2.4线段、角的轴对称性(4)
苏科版八年级数学上册《2.4线段、角的轴对称性》同步练习含答案解析

2.4 线段、角的轴对称性一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC2.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.116.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.若BC=2,AC=4,则BD=()A.B.2 C.D.37.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点8.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是()A.14 B.13 C.12 D.119.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在△ABC 中,AB=AC ,∠A=120°,BC=6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm11.如图,在△ABC 中,AB=AC ,∠A=40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为( )A .70°B .80°C .40°D .30°12.如图,在△ABC 中,AC=4cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7cm ,则BC 的长为( )A .1cmB .2cmC .3cmD .4cm13.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4 C.8 D.814.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°二、填空题15.点P在线段AB的垂直平分线上,PA=7,则PB=______.16.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为______.17.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=______°.19.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=______.20.已知点P在线段AB的垂直平分线上,PA=6,则PB=______.21.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为______cm.22.如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为______.23.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为______.2.4 线段、角的轴对称性参考答案与试题解析一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.2.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】线段垂直平分线的性质;圆的认识;作图—基本作图.【分析】根据甲乙两人作图的作法即可证出结论.【解答】解:甲:如图1,∵MN是AB的垂直平分线,∴AP=BP,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC,∴甲正确;乙:如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠B,∴∠APC≠2∠ABC,∴乙错误;故选C.【点评】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.3.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°【考点】线段垂直平分线的性质.【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【解答】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.11【考点】线段垂直平分线的性质.【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.6.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.若BC=2,AC=4,则BD=()A.B.2 C.D.3【考点】线段垂直平分线的性质;勾股定理.【分析】设BD=x,先根据线段垂直平分线的性质可得BD=AD=x,则CD=4﹣x,然后在△BCD中根据勾股定理列出关于x的方程,解方程即可求得BD的长.【解答】解:设BD=x,∵AB垂直平分线交AC于D,∴BD=AD=x,∵AC=4,∴CD=AC﹣AD=4﹣x,在△BCD中,根据勾股定理得x2=22+(4﹣x)2,解得x=.故选C.【点评】本题考查了线段垂直平分线的性质:线段垂直平分线上任意一点,到线段两端点的距离相等,同时考查了勾股定理.7.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】线段垂直平分线的性质.【专题】应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.8.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是()A.14 B.13 C.12 D.11【考点】线段垂直平分线的性质.【专题】计算题.【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选D.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.9.如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( )A .∠C=2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点【考点】线段垂直平分线的性质;等腰三角形的性质;黄金分割.【分析】求出∠C 的度数即可判断A ;求出∠ABC 和∠ABD 的度数,求出∠DBC 的度数,即可判断B ;根据三角形面积即可判断C ;求出△DBC ∽△CAB ,得出BC 2=BC •AC ,求出AD=BC ,即可判断D .【解答】解:A 、∵∠A =36°,AB=AC ,∴∠C=∠ABC=72°,∴∠C=2∠A ,正确,B 、∵DO 是AB 垂直平分线,∴AD=BD ,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD ,∴BD是∠ABC的角平分线,正确,C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,D、∵∠C=∠C,∠DBC=∠A=36°,∴△DBC∽△CAB,∴=,∴BC2=CD•AC,∵∠C=72°,∠DBC=36°,∴∠BDC=72°=∠C,∴BC=BD,∵AD=BD,∴AD=BC,∴AD2=CD•AC,即点D是AC的黄金分割点,正确,故选C.【点评】本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,主要考查学生的推理能力.10.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm【考点】线段垂直平分线的性质;等边三角形的判定与性质.【专题】压轴题.【分析】连接AM、AN、过A作AD⊥BC于D,求出AB、AC值,求出BE、CF值,求出BM、CN值,代入MN=BC﹣BM﹣CN求出即可.【解答】解:连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB==2cm=AC,∵AB的垂直平分线EM,∴BE=AB=cm同理CF=cm,∴BM==2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选C.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,含30度角的直角三角形性质,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力.11.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70° B.80° C.40° D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】几何图形问题.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.12.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm【考点】线段垂直平分线的性质.【分析】首先根据MN是线段AB的垂直平分线,可得AN=BN,然后根据△BCN的周长是7cm,以及AN+NC=AC,求出BC的长为多少即可.【解答】解:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选:C.【点评】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.13.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4 C.8 D.8【考点】线段垂直平分线的性质;含30度角的直角三角形;勾股定理.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:如图,∵在Rt△ABC中,∠ACB=60°,∴∠A=30°.∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=2,∴CD=AD=4,∴AB=2+4=6,在△BCD中,由勾股定理得:CB=2,在△ABC中,由勾股定理得:AC==4,故选:B.【点评】本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.14.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.二、填空题15.点P在线段AB的垂直平分线上,PA=7,则PB= 7 .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.【解答】解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.【点评】本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为36°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先根据等腰三角形的性质可得∠A的度数,再根据线段垂直平分线的性质可得AE=BE,进而可得∠ABE=∠A=36°,然后可计算出∠EBC的度数.【解答】解:∵等腰△ABC的底角为72°,∴∠A=180°﹣72°×2=36°,∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°.故答案为:36°.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握等边对等角.17.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= 87 °.【考点】线段垂直平分线的性质.【分析】根据DE垂直平分BC,求证∠DBE=∠C,再利用角平分线的性质和三角形内角和定理,即可求得∠A的度数.【解答】解:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=87°.故答案为:87.【点评】此题本题考查的知识点为线段垂直平分线的性质,关键是根据角平分线的性质,三角形内角和定理等知识点进行分析.19.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .【考点】线段垂直平分线的性质;解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.【点评】本题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.20.已知点P在线段AB的垂直平分线上,PA=6,则PB= 6 .【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为 6 cm.【考点】线段垂直平分线的性质.【专题】数形结合.【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.【解答】解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故答案为:6.【点评】本题考查了线段垂直平分线的性质,注意掌握线段垂直平分线上任意一点,到线段两端点的距离相等.22.如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为m+n .【考点】线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质.【分析】根据线段垂直平分线性质得出AD=BD,推出∠A=∠ABD=40°,求出∠ABC=∠C,推出AC=AB=m,求出△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC,代入求出即可.【解答】解:∵AB的垂直平分线MN交AC于点D,∠A=40°,∴AD=BD,∴∠A=∠ABD=40°,∵∠DBC=30°,∴∠ABC=40°+30°=70°,∠C=180°﹣40°﹣40°﹣30°=70°,∴∠ABC=∠C,∴AC=AB=m,∴△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC=m+n,故答案为:m+n.【点评】本题考查了三角形内角和定理,线段垂直平分线性质,等腰三角形的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.23.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为8 .【考点】线段垂直平分线的性质;平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质,得知AO=OC,由于OE⊥AC,根据线段垂直平分线的性质,可知AE=EC,则△CDE的周长为CD与AD之和,即可得解.【解答】解:根据平行四边形的性质,∴AO=OC,∵OE⊥AC,∴OE为AC的垂直平分线,∴AE=EC,∴△CDE的周长为:CD+AD=5+3=8,故答案为:8.【点评】本题考查了平行四边形的性质以及线段垂直平分线的性质,熟记各性质与定理是解题的关键.。
2.4线段、角的轴对称性(第2课时线段垂直平分线的判定)(教学课件)-八年级数学上册(苏科版)

正方形, A , B 是方格纸中的两个格点(即正方形的顶点).在这张5×5的
方格纸中,找出格点 C ,使△ ABC 为等腰三角形,则满足条件的格点 C
有(
C )
A. 3个
B. 5个
C. 6个
D. 8个
分层练习-基础
4. 如图,点 D 在△ ABC 的边 BC 上,如果 DB = DA ,那么点 D 在线
两个工厂到货场C的距离相等,试在下图中作出点C.
解:连接AB,作线段AB的垂直平分线交直线a于点C.
如下图, 点C即为所求.
B
A
a
概念归纳
方法点拨
尺规作图时要注意虚实线,即辅助性的线用虚线,
所要画的线用实线,同时要注意保留作图痕迹.
随堂练
1.已知:如图,AB=AC,DB=DC,点E在AD上.求证:EB=EC.
=,
∴点D在线段EF的垂直平分线上.
∵ AE=AF,
∴点A在线段EF的垂直平分线上.
∴线段AD所在的直线是线段EF的
垂直平分线.
注意:不可以只证明一个点
在直线上,就说过该点的直
线是线段的垂直平分线.
概念归纳
特别提醒
证明一个点在一条线段的垂直平分线上,还可以
利用线段垂直平分线的定义进行推理,思路有两种:
(1)分别以点A、B为圆心,大于 AB的长为
半径画弧,两弧相交于点C、D;
(2)过C、D两点作直线,
直线CD就是线段AB的垂直平分线,如右图所示
概念归纳
易错警示
作线段AB的垂直平分线时,必须以大于
AB的长为半径画弧,否则所画的弧就不能相
2.4《线段、角的轴对称性》教案(4)

数学教学设计教材:义务教育教科书·数学(八年级上册)2.4 线段、角的轴对称性(4)1.能利用所学知识提出问题并能解决实际问题;2.能利用角平分线性质定理和逆定理证明相关结论,做到每一步有根有据;3.经历探索角的轴对称应用的过程,在解决问题的过程中培养思考的严谨性和表达的条理性.综合运用角平分线的性质定理和逆定理解决问题.学会证明点在角平分线上.教学过程(教师)学生活动设计思路上节课我们知道了“角平分线上的点到角两边距离相等”,部到角两边距离相等的点在角的平分线上”.这两个定理能问题呢?回忆、思考.点明课题,制造悬念,习热情.知:△ABC的两内角∠ABC、∠ACB的角平分线相交于点P.求的角平分线上.证明点P在∠A的角平分线上,根据角的内部到角两边距离平分线上,只要点P到∠A两边的距离相等,所以过点P做PD、PE,证出PD=PE,而要证PD=PE,因为点P是∠ABC、分线的交点,根据角平分线的性质,点P到∠ABC、∠ACB两等,所以只要做出BC边上的垂线段PF,就可得PD=PF,PE =PE,所以得证.上述问题,你发现三角形的三个内角的角平分线有什么位置1.结合图形认真审题.2.分析、讨论证明思路.3.口述证明思路及证明过程.4.讨论归纳得到结论:三角形的三个内角的角平分线相交于一点.运用例题引导学生逐渐性质定理和逆定理.采用“要证,只要证”导学生逐步学会“分析法”问题解决完后及时进行出三角形“内心”,为学习三打好基础.知:如图2-28,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.证AD垂直平分EF,,.AD=∠CAD, DE⊥AB,DF⊥AC,,.学生利用分析法填空;阐述证明思路;完成证明过程.利用分析法引导学生学培养学生良好的思考习惯.开放的分析过程,提供考路径.完成练习.,说说你的发现,提出你的问题.练习:课本P56练习.学生发现:三角形两外角的角平分线与第三个角的角平分线所在的直线相交于一点;可能提出“三角形三个外角的角平分线所在直线是否相交于一点的问题”.本题是角平分线性质定综合应用,实际上是例2的学生“一折,二画,三学生动手操作,获得成功,的积极性,再次鼓励学生使寻找证明方法.59习题2.4,分析第9、10、11题的思路,任选2题写出学生根据自身实际情况,选题作业.实行作业分层,便于不学生自我发展.。
八年级数学上册2-4线段角的轴对称性第1课时线段垂直平分线的性质习题课件新版苏科版

C. 6 cm
D. 7 cm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
2. [2024张家港期末]如图,在四边形 ABCD 中, AC 垂直平
分 BD ,垂足为点 E ,下列结论不一定成立的是(
A. AB = AD
B. CA 平分∠ BCD
C. AB = BC
D. △ BEC ≌△ DEC
1
2
3
4
5
6
P 点的距离为
1
2
.
5 cm
3
4
5
6
7
8
9
10
11
12
13
14
5. 【新考法·对称法·2024镇江京口区期中】如图,在△ ABC
中, AD 垂直平分 BC ,垂足为点 D ,点 E , F 是 AD 上的
两点,若△ ABC 的面积为6,则图中阴影部分的面积和
是
3
.
1
2
3
4
5
6
7
8
9
10
11
12
=
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
12. [2024常州期末]在△ ABC 中, AB = AC , BC =10, AB
的垂直平分线与 AC 的垂直平分线分别交 BC 于点 D ,
E ,且 DE =4,则 AD + AE 的值为
1
2
3
苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习

苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.1 轴对称与轴对称图形一、自主先学1. 观察下列各种图形,判断是否为轴对称图形?如果是,并找出该轴对称图形的对称轴。
2. 下列图片有什么共同特性?二、合作助学3. 折纸印墨迹:在纸的一侧滴一滴墨水后,对折,压平.(1)你发现折痕两边的墨迹形状一样吗?为什么?(2)两边墨迹的位置与折痕有什么关系?(3)归纳:把一个图形沿着某一条直线翻折,如果它能够与另一个图形,那么称这两个图形关于这条直线,也称这两个图形成,这条直线叫做,两个图形中的对应点叫做.4. 观察下列图案,它们有什么共同特征?(1)归纳:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相,那么称这个图形是图形,这条直线叫做.(2)画出上面各图的对称轴.5. 轴对称与轴对称图形的区别与联系.如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个;如果把一个轴对称图形位于轴对称两旁的部分看成两个图形,那么这两部分就成.三、拓展导学6. (1) 正五边形(各边相等且各角也相等的五边形,如图①)有几条对称轴?(2)在图中画一条对角线得到图②,图②有几条对称轴?(3 ) 如果在图②中再画一条对角线,那所得的图形有几条成轴对称?①②四、检测促学7. 下列图形中,是.轴对称图形的为()A. B. C. D.8. 如图,由4个全等的正方形组成L形图案,(1)请你在图案中改变1个正方形的位置,使它变成轴对称图案;(2)请你在图中再添加一个小正方形,使它变成轴对称图案.五、反思悟学9. (1)剪两个全等的三角形,并把它们叠合在一起;(2)把其中的一个三角形沿一边翻折,所得的图形是轴对称图形吗?如果是,指出它的对称轴;(3)再改变其中一个三角形的位置,使这两个三角形成轴对称.lA'B'C'A BCCBAAA'B'苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(1)一、自主先学1. 操作:把一张纸折叠后,用针扎一个孔,再把纸展开,两针孔分别记为点A 、点A ’,折痕记为l . (1) 在下面空白处画出你得到的图形 . (2)连接AA ’, AA ’与 l 相交于点O , 线段AA ’与 l 有什么关系?(可以从位置、数量两个角度考虑)二、合作助学2. 操作:将一张长方形的纸片对折;在纸上画△ABC ;用针尖沿△ABC 各顶点扎小孔将纸展开,连接AA ’、BB ’、CC ’ .① ② ③(1)线段AA ’、BB ’、CC ’与折痕l 有什么关系?(2)图中,线段AB 与''A B 有什么关系?BC 与''B C 呢?(3)图中ABC ∆与'''C B A ∆有什么关系?(4)归纳:垂直并且 一条线段的直线,叫做这条线段的 .如图,直线l 交线段AB 于点O ,∠1 = 90º , AO = BO ,直线l 是线段AB 的垂直平分线. (5) 轴对称的性质:成轴对称的两个图形 , 对应点的连线被对称轴 .3. 如图,线段AB 与''A B 关于直线l 对称. 连接AA ’、BB ’,设它们分别与l 相交于点P 、Q.(1)在所画的图形中,相等的线段有: ; (2)AA ’与BB ’ 平行吗?为什么?三、拓展导学4. 你能求出这7个角的和吗?321BCDA 第5题第6题四、检测促学5.下列说法中,正确的是 ( ) A .关于某直线对称的两个三角形是全等三角形; B .两个全等的三角形是关于某直线对称的;C .两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧;D .若点A 、B 关于直线MN 对称,则AB 垂直平分MN .6.如图,所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°则∠3=_ __°. 7.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积是 cm 2. 8.分别画出下列各图中成轴对称的两个图形的对称轴.① ② ③五、反思悟学9.如何画成轴对称的两个图形或轴对称图形的对称轴?lAlllBAABABl ABC苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(2)一、自主先学1. 思考:如图,点 A 、B 、C 都在方格纸的格点上. 请你再找一个格点D ,使点 A 、B 、C 、D 组成一个轴对称图形.小结:画轴对称图形,应先确定 ,再找出 .2. 如果直线l 外有一点A ,那么怎样画出点A 的对称点A ’?画法图形1. 画AO ⊥l , 垂足为O.2. 在AO 的延长线上截取OA ’,使 OA ’ =AO.点A ’ 就是点A 关于直线l 对称的点.二、合作助学3. 操作:(1)在图①中,用三角尺画线段AB 关于直线l 对称的线段A ’B ’; (2)在图②中,用三角尺画△ABC 关于直线l 对称的△A ’B ’C ’.① ②小结:画一个图形关于一条直线对称的图形,关键是确定 .4. 讨论:在图中,四边形ABCD 与四边形EFGH 关于直线l 对称.连接AC 、BD .设它们相交于点P .怎样找出点P 关于l 的对称点Q ?C ABll BCAOA'B'BAl 第6题第7题DACB小结:成轴对称的两个图形的 也成轴对称. 三、拓展导学5. 如图,三角形Ⅰ的2个顶点分别在直线上1l 和2l 上 ,且1l ⊥2l .画三角形Ⅱ,使它与三角形Ⅰ关于直线2l 对称; 画三角形Ⅲ,使它与三角形Ⅱ关于直线1l 对称; 画三角形Ⅳ,使它与三角形Ⅲ关于直线2l 对称. 所画的三角形Ⅳ与三角形Ⅰ成轴对称吗? 四、检测促学6. 用三角尺画△ABC 关于直线l 对称的三角形.① ②7. 如图,线段AB 与A ’B ’关于对称,AA ’ 交直线 l 于点O.(1)把线段AB 沿直线 l 翻折,重合的线段有: .(2)因为 △OAB 与 △O ’A ’B ’关于直线 l ,所以△OAB ≌△O ’A ’B ’,直线 l 垂直平分线段 ,∠ABO = ,∠AOB ’= . 五、反思悟学8. 如图,长方形的台球桌CDEF 内有黑、白两 球分别位于A 、B 两点,试问怎样撞击白球 A 才能使A 先碰到桌边DE ,反弹后再击中 黑球B?苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.3设计轴对称图案一、自主先学观察、欣赏课本上的绿色食品标志、中国环境标志、国家免检产品标志等,说出这些标志的含义,判断它们是否是轴对称图形,它们是怎么样设计的?你还见过哪些在生活中见过的图案,成轴对称的?(可从一些商标、会徽、车标等方面去发挥)二、合作助学1.对称的美术图案,除图形对称外,有时颜色也要“对称”。
2.4 线段、角的轴对称性(2)

2.4 线段的轴对称性
【操作】
(1)用直尺和圆规作线段AB的垂直平分线;
A
A
B
B
C
(2)分别作△ABC的边AB、AC的垂直平分线相交于点O, 证明:点O在BC的垂直平分线上.
2.4 线已知:如图,∠1=∠2,∠3=∠4, AC、BD相交于点E.
求证:AC是线段BD的垂直平分线.
D
1 A
2
E
3
C
4
B
2.4 线段的轴对称性
【例题解析】
练习:如图,在△ABC中,AD是高,在线段DC上 取一点E,使BD=DE,已知AB+BD=DC. 求证:点E在线段AC的垂直平分线上.
A
B
D
E
C
2.4 线段的轴对称性
【例题解析】
例2、直线 l 外有点A、B,若要在l上找一点, 使这点与点A、B的距离相等,这样的点一定 能找到吗?请你画图表示各种可能的情况.
2.4 线段的轴对称性
【例题解析】
例4、如图,已知直线l及其两侧两点A、B. (1)在直线l 上求一点P,使PA=PB,并说明理由; (2)在直线l 上求一点Q,使l 平分∠AQB,并说明理由; (3)能否在直线l 上找一点,使该点到点A、B的距离之 差的绝对值最大?若能,直接指出该点的位置;若不能, 请说明理由.
A
A
A
l
l
l
B
B
B
2.3 设计轴对称图案
初中数学 八年级(上册)
2.4 线段、角的轴对称 性(2)
2.4 线段的轴对称性
【情境创设】
如果一个点在一条线段的垂直平分 线上,那么这个点到这条线段两端的距 离相等.
反过来,如果一个点到一条线段两 端的距离相等,那么这个点在这条线段 的垂直平分线上吗?
线段、角的轴对称性

线段、角的轴对称性【基础知识点】:1.线段的轴对称性:① 线段是轴对称图形,对称轴有两条:一条是线段所在的直线,另一条是这条线段的垂直平分线。
②线段的垂直平分线上的点到线段两端的距离相等。
③到线段两端距离相等的点,在这条线段的垂直平分线上。
【结论】:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
【结论】:角的平分线是到角的两边距离相等的点的集合【课后练习题】一、选择题1.下列图形中,不是轴对称图形的是( )A. 两条相交直线B. 线段C.有公共端点的两条相等线段D.有公共端点的两条不相等线段2.到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点二、填空题1、如图:在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D.①若BC=8,BD=5,则点D 到AB 的距离是 。
②若BD:DC=3:2,点D 到AB 的距离为6,则BC 的长是多少?2、如图,OP是∠AOB的平分线,C是OP上一点,CE⊥OA于点E,CF⊥OB于点F,CE=6㎝,CF= ㎝,理由是三、应用题1、已知∆ABC中,AB=AC=10,DE垂直平分AB,交AC于E,已知∆BEC的周长是16。
求∆ABC的周长.2、如图在△ABC 中,AB>AC,BC的垂直平分线DE,分别交AB,BC于D,E,AB=12cm,△ACD的周长为21cm,求AC长。
八年级数学教案:线段、角的轴对称性(全4课时)

课时NO: 主备人:审核人用案时间:年月日星期教学课题 2.4 线段、角的轴对称性(2)教学目标1.探索并证明线段垂直平分线的性质定理的逆定理,会用尺规作线段的垂直平分线;2.能利用所学知识提出问题并解决实际问题;3.经历探索线段的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性.教学重点利用线段的轴对称性探索线段垂直平分线的性质定理的逆定理.教学难点灵活运用线段垂直平分线的性质解决实际问题.教学方法教具准备教学课件教学过程个案补充一.自主先学:实践探索一在一张薄纸上画一条线段AB,你能找出与线段AB的端点A、B距离相等的点吗?这样的点有多少个?实践探索二如果一个点在一条线段的垂直平分线上,那么这个点到这条线段两端的距离相等.反过来,如果一个点到一条线段的两端的距离相等,那么这个点在这条线段的垂直平分线上吗?如图2-21(1),若点Q在线段AB上,且QA=QB,则Q是线段AB的中点,则点Q在线段AB的垂直平分线上.如图2-21(2),若点Q是线段AB外任意一点,且QA=QB,那么点Q在线段AB的垂直平分线上吗?为什么?通过上述探索,你得到了什么结论?分析:全等三角形的判定与性质,线段垂直平分线的性质五.小结与反思:课外作业:布置作业板书设计教后札记实践探索四如果任意一个点在角平分线上,那么这个点到这个角的两边距离相等.反过来,结合上节课所学,你有什么猜想?如图2-26,若点Q 在∠AOB 内部,QD ⊥OA ,QE ⊥OB ,且QD =QE ,点Q 在∠AOB 的角平分线上吗?为什么?通过上述探索,你得到了什么结论?二.探究交流如图,△ABC 中,P 是角平分线AD ,BE 的交点。
求证:点P 在∠C 的平分线上。
三.交流展示OAB Q DE 2-26如图,AD∥BC,CD⊥AD,AE平分∠BAD,且E是DC的中点,EF⊥AB 于点F,判断AD、BC与AB之间的数量关系并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 线段、角的轴对称性(4)
教学目标:
1.能利用所学知识提出问题并能解决实际问题;
2.能利用角平分线性质定理和逆定理证明相关结论,做到每一步有根有据;
3.经历探索角的轴对称应用的过程,在解决问题的过程中培养思考的严谨性和表达的条理性.
教学重点:
综合运用角平分线的性质定理和逆定理解决问题.
教学难点:
学会证明点在角平分线上.
教学过程:
开场白
同学们,上节课我们知道了“角平分线上的点到角两边距离相等”,而且“角的内部到角两边距离相等的点在角的平分线上”.这两个定理能用来解决什么问题呢?
例2 已知:△ABC的两内角∠ABC、∠ACB的角平分线相交于点P.求证:点P在∠A的角平分线上.
分析:要证明点P在∠A的角平分线上,根据角的内部到角两边距离相等的点在角平分线上,只要点P到∠A两边的距离相等,所以过点P做两边的垂线段PD、PE,证出PD=PE,而要证PD=PE,因为点P是∠ABC、∠ACB的角平分线的交点,根据角平分线的性质,点P到∠ABC、∠ACB两边的距离都相等,所以只要做出BC边上的垂线段PF,就可得PD=PF,PE=PF,从而PD=PE,所以得证.
通过解决上述问题,你发现三角形的三个内角的角平分线有什么位置关系?
例3 已知:如图2-28,AD是△ABC的角平分线,DE⊥AB,DF AC,垂足为E、F.求证:AD垂直平分EF.
分析:要证AD垂直平分EF,
只要证:,.
已知∠BAD=∠CAD,DE⊥AB,DF AC,
只要证,
只要证.
……
指导学生完成练习.
解完题后,说说你的发现,提出你的问题.
练习:课本P56练习.
学生发现:三角形两外角的角平分线与第三个角的角平分线所在的直线相交于一点;可能提出“三角形三个外角的角平分线所在直线是否相交于一点的问题”.
布置作业
课本P58-59习题2.4,分析第9、10、11题的思路,任选2题写出过程.。