2.4 线段、角的轴对称性(1)课件

合集下载

线段、角的轴对称性课件1

线段、角的轴对称性课件1

因为点P是线段AB的垂直平分线上的 点,所以PA=PB .
l P
1 A
2 O
B
2.4 线段、角的对称性(1)
想一想
线段垂直平分线外的点到这条线段两端的距离相等吗? 为什么?请你画出图形,试着说明.
解:不相等.
l Q 1 2 B P
如图,在线段AB的垂直平分线l外任 取一点P,连接PA、PB,设PA交l于点Q, 连接QB. 根据“线段的垂直平分线上的点到 线段两端点的距离相等”,因为点Q在 AB的垂直平分线上,所以QA=QB. 于是PA=PQ+和大于第三边,
所以PQ+QB>PB,即PA>PB.
2.4 线段、角的对称性(1)
做一做
1.利用网格线画线段PQ的垂直平分线.
P
Q
2.4 线段、角的对称性(1)
做一做
2.如图,要在公路旁设一个公交车的
停车站,停车站应设在什么地方,才 能使A、B两村到车站的距离相等? B村 A村
2.4 线段、角的对称性(1)
想一想
1.如图,在线段AB的垂直平分线l上 任意找一点P,连接PA、PB,PA与
l P
PB相等吗?证明你的结论.
2.像这样的点P还有吗?为什么?
1 A 2 O B
定理 线段垂直平分线上的点到线段两端的距离相等.
2.4 线段、角的对称性(1)
定理 线段垂直平分线上的点到线段两端的距离相等.
初中数学 八年级(上册)
2.4
线段、角的对称性(1)
2.4 线段、角的对称性(1)
做一做
在一张薄纸上画一条线段AB,操作并思考: 线段是轴对称图形吗?
A
B
2.4 线段、角的对称性(1)
想一想
线段是轴对称图形,它的对称轴在哪里?为什么?

2.4线段、角的轴对称性(1)

2.4线段、角的轴对称性(1)

lO PB AB A 2.4线段、角的轴对称性 (1)班级 姓名 学号【学习目标】1.经历探索线段的轴对称性的过程,进一步体会轴对称性的特征,发展空间观念。

2.探索证明线段的垂直平分线的性质。

3.运用线段的垂直平分线的性质解决相关问题。

【重点难点】重点:线段的轴对称性。

难点:线段的垂直平分线的性质及其应用。

【自主学习】读一读:课本P 51-P 52想一想:1.折纸使线段AB 两端点重合,并画出对称轴.2.对称轴上取一点P ,连接PA 、PB ,再沿对称轴对折,观察PA 、PB 有何数量关系?3.你能说明此结论的正确性吗?练一练: 利用网络画图中线段的垂直平分线【新知归纳】线段垂直平分线的性质:即:如图,∵直线l 是线段AB 的垂直平分线, 点P 在直线l 上∴ .【活动探究】例1.如图,己知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=10cm, 求△BCE的周长。

例2.如图,点A、B在直线m的同侧,点B'是点B关于m的对称点,A B'交m于点P.⑴A B'与AP+PB相等吗?为什么?⑵在m上再取一点Q,并连接AQ与QB,比较AQ+QB与AP+PB的大小,并说明理由.河流外婆家小孩家 【课堂检测】1.如图,已知AB 是线段CD 的垂直平分线,E 是AB 上的一点,如果∠ECD=55°,那么下 列说法错误的是( )A .EC=EDB .EF ⊥CDC .∠D=55°D .EC=CD3.如图,有一条河,河岸的同一侧住着一个小孩和他的外婆。

小孩每天上学前要到河边提一桶水送给外婆。

问题(1)若他想到河边某一点去取水,使得所走的两段路程相等。

请你画出取水点P 的位置。

问题(2)若他想到河边某一点去取水,使得所走的路程最短。

请你画出取水点Q 的位置。

【课后巩固】1.如图1:AB是线段CD的垂直平分线,则图中全等三角形对数有()A.2对 B.3对 C.4对 D.5对2.如图2,在△ABC中,∠ABC=∠C,∠A=50°,DE是AB的垂直平分线,E为垂足,交AC于点D,则∠ABD= °,∠DBC= °.3.如图3,在△ABC中,DE是BC的垂直平分线,交BC于E,交AC于D.若△ABD周长为10,AC=7,则AB长是 .图1图2 图34.已知:如图,在△ABC中,边AB、BC的垂直平分线m、n相交于点O。

2.4 线段、角的轴对称性 课件 苏科版数学八年级上册

2.4 线段、角的轴对称性 课件 苏科版数学八年级上册

例 3 在铁路a的同侧有两个工厂A和B,要在铁路边建一货 场C,使A、B两个工厂到货场C的距离相等,试在图 2.4-6 中作出点C.
解题秘方:连接AB,作出线段AB的垂直平分线即可. 解:连接AB,作线段AB的垂直平分线交直线a于点C. 如图2.4-6, 点C即为所求.
方法点拨
尺规作图时要注意虚实线,即辅助性的线 用虚线,所要画的线用实线,同时要注意保留 作图痕迹.
3. 角平分线的判定定理与性质定理的关系 (1)如图2.4-9,都与距离有关,条件PD⊥OA,PE⊥OB 都具备; (2)点在角的平分线上 性质 (角的内部的)点到角两边的 判定 距离相等.
4. 拓展 三角形三个内角的平分线交于一点且这点到三边 的距离相等.
特别提醒
1. 使用该判定定理的前提是这个点必须在角的内部. 2. 角平分线的判定是由两个条件(垂线,线段相等) 得到一个结论(角平分线). 3. 角平分线的判定定理是证明两角相等的重要依据, 它比利用三角形全等证两角相等更方便快捷.
特别解读
1. 线段垂直平分线的性质中的“ 距离”是 “该点与这条线段两个端点的距离”.
2. 用线段垂直平分线的性质可直接证明线段相 等,不必再用三角形全等来证明,因此它为证明 线段相等提供了新方法.
例 1 如图2.4-2,在△ABC中,AB边的垂直平分线DE,分 别与AB边和AC边交于点D和点E,BC边的垂直平分
解题秘方:由线段垂直平分线的判定可知,证明 AD所在的直线上的点A和点D到线段EF的两个端 点的距离相等即可.
解:线段AD所在的直线是线段EF的垂直平分线. 证明:如图2.4-4,连接DE、DF. ∵ AD为∠BAC的平分线,∴∠EAD=∠FAD. 在△AED和△AFD中,
AE=AF, ቐ∠EAD=∠FAD,∴△AED≌△AFD. ∴ DE=DF.

轴对称课件(60张PPT)

轴对称课件(60张PPT)

轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。

2.4线段、角的轴对称性(1)说课稿-苏科版八年级数学上册

2.4线段、角的轴对称性(1)说课稿-苏科版八年级数学上册

2.4 线段、角的轴对称性(1)说课稿-苏科版八年级数学上册一、教材分析本节课是苏科版八年级数学上册中的第2.4节,主要介绍线段和角的轴对称性。

通过本节课的学习,学生将掌握线段和角的轴对称定义、判断和绘制轴对称图形的方法。

在前面的学习中,学生已经学习了线段和角的基本概念和性质,理解了线段和角的度量和运算方法。

通过本节课的学习,可以进一步加深对线段和角的理解,并通过绘制轴对称图形的练习,提高学生的问题解决能力和几何思维能力。

二、教学目标知识与技能目标:1.理解线段的轴对称定义及其性质;2.理解角的轴对称定义及其性质;3.掌握判断线段和角是否具有轴对称的方法;4.能够根据已知条件绘制具有轴对称性的图形。

过程与方法目标:1.注重观察和思考,培养学生的几何思维和推理能力;2.引导学生通过实例分析和讨论,理解轴对称性的概念和特点;3.鼓励学生进行合作学习和探究,培养团队合作意识和解决问题的能力。

情感态度与价值观目标:1.培养学生的观察力和细致心思,培养学生对几何学习的兴趣和热情;2.培养学生的合作精神和团队意识,鼓励学生互帮互助,共同进步。

三、教学重点与难点教学重点:1.线段的轴对称性及其判断方法;2.角的轴对称性及其判断方法;3.绘制具有轴对称性的图形。

教学难点:1.引导学生理解轴对称的概念和特点;2.培养学生观察和分析问题的能力。

四、教学过程与方法引入新知:1.利用实例引入轴对称的概念,例如一把剪刀、一个图形等,让学生观察并发现其中的特点;2.引导学生分析并总结轴对称的特点,例如镜面对称;3.引入线段和角的轴对称性的概念,让学生讨论并理解。

讲解与练习:1.通过示例和图形,讲解线段的轴对称性,并引导学生掌握判断线段是否具有轴对称性的方法;2.通过示例和图形,讲解角的轴对称性,并引导学生掌握判断角是否具有轴对称性的方法;3.组织学生进行练习,巩固判断线段和角是否具有轴对称性的能力。

拓展与应用:1.引导学生思考如何绘制具有轴对称性的图形;2.组织学生进行绘制图形的练习,培养他们的几何思维和创造力;3.引导学生分析和讨论绘制图形的方法和策略。

《线段、角的轴对称性》PPT课件 (公开课获奖)2022年苏科版 (10)

《线段、角的轴对称性》PPT课件 (公开课获奖)2022年苏科版 (10)
Leabharlann 4x0探索. 求以下不等式组的
(解13)集xx :
3, 7.
0 1 2 3 45 6 7 89
解:原不等式组无解.
x 2,
(14)x 5. -7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
x 1, (15)x 4. -3 -2 -1 0 1 2 3 4 5 解:原不等式组无解.
C. 2.5x4 D. 2.5x4
-5 -4 -3 -2 -1 0
x 2
解:原不等式组的解集为
-5 -4 -3 -2 -1 0 1 2
x 0
同大取大
探索. 求以下不等式组的
(解5)集xx :37,.
解:原不等式组的解集为
0 1 2 3 45 6 7 89
x3
x 2, (6)x 5.
解:原不等式组的解集为
-7 -6 -5 -4 -3 -2 -1 0
DA
O
P
C
E B
定理 角平分线上的点到角两边的距离相等.
角平分线的性质定理
• 内容:角平分线上的点到角的两边距离相等; • 如何证明? 解 :
过 点 P作 PC O A,PD O B
∵P C O A , P D O B
PC O PD O ___ OP平 分 AOB
AO P _____
(3 2(x 3
x) 2 2, + 5)-1 < 3.
1、选择题: (1)不等式组
x ≥2, x ≤2
的解集是(
D
)
A. x≥2,
B. x≤2, C. 无解, D. x=2.
(2)不等式组
x x
≤1
0
.5

2.4线段、角的轴对称性(第1课时)(同步课件)八年级数学上册同步精品课堂(苏科版)

2.4线段、角的轴对称性(第1课时)(同步课件)八年级数学上册同步精品课堂(苏科版)
∴∠B+∠C=∠BAD+∠CAE=180°-α
∵∠BAC=∠BAD+∠CAE+∠DAE
∴∠DAE=∠BAC-(∠BAD+∠CAE)=2α-180°
思维拓展
在△ABC中,∠BAC=α,边AB的垂直平分线交BC于点D,边AC的垂直平
分线交BC于点E,连接AD,AE,则∠DAE的度数为______________.
P
● 2


A●

P3
O

B(A)
新知归纳
线段的垂直平分线的性质定理:
线段的垂直平分线上的点到线段两端的距离相等.
符号语言:
l
∵点P在线段AB的垂直平分线上,

A●
∴ PA=PB
(线段的垂直平分线上的点到线段两端的距离相等).
用途:
相等的线段
P

O
B
操作与思考
思考4 线段的垂直平分线外的点,到这条线段两端的距离相等吗?
B
理由: 在l上另取一点P,连接PA、PB、PA'.
由作图可知,l是AA'的垂直平分线,
A
∴ AP=A'P,AM=A'M,
l
M
A'
∴ AM+BM=A'M+BM=A'B,
P
AP+BP=A'P+BP,
由“两点之间线段最短”可得:
A'B<A'P+BP.
即AM+BM最短.
课堂小结
线





线



内容

2.4线段、角的轴对称性(2)课件ppt

2.4线段、角的轴对称性(2)课件ppt

说说你本节课你有什么收获?
2.4 线段、角的对称性(2)
作业
P57-58习题2.4,分析第5、6题的解法, 任选1题写出过程.
Q
A
M
B
2.4 线段、角的对称性(2)
定理 到线段两端的距离相等的点在线段垂直 平分线上. 因为QA=QB , 所以点Q是线段AB的、角的对称性(2)
试一试
你能用尺规画出任一条已知线段的垂直 平分线吗?如果能,说说你作图的依据.
A
B
2.4 线段、角的对称性(2)
初中数学 八年级(上册)
2.4
线段、角的对称性(2)
2.4 线段、角的对称性(2)
做一做
在一张薄纸上画一条线段AB. 你能找出与线段AB的端点A、B距离相 等的点吗? 这样的点有多少个?
A B
2.4 线段、角的对称性(2)
想一想
一个点到一条线段的两端的距离相等,那么这个 点在这条线段的垂直平分线上吗?
试一试
在直线AB外任取一点C,用刚学的方法 作出线段BC、AC的垂直平分线,你发现了 什么?
C
A
B
l2
2.4 线段、角的对称性(2)
例1 已知:如图2-22,在△ABC中,AB、AC的 垂直平分线l1,l2相交于点O.求证:点O在BC的 垂直平分线上. A
l1
O
l2
B
C
2.4 线段、角的对称性(2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴ QA=QB.( “线段的垂直平分线上的点到线段两端
∵ PA=PQ+QA=PQ+QB.
在△BPQ中
∵ PQ+QB>PB(三角形的两边之和大于第三边)
∴PA>PB.
2.4 线段、角的对称性(1)
2.利用网格线画线段PQ的垂直平分线.
P
Q
2.4 线段、角的对称性(1)
3.如图,要在公路旁设一个公交车的
A D B E G F C
2.4 线段、角的对称性(1)
2.线段垂直平分线外的点到这条线段两端的距离相等吗?为什么 ?请你画出图形,试着说明.
解:不相等.
l Q 1 A O 2 B P
在线段AB的垂直平分线l外任取一点P,连接 PA、
PB,设PA交l于点Q,连接QB.∵点Q在ABFra bibliotek垂直平分线上,
点 的距离相等”)
E D B C
变: ABC中,AB=AC,AB的垂直平分线 DE交AB,AC于点E,D,若 ABC和 BCD的 周长分别为21cm和13cm, A 求 ABC的各边长.
E D B
C
四、自主拓展 1.如图,△ABC中, BC =7,AB的垂直平分线分别交AB、 BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G, 求△AEG的周长?
五、自主评价
本节课你有什么收获? 本节课你还有哪些疑问?
2.4 线段、角的对称性(1)
上本作业
P57/习题2.4第2、3题.
1 A
2 O
B
三、自主展示
1.在Rt△ABC中, ∠C=900, ∠B=28°, DE是AB的中垂线,垂足为D,BE=5,则 AE= 5 ,∠AEC= _56 __ °.
A
D
C B
E
2.如图, ABC中,已知AC=27, AB的垂直平分线DE交AB,AC于E,D, BCD 周长为50,求BC的长. A
停车站,停车站应设在什么地方,才 能使A、B两村到车站的距离相等? B村 A村
公路 P
■设正三角形ABC,M是AB上的中点, 在BC边上找一点,使PA+PM的最小?
A
M
B P C
■如图,OA、OB是两条相交的公路,点P 是一个邮电所,现想在OA、OB上各设立 一个投递点,要想使邮电员每次投递路 程最近,问投递点应设立在何处?
A
B
线段是轴对称图形吗?
A B
线段的垂直平分线 线段是轴对称图形_______________ 和它本身 所在直线 是它的对称轴 __________________
2.4 线段、角的对称性(1)
二、自主合作
1.如图,在线段AB的垂直平分线l上 任意找一点P,连接PA、PB,PA与
l P
PB相等吗?证明你的结论.
一、情境创设: 如图,A,B,C 三点表示三个村庄,为了解决 村民子女就近入学问题,计划建一所小学, 要使学校到三所村庄的距离相等.请你当一回 设计师,在图中确定学校的位置,你能办到 吗? A B
.
.
.C
2.4 线段、角的对称性(1)
一、自主探究
在一张薄纸上画一条线段AB,操作并思考: 线段是轴对称图形吗?
2.像这样的点P还有吗?为什么?
1 A 2 O B
定理 线段垂直平分线上的点到线段两端的距离相等.
总之,线段的垂直平分线是到线段两端距离相等的 点的集合.
2.4 线段、角的对称性(1)
定理 线段垂直平分线上的点到线段两端的距离相等.
l
定理的几何表达式:

点P是线段AB的垂直平分线上的点P
∴ PA=PB .
O F E M B A P N
■在正方形ABCD上,P在AC上,E是AB上 一定点,则当点P运动到何处时,△PBE 的周长最小?
A D
E
P
B
C
动脑筋 在几何课本中有这样一 个问题:如图,要在河边修建一个水 泵站,向张庄、李庄送水.修在河边什 么地方,可使使用的水管最短?
B A
a
b
2.4 线段、角的对称性(1)
初中数学 八年级(上册)
2.4
线段、角的对称性(1)
学习目标:
1、经历线段的折叠过程探索线段的对称性,掌握中 垂线的性质;会运用线段垂线的性质解决生活中的 相关问题; 2、培养学生动手探索的科学习惯。 3、在“操作—探究—归纳—说理”的过程中学会有 条理地思考和表达,提高演绎推能力。
重点、难点:
•发现线段中垂线的性质,线段中垂线的性质和判定
相关文档
最新文档