出现了三个著名悖论,其中最重要的悖论罗素悖论,这些悖论触发了第三次数学危机。
5.课程标准的一个重要支撑理论是建构主义,其代表人物有:皮亚杰、卡茨、维果斯基。
(填两个)6.数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
7. 教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生成为学习的主人。
8、初中阶段的数学内容分为数与代数、空间与图形、统计与概率和课题学习四个领域。
9、动手操作、自主探究、合作交流是学生学习数学的重要方式。
10、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的发展需要;人的发展不可能整齐划一,必须承认差异,尊重差异。
11.义务教育阶段的数学课程标准应体现基础性、普及性_、_发展性_, 使数学教育面向全体学生,实现:①人人学有价值的数学;②_人人获得必需的数学__;③_不同的人在数学上获得不同的发展_。
12.新课程理念下教师的角色发生了变化,已有原来的主导者转变成了学生学习活动的__组织者__,学生探究发现的_引导者__,与学生共同学习的_合作者__。
13.例举三个以上适合课外学生数学活动的形式___数学手抄报、数学专题报告、数学小调查、数学演讲__14.古希腊的三大几何问题是三等分角、立方倍角、化圆为方;15.数学史上三大数学危机是无理数的发现、无穷小是零、悖论的产生;16.我国著名数学家陈景润证明了数论中的命题“1+2”,这个命题的具体名称是任何一个大于2的偶数都可以表示成两个质数的和;17.把实数表示在数轴上体现了数形结合数学思想;(二)简答题18.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何作图三大难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏州市吴中区木渎实验中学
一、情境创设: 张庄、李庄和马庄的位置如图,每两个村庄之 间都有笔直的道路相连,他们计划共同打一眼机井. 希望机井到三条道路的距离相等,你能设计出机井 的位置吗?
张庄 李庄 马庄
苏州市吴中区木渎实验中学
二、探索思考: 1、请同学们将事先准备的薄纸拿出来,在上面任意画一个 角(∠AOB),折纸使两边OA、OB重合,你发现折痕与 ∠AOB有什么关系? 你有什么结论: 角是轴对称图形,角平分线所在的直线是它的对称轴. 2、在∠AOB的内部任意取折痕上的一点P,分别作点P 到OA和OB的垂线段PD、PE,再沿原折痕折纸。 你又有什么结论?
角平分线上的点到角的两边距离相等.
苏州市吴中区木渎实验中学
3、上节课我们已经学习了:若点P在线段AB的垂直平分线上, 那么PA=PB,如果QA=QB,那么点Q在线段AB的垂直平分线上. 今天我们又学了若点P在∠AOB的平分线上,那么点P到OA、 OB的距离相等;反过来,你能提出什么猜想吗? 先做如下操作:
3、如图,如果M点在∠ANB的角平分线上,那么 AM=___________.
4.到三角形的三个顶点距离相等的点是 ( ) A.三条角平分线的交点 B.三条中线的交点 C.三条高的交点 D.三条边的垂直平分线的交点
苏州市吴中区木渎实验中学
5、用直尺和量角器在图中的直线MN上找一点P, 使点P到射线OA和OB的距离相等.
a
b c
苏州市吴中区木渎实验中学
苏州市吴中区木渎实验中学
苏州市吴中区木渎实验中学
四、课后作业 1、如图,在△ABC中,∠C = 90°,AD平分 ∠BAC,且CD = 5,则点D到AB的距离为
.
2、 在△ABC中,AB=BC,BD平分∠ABC,下列 说法不正确的是( ) A、BD平分AC B、AD⊥BD C、AD垂直平分BC, D、BD垂直平分AC
苏州市吴中区木渎实验中学
你的结论是: 到角的两边距离相等的点,在这个角的平分线上.
苏州市吴中区木渎实验中学
三、例题示范: 例1、任意画∠O,在∠O的两边上分别截取OA、 OB,使OA=OB,过点A画OA的垂线,过点B画OB 的垂线,设2条垂线相交于点P,点O在∠APB的平 分线上吗?为什么?
苏州市吴中区木渎实验中学
例2、如下图(1)所示,在△ABC中,∠C= 90°, BD是角平分线,交AC于点D,DE⊥AB,垂足为点E, AD=3DE. AD和3DC是什么关系?为什么?
A
B C
O
苏州市吴中区木渎实验中学
8、如图,AD平分∠BAC,∠C=90°, DE⊥ AB,那么 (1)DE和DC相等吗?为什么? (2)AE和AC相等吗?为什么?
苏州市吴中区木渎实验中学
9、如图,直线a,b,c表示三条相互交叉的公路,现 要建一个货物中转站,要求它到三条公路的距离相 等,可供选择的地址有几处?如何选?
苏州市吴中区木渎实验中学
6、如图,在△ABC中,AD平分∠BAC,交BC于D, DE⊥AB,DF⊥AC,且BD = DC,问EB = FC吗? 说明理由 A
E B DF C源自苏州市吴中区木渎实验中学7.已知:如图,在ΔABC中,O是∠B、∠C外角 的平分线的交点,那么点O在∠A的平分线上 吗?为什么?