湖北省武汉市洪山区2020-2021学年度第一学期期末质量检测八年级数学试卷

合集下载

2020-2021学年湖北省武汉市洪山区八年级(上)期中数学试卷(含解析)

2020-2021学年湖北省武汉市洪山区八年级(上)期中数学试卷(含解析)

2020-2021学年湖北省武汉市洪山区八年级第一学期期中数学试卷一、选择题(共10小题).1.用如下长度的三根木棒首尾相连,可以组成三角形的是()A.1cm、2cm、3cm B.2cm、4cm、6cmC.3cm、5cm、7cm D.3cm、6cm、9cm2.下列学习用具图标中,是轴对称图形的是()A.B.C.D.3.下列各组条件中,可以判定△ABC≌△DEF的条件是()A.AB=DE、AC=DF、BC=EF B.∠A=∠D、∠B=∠E、∠C=∠F C.AB=DE、AC=DF、∠C=∠F D.BC=EF、∠A=∠D4.如图,点D在△ABC的边AC上,且AD=BD=CD,若∠A=40°,则∠C=()A.40°B.50°C.60°D.45°5.一个正多边形的每一个内角均为135°,它是一个()A.正方形B.正三角形C.正八边形D.正六边形6.一个等腰三角形的两边长分别为2dm、9dm,则它的周长是()A.13dm B.20dm C.13dm或20dm D.无法确定7.如图,△ABC的边长AB=8cm,AC=10cm,BC=4cm,作BC的垂直平分线交AC于D,则△ABD的周长为()A.18cm B.14cm C.20cm D.12cm8.如图,AD为△ABC的角平分线,且AB:AC=3:2,BC=10,则BD=()A.7.5B.5C.7.2D.69.如图所示,在△ABC中,∠BAC、∠ABC、∠ACB的三等分线相交于D、E、F(其中∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF),且△DFE的三个内角分别为∠DFE=54°、∠FDE=60°、∠FED=66°,则∠BAC=()A.54°B.60°C.66°D.48°10.如图,等腰直角△ABC的底边BC的中点为F,点D在直线AF上运动,以D为直角顶点、BD为直角边构造等腰直角△BDE,连接FE.若AB长度为4,下列说法正确的是()A.EF有最大值4B.EF有最小值2C.EF有最小值1D.EF既没有最大值,也没有最小值二、填空题(共6小题,每小题3分,共18分)11.等腰三角形的顶角为36°,它的底角为.12.若点A(a,2)与B(3,b)关于x轴对称,则a﹣b=.13.一个多边形从某个顶点出发的对角线共有3条,这个多边形的内角和是.14.已知△ABC中,AB=3,中线AD=4,则AC的取值范围是.15.如图所示的折线图形中,α+β=.16.如图,等腰△ABC的底边BC=6,面积S△ABC=12.D、E分别为AB、AC的三等分点(AD=AB,EC=AC),M为线段DE的中点.过M作MN⊥BC于N,则MN=.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程17.如图,AB∥CD,BN∥MD,点M、N在AC上,且AM=CN,求证:BN=DM.18.如图,AD、CE是正五边形ABCDE的对角线,交点为F,试求∠CFD的度数.19.如图,等腰△ABC中AB=AC,线段BD把△ABC分成了等腰△ABD和等腰△BCD,且AD=BD,BC=DC,求∠A的大小.20.如图,在边长为1的小正方形所组成的网格中,每一个小正方形的顶点称为“格点”,请你用无刻度直尺,借助网格,按要求完成作图:(1)以AB所在直线为对称轴,作出△ABC的轴对称图形△ABD;(2)以AD所在直线为对称轴,作出△ABD的轴对称图形△AED;(3)已知A点的坐标为(0,2),C点坐标为(4,4),F(1,6).请你在AB上取一点M,使FM+CM有最小值,则点M的坐标为.21.如图,四边形ABCD中,CA平分∠BAD,CB=CD,CF⊥AD于F.(1)求证:∠ABC+∠ADC=180°;(2)若AF:CF=3:4,CF=8,求四边形ABCD的面积.22.如图1,△ABC中,∠A=50°,AB=AC,点D、E别在边AB、AC上,且DE∥BC.(1)求证:BD=CE;(2)围绕A点移动△ADE的位置,使其一边AD落在线段AC上(如图2所示),连接CE、BD并延长相交于M点.试求∠BMC的度数;(3)在(2)的条件下,求∠AME的度数.23.(1)已知△ABC中,AB=AC,∠BAC=120°.①如图1,点M、N在底边BC上,且∠ANB=45°,∠MAN=60°.请在图中作出∠NAD=60°,且AD=AM,连接ND、CD;并直接写出BM与CN的数量关系.②如图2,点M在BC上,点N在BC的上方,且∠MBN=∠MAN=60°,求证:MC=BN+MN;(2)如图3,在四边形ABCD中,∠CAB=50°,BD平分∠ABC,若∠ADC与∠ABD 互余,则∠DAC的大小为(直接写出结果).24.在平面直角坐标系中,点A(0,a),点B(b,0),其中参数a、b满足如下关系式|2a ﹣b|+(6﹣b)2=0.(1)直接写出A、B两点坐标:A、B.(2)如图1,C点的横坐标为3,且AC平分∠BAy,作CD⊥AB于D,求BD﹣AD的值;(3)如图2,现以AB为斜边构造等腰直角三角形ABM,试求以A、B、O、M为顶点的四边形的面积.参考答案一、选择题(共10小题).1.用如下长度的三根木棒首尾相连,可以组成三角形的是()A.1cm、2cm、3cm B.2cm、4cm、6cmC.3cm、5cm、7cm D.3cm、6cm、9cm解:A、1+2=3,不可以组成三角形;B、2+4=6,不可以组成三角形;C、3+5>7,可以组成三角形;D、3+6=9,不可以组成三角形.故选:C.2.下列学习用具图标中,是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意;故选:A.3.下列各组条件中,可以判定△ABC≌△DEF的条件是()A.AB=DE、AC=DF、BC=EF B.∠A=∠D、∠B=∠E、∠C=∠F C.AB=DE、AC=DF、∠C=∠F D.BC=EF、∠A=∠D解:如图:A、符合全等三角形的判定定理SSS,即能推出△ABC≌△DEF,故本选项正确;B、没有边的条件,不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;D、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;故选:A.4.如图,点D在△ABC的边AC上,且AD=BD=CD,若∠A=40°,则∠C=()A.40°B.50°C.60°D.45°解:∵AD=BD=CD,∴∠ABD=∠A,∠C=∠DBC,∵∠A=40°,∴∠C=(180°﹣40°×2)÷2=50°.故选:B.5.一个正多边形的每一个内角均为135°,它是一个()A.正方形B.正三角形C.正八边形D.正六边形解:由题意得,该多边形的每一个外角为180°﹣135°=45°,∴360°÷45°=8,故该多边形为正八边形.故选:C.6.一个等腰三角形的两边长分别为2dm、9dm,则它的周长是()A.13dm B.20dm C.13dm或20dm D.无法确定解:当腰长为9dm时,根据三角形三边关系可知此情况成立,周长=9+9+2=20(dm);当腰长为2dm时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是20dm.故选:B.7.如图,△ABC的边长AB=8cm,AC=10cm,BC=4cm,作BC的垂直平分线交AC于D,则△ABD的周长为()A.18cm B.14cm C.20cm D.12cm解:∵BC的垂直平分线交AC于D,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=8+10=18(cm),故选:A.8.如图,AD为△ABC的角平分线,且AB:AC=3:2,BC=10,则BD=()A.7.5B.5C.7.2D.6解:过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(AB•DE):(AC•DF)=AB:AC=3:2.∵S△ABD:S△ACD=(BD•h):(DC•h)=BD:DC=3:2.∵BC=10,∴BD=6,故选:D.9.如图所示,在△ABC中,∠BAC、∠ABC、∠ACB的三等分线相交于D、E、F(其中∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF),且△DFE的三个内角分别为∠DFE=54°、∠FDE=60°、∠FED=66°,则∠BAC=()A.54°B.60°C.66°D.48°解:∵∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF,∴可以假设∠BAD=x,∠CBE=y,∠ACF=z,则∠CAF=2x,∠ABD=2y,∠BCE=2z,∵∠DFE=∠ACF+∠CAF,∠FDE=∠DAB+∠ABD,∠DEF=∠CBE+∠BCE,∴54°=2x+z,60°=x+2y,66°=y+2z,解得x=16°,y=22°,z=22°,∴∠BAC=3x=48°,故选:D.10.如图,等腰直角△ABC的底边BC的中点为F,点D在直线AF上运动,以D为直角顶点、BD为直角边构造等腰直角△BDE,连接FE.若AB长度为4,下列说法正确的是()A.EF有最大值4B.EF有最小值2C.EF有最小值1D.EF既没有最大值,也没有最小值解:过点E作EH⊥AF交AF的延长线于H.∵∠BFD=∠BDE=∠H=90°,∴∠BDF+∠EDH=90°,∠EDH+∠DEH=90°,∴∠BDF=∠DEH,在△BFD和△DHE中,,∴△BFD≌△DHE(AAS),∴BF=DH=2,DF=EH,设DF=EH=x,在Rt△EFH中,EF====,∵2(x﹣)2≥0,∴EF≥2,∴EF的最小值为2.故选:B.二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上11.等腰三角形的顶角为36°,它的底角为72°.解:∵(180°﹣36°)÷2=72°,∴底角是72°.故答案为:72°.12.若点A(a,2)与B(3,b)关于x轴对称,则a﹣b=5.解:∵点A(a,2)与点B(3,b)关于x轴对称,∴a=3,b=﹣2,∴a﹣b=3﹣(﹣2)=3+2=5,故答案为:5.13.一个多边形从某个顶点出发的对角线共有3条,这个多边形的内角和是720°.解:设多边形的边数为n,由题意得n﹣3=3,解得n=6,(6﹣2)×180°=720°,故答案为720°.14.已知△ABC中,AB=3,中线AD=4,则AC的取值范围是5<AC<11.解:如图,延长AD到E,使DE=AD=4,∵AD是BC边上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB=3,∵AB=3,AD=4,∴AE﹣CE<AC<AE+EC,即8﹣3<AC<11,∴5<AC<11,故答案为:5<AC<11.15.如图所示的折线图形中,α+β=85°.解:如图,连接BC.在△EBC中,∠1+∠2=180°﹣∠E=140°,在四边形ABCD中,∠A+∠ABC+∠BCD+∠D=360°,∴70°+α+∠1+∠2+β+65°=360°,∴α+β=360°﹣70°﹣65°﹣140°=85°,故答案为85°.16.如图,等腰△ABC的底边BC=6,面积S△ABC=12.D、E分别为AB、AC的三等分点(AD=AB,EC=AC),M为线段DE的中点.过M作MN⊥BC于N,则MN=2.解:分别过点D,E作DG∥BC交AC于点G,EH∥BC交AB于点H,连接GM并延长交EH于点F,∵BC=6,面积S△ABC=12,∴△ABC的高h=4,∵AD=AB,EC=AC,DG∥BC,EH∥BC,∴AD=DH=HB=AB,AG=GE=EC=AC,DG=BC=2,∴平行线DG,EH,BC之间的距离为,∵DG∥BC,EH∥BC,∴DG∥EH,∴∠GDM=∠FEM,在△DMG和△EMF中,,∴△DMG≌△EMF(ASA),∴△EMF的高,∴MN==2.故答案为:2.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程17.如图,AB∥CD,BN∥MD,点M、N在AC上,且AM=CN,求证:BN=DM.【解答】证明:∵AB∥CD,BN∥MD,∴∠A=∠C,∠ANB=∠CMD,∵AM=CN,∴AM+MN=CN+MN,即AN=CM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴BN=DM.18.如图,AD、CE是正五边形ABCDE的对角线,交点为F,试求∠CFD的度数.解:∵正五边形ABCDE,∴CD=DE=AE,∠AED=∠CDE==108°,∴=36°=∠CED,∴∠CFD=∠ADE+∠CED=36°+36°=72°.19.如图,等腰△ABC中AB=AC,线段BD把△ABC分成了等腰△ABD和等腰△BCD,且AD=BD,BC=DC,求∠A的大小.解:∵AB=AC,AD=BD,BC=DC,∴∠A=∠ABD,∠C=∠ABC,∠CBD=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠CBD=∠CDB=∠A+∠ABD=2x°,∴∠C=∠ABC=3x°,∵∠A+∠C+∠ABC=180°,∴x+3x+3x=180,解得x=,∴∠A=()°.20.如图,在边长为1的小正方形所组成的网格中,每一个小正方形的顶点称为“格点”,请你用无刻度直尺,借助网格,按要求完成作图:(1)以AB所在直线为对称轴,作出△ABC的轴对称图形△ABD;(2)以AD所在直线为对称轴,作出△ABD的轴对称图形△AED;(3)已知A点的坐标为(0,2),C点坐标为(4,4),F(1,6).请你在AB上取一点M,使FM+CM有最小值,则点M的坐标为(3,2).解:(1)如图,△ABD即为所求.(2)如图,△ADE即为所求.(3)如图,点M即为所求,M(3,2).故答案为(3,2).21.如图,四边形ABCD中,CA平分∠BAD,CB=CD,CF⊥AD于F.(1)求证:∠ABC+∠ADC=180°;(2)若AF:CF=3:4,CF=8,求四边形ABCD的面积.【解答】证明:(1)如图,过点C作CE⊥AB,交AB的延长线于E,、∵CA平分∠BAD,∴∠EAC=∠FAC,在△ACE和△ACF中,,∴△ACE≌△ACF(AAS),∴AF=AE,CE=CF,在Rt△CBE和Rt△CDF中,,∴Rt△CBE≌Rt△CDF(HL),∴∠ADC=∠CBE,∵∠ABC+∠CBE=180°,∴∠ADC+∠ABC=180°;(2)∵AF:CF=3:4,CF=8,∴AF=6,∴S△ACF=AF×CF=24,∵Rt△CBE≌Rt△CDF,△ACE≌△ACF,∴S△CBE=S△CDF,S△ACE=S△ACF,∴四边形ABCD的面积=S△ACE+S△ACF=2S△ACF=48.22.如图1,△ABC中,∠A=50°,AB=AC,点D、E别在边AB、AC上,且DE∥BC.(1)求证:BD=CE;(2)围绕A点移动△ADE的位置,使其一边AD落在线段AC上(如图2所示),连接CE、BD并延长相交于M点.试求∠BMC的度数;(3)在(2)的条件下,求∠AME的度数.【解答】(1)证明:如图1中,∵AB=AC,∴∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴AB﹣AD=AC﹣AE,即BD=EC.(2)解:如图2中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ADB=∠CDM,∴∠BAD=∠CMD=50°.(3)解:如图2﹣1中,过点A作AG⊥CE于G,AH⊥BM于H.∵△BAD≌△CAE,AH⊥BD,AG⊥CE,∴AH=AG,∴∠AMG=∠AMD,∵∠CMB=50°,∴∠AME=(180°﹣50°)=65°.23.(1)已知△ABC中,AB=AC,∠BAC=120°.①如图1,点M、N在底边BC上,且∠ANB=45°,∠MAN=60°.请在图中作出∠NAD=60°,且AD=AM,连接ND、CD;并直接写出BM与CN的数量关系BM=2CN.②如图2,点M在BC上,点N在BC的上方,且∠MBN=∠MAN=60°,求证:MC=BN+MN;(2)如图3,在四边形ABCD中,∠CAB=50°,BD平分∠ABC,若∠ADC与∠ABD 互余,则∠DAC的大小为65°(直接写出结果).解:(1)①BM=2CN.如图1,作出∠NAD=60°,且AD=AM,连接ND、CD;∵∠MAN=60°,∠BAC=120°,∴∠BAM+∠CAN=60°,∵∠CAD+∠CAN=60°,∴∠CAD=∠BAM,又∵AD=AM,AB=AC,∴△ABM≌△ACD(SAS),∴BM=CD,∠B=∠ACD=30°,∵AM=AD,∠MAN=∠DAN,AN=AN,∴△AMN≌△ADN(SAS),∴∠ANM=∠AND=45°,∴∠MND=90°,又∵∠DCN=∠ACB+∠ACD=60°,∴∠CDN=30°,∴CD=2CN,∴BM=2CN.故答案为:BM=2CN.②如图2,在CB上截取CG=BN,连接AG,∵AB=AC,∠BAC=120°,∴∠C=∠ABC=30°,∵∠NBM=60°,∴∠ABN=30°,在△ABN和△ACG中,,∴△ABN≌△ACG(SAS),∴∠BAN=∠CAG,AN=AG,∴∠BAN+∠BAM=∠BAM+∠CAG=∠MAN=60°,∴∠MAG=∠BAC﹣∠BAM﹣∠CAG=60°,∴∠NAM=∠GAM,在△AMN和△AMG中,,∴△AMN≌△AMG(SAS),∴MN=MG,∴MC=MG+GC=MN+BN.(2)如图3,过点D作DM⊥BA于点M,DN⊥BC于点N,在AM上截取MK=CN,连接DK,∵BD平分∠ABC,∴∠ABC=2∠ABD,DM=DN,∵∠ADC=90°﹣∠ABD,∠MDN=180°﹣2∠ABD,∴∠MDN=2∠ADC,在△DMK和△DNC中,,∴△DMK≌△DNC(SAS),∴DC=DK,∠MDK=∠CDN,∴∠NDC+∠ADM=∠MDK+∠ADM=∠ADC,∴∠ADC=∠ADK,∵AD=AD∴△ADC≌△ADK(SAS),∴∠DAC=∠DAM=.故答案为:65°.24.在平面直角坐标系中,点A(0,a),点B(b,0),其中参数a、b满足如下关系式|2a ﹣b|+(6﹣b)2=0.(1)直接写出A、B两点坐标:A(0,3)、B(6,0).(2)如图1,C点的横坐标为3,且AC平分∠BAy,作CD⊥AB于D,求BD﹣AD的值;(3)如图2,现以AB为斜边构造等腰直角三角形ABM,试求以A、B、O、M为顶点的四边形的面积.解:(1)∵|2a﹣b|+(6﹣b)2=0.∴2a﹣b=0,6﹣b=0,∴a=3,b=6,∴A(0,3),B(6,0);故答案为:(0,3),(6,0);(2)连接CO,CB,过点C作CH⊥OB于点H,过点C作CE⊥AO于点E,∵C点的横坐标为3,B点的横坐标为6,∴H为OB的中点,∴CO=CB,∵CA平分∠EAD,CE⊥AO,CD⊥AB,∴CE=CD,在Rt△CEO和Rt△CDB中,,∴Rt△CEO≌Rt△CDB(HL),∴OE=BD,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AD=AE,∴BD﹣AD=OE﹣AE=OA=3.(3)①当M在AB上方时,如图2,过点M作MH⊥y轴于点H,过点BT⊥HM于点H,∵∠AHM=∠AMB=∠BTM=90°,∴∠AMH+∠BMT=∠BMT+∠MBT=90°,∴∠AMH=∠MBT,∵AM=BM,∴△AHM≌△MTB(AAS),∴AH=MT,HM=BT,设AH=MT=x,HM=BT=y,∵x+y=6,x﹣y=3,∴x=,y=,∴S四边形AOBM=S矩形OHTB﹣2S△AHM=6×﹣2×=.②当M在AB下方时,如图3,同①可得△AHM≌△MTB(AAS),∴AH=MT=y,HM=BT=x,∵x+y=6,x﹣y=3,∴x=,y=,∴S四边形AOMB=S梯形AHTB﹣S△MBT﹣S△OHM=×()×6﹣=.综合以上可得以A、B、O、M为顶点的四边形的面积为或.。

湖北省武汉市洪山区2020-2021学年度上学期期末考试七年级英语试卷(word版+答案)

湖北省武汉市洪山区2020-2021学年度上学期期末考试七年级英语试卷(word版+答案)

洪山区2020-2021学年度第一学期期末质量检测七年级英语试卷洪山区教育科学研究院制2021.1.19亲爱的同学在你答题前,请认真阅读下面的注意事项1. 本卷共4页10大题,满分120分考试用时120分钟。

米2答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息。

3. 答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦净后,再选涂其他答案。

答在“试卷”上无效。

4. 答非选择题时,答案用0. 5毫米黑色笔迹签字笔写在答题卡上。

答在“试卷”上无效。

5认真阅读答题卡上的注意事项。

预祝你取得优异成绩!第I卷选择题(共85分)第一部分听力部分一、听力测试(共五节,满分25分)第一节(共5小题,每小题1分,满分5分)听录音,选择与句中信息相符的图片。

只读一遍第二节(共5小题,每小题1分,满分5分)听录音,选出你所听到的内容。

只读一遍。

6. A. fun B. funny C. fine7. A. we B. us C. our8. A. sell B. share C. sale9. A. 9 a.m. B. 9 p. m. C. 8 a. m.10. A. Mary Grace B. Smith Mary C. Mary Smith第三节(共5小题,每小题1分,满分5分)听录音,找出问题的正确答语,每个问题读两遍。

11. A. Geography. B. Ms. Steen. C. On Monday.12. A. Because I have P. E. B. Because he is my friend. C. He is a teacher.13. A. Yes, I don't B. No, I'm not. C. Yes, I do.14. A. Yes, that is B. Yes, it is. C. No, they aren't.15. A. It's yellow. B. It's under the table. C. It's $3.第四节(共5小题,每小题1分,满分5分)听五个短对话,根据内容选择正确的答案。

2019-2020年武汉市洪山区八年级上册期末数学试卷(有答案)

2019-2020年武汉市洪山区八年级上册期末数学试卷(有答案)

湖北省武汉市洪山区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.若代数式在实数范围内有意义,则实数a 的取值范围为( ) A .a =4B .a >4C .a <4D .a ≠42.解分式方程+=3时,去分母后变形正确的是( )A .2+(+2)=3(﹣1)B .2﹣+2=3(﹣1)C .2﹣(+2)=3D .2﹣(+2)=3(﹣1)3.如图,已知∠1=∠2,AC =AD ,增加下列条件:其中不能使△ABC ≌△AED 的条件( )A .AB =AE B .BC =ED C .∠C =∠D D .∠B =∠E4.下列计算正确的是( )A .(a 2)3=a 5B .(152y ﹣10y 2)÷5y =3﹣2yC .10ab 3÷(﹣5ab )=﹣2ab 2D .a ﹣2b 3•(a 2b ﹣1)﹣2=5.下列各多项式从左到右变形是因式分解,并分解正确的是( )A .(a ﹣b )3﹣b (b ﹣a )2=(b ﹣a )2(a ﹣2b )B .(+2)(+3)=2+5+6C .4a 2﹣9b 2=(4a ﹣9b )(4a +9b )D .m 2﹣n 2+2=(m +n )(m ﹣n )+26.根据图①的面积可以说明多项式的乘法运算(2a +b )(a +b )=2a 2+3ab +b 2,那么根据图②的面积可以说明多项式的乘法运算是( )A .(a +3b )(a +b )=a 2+4ab +3b 2B .(a +3b )(a +b )=a 2+3b 2C .(b +3a )(b +a )=b 2+4ab +3a 2D .(a +3b )(a ﹣b )=a 2+2ab ﹣3b 27.下列因式分解,错误的是()A.2+7+10=(+2)(+5)B.2﹣2﹣8=(﹣4)(+2)C.y2﹣7y+12=(y﹣3)(y﹣4)D.y2+7y﹣18=(y﹣9)(y+2)8.计算(﹣1﹣)÷()的结果为()A.﹣B.﹣(+1)C.﹣D.9.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为千米/小时,则方程可列为()A.=B.=C.+1=﹣D.+1=+10.如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM 绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.12B.6C.3D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.计算﹣的结果为.12.若式子的值为零,则的值为.13.若多项式92﹣2(m+1)y+4y2是一个完全平方式,则m=.14.如图,△ABC和△CDE都是等边三角形,且∠EBD=70°,则∠AEB=.15.如图,△ABC中,AB=10,AC=4,点O在边BC上,OD垂直平分BC,AD平分∠BAC,过点D作DM⊥AB于点M,则BM=.16.如图,等腰△ABC中,AB=AC=4,BC=6,△ABD是等边三角形,点P是∠BAC的角平分线上一动点,连PC、PD,则PD+PC的最小值为.三、解答题(共8题,共72分)17.(12分)解方程或化简分式:(1)﹣1=(2)×﹣(﹣)(3)(﹣2﹣)÷18.(10分)利用乘法公式计算:(1)(﹣3a﹣2)(3a﹣2)+(3a﹣1)2(2)(2+y+1)(2+y﹣1)﹣(2﹣y﹣1)219.(8分)在平面直角坐标系中,A(﹣3,0),B为y轴负半轴上一个动点.(1)如图,若B(0,﹣5),以A点为顶点,AB为腰在第三象限作等腰Rt△ABC,直接写出C点的坐标;(2)如图,当B点沿y轴负半轴向下运动时,以B为顶点,BA为腰作等腰Rt△ABD(点D在第四象限),过D作DE⊥轴于E点,求OB﹣DE的值.20.(8分)将下列多项式因式分解:(1)4ab2﹣4a2b﹣b3(2)2﹣5﹣621.(8分)对于多项式3﹣52++10,我们把=2代入此多项式,发现=2能使多项式3﹣52++10的值为0,由此可以断定多项式3﹣52++10中有因式(﹣2),(注:把=a代入多项式,能使多项式的值为0,则多项式一定含有因式(﹣a)),于是我们可以把多项式写成:3﹣52++10=(﹣2)(2+m+n),分别求出m、n后再代入3﹣52++10=(﹣2)(2+m+n),就可以把多项式3﹣52++10因式分解.(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式3+52+8+4.22.(10分)列分式方程解应用题:雄楚大街公交快速通道开通后,为相应市政府“绿色出行”的号召,家住关山光谷新城的小童上班由自驾车改为乘坐快速公交车.已知小童家乘坐快速公家车到上班地点18千米,比他自驾车的路线距离少2千米,他乘快速公交车平均每小时行驶的路程是他自驾车平均每小时行驶的路程的1.2倍.他从家出发到达上班地点,乘快速公交车方式比自驾车方式还提前10分钟,求小童用自驾车方式上班平均每小时行驶多少千米?23.(10分)已知△ABC与△ADE是等边三角形,点B、A、D在一条直线上,∠CPN=60°,PN交直线AE于点N.(1)若点P在线段AB上运动,如图1(不与A、B重合),求证:PC=PN;(2)若点P在线段AD上运动(不与A、D重合),在图2中画出图形,猜想线段PC、PN的数量关系并证明你的结论.24.(10分)如图,△ABC中(1)若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,求∠ACB的大小.(2)如图,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE=α.①连接DC与BE,G、F分别是DC与BE的中点,求∠AFG的度数.②如图,DC、BE交于点M,连接AM,直接写出∠AMC与α的数量关系是.湖北省武汉市洪山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4B.a>4C.a<4D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.2.解分式方程+=3时,去分母后变形正确的是()A.2+(+2)=3(﹣1)B.2﹣+2=3(﹣1)C.2﹣(+2)=3D.2﹣(+2)=3(﹣1)【分析】分式方程去分母转化为整式方程,即可作出判断.【解答】解:方程变形得:﹣=3,去分母得:2﹣(+2)=3(﹣1),故选:D.【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.3.如图,已知∠1=∠2,AC=AD,增加下列条件:其中不能使△ABC≌△AED的条件()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E【分析】根据等式的性质可得∠CAB=∠DAE,然后再结合判定两个三角形全等的一般方法SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠CAB=∠DAE,A、添加AB=AE可利用SAS定理判定△ABC≌△AED,故此选项符合题意;B、添加CB=DE不能判定△ABC≌△AED,故此选项符合题意;C、添加∠C=∠D可利用ASA定理判定△ABC≌△AED,故此选项符合题意;D、添加∠B=∠E可利用AAS定理判定△ABC≌△AED,故此选项符合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.下列计算正确的是()A.(a2)3=a5B.(152y﹣10y2)÷5y=3﹣2yC.10ab3÷(﹣5ab)=﹣2ab2D.a﹣2b3•(a2b﹣1)﹣2=【分析】根据合并同类项、幂的乘方和积的乘方进行计算即可.【解答】解:A、(a2)3=a6,故A错误;B、(152y﹣10y2)÷5y=3﹣2y,故B正确;C、10ab3÷(﹣5ab)=﹣2b2,故C错误;D、a﹣2b3•(a2b﹣1)﹣2=,故D错误;故选:B.【点评】本题考查了整式的混合运算,掌握合并同类项、幂的乘方和积的乘方的运算法则是解题的关键.5.下列各多项式从左到右变形是因式分解,并分解正确的是()A.(a﹣b)3﹣b(b﹣a)2=(b﹣a)2(a﹣2b)B.(+2)(+3)=2+5+6C.4a2﹣9b2=(4a﹣9b)(4a+9b)D.m2﹣n2+2=(m+n)(m﹣n)+2【分析】直接利用因式分解的定义进而分析得出答案.【解答】解:A、(a﹣b)3﹣b(b﹣a)2=﹣(b﹣a)3﹣b(b﹣a)2=(b﹣a)2(a﹣2b),是因式分解,故此选项正确;B、(+2)(+3)=2+5+6,是整式的乘法运算,故此选项错误;C、4a2﹣9b2=(2a﹣3b)(2a+3b),故此选项错误;D、m2﹣n2+2=(m+n)(m﹣n)+2,不符合因式分解的定义,故此选项错误.故选:A.【点评】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.6.根据图①的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b2【分析】根据图形确定出多项式乘法算式即可.【解答】解:根据图②的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7.下列因式分解,错误的是()A.2+7+10=(+2)(+5)B.2﹣2﹣8=(﹣4)(+2)C.y2﹣7y+12=(y﹣3)(y﹣4)D.y2+7y﹣18=(y﹣9)(y+2)【分析】直接利用十字相乘法分解因式进而判断得出答案.【解答】解:A、2+7+10=(+2)(+5),正确,不合题意;B、2﹣2﹣8=(﹣4)(+2),正确,不合题意;C、y2﹣7y+12=(y﹣3)(y﹣4),正确,不合题意;D、y2+7y﹣18=(y+9)(y﹣2),故原式错误,符合题意.故选:D.【点评】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.8.计算(﹣1﹣)÷()的结果为()A.﹣B.﹣(+1)C.﹣D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=÷=•=,故选:C.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.9.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为千米/小时,则方程可列为()A.=B.=C.+1=﹣D.+1=+【分析】设原计划速度为千米/小时,根据“一运送物资车开往距离出发地180千米的目的地”,则原计划的时间为:,根据“出发第一小时内按原计划的速度匀速行驶,一小时后以原速度的1.5倍匀速行驶”,则实际的时间为:+1,根据“实际比原计划提前40分钟到达目的地”,列出关于的分式方程,即可得到答案.【解答】解:设原计划速度为千米/小时,根据题意得:原计划的时间为:,实际的时间为:+1,∵实际比原计划提前40分钟到达目的地,∴+1=﹣,故选:C.【点评】本题考查了由实际问题抽象出分式方程,正确找出等量关系,列出分式方程是解题的关键.10.如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM 绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.12B.6C.3D.1【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BD=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,CG=AB=×24=12,∴MG=CG=×12=6,∴HN=6,故选:B.【点评】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.12.若式子的值为零,则的值为﹣1.【分析】直接利用分式的值为零则分子为零分母不等于零,进而得出答案.【解答】解:∵式子的值为零,∴2﹣1=0,(﹣1)(+2)≠0,解得:=﹣1.故答案为:﹣1.【点评】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.13.若多项式92﹣2(m+1)y+4y2是一个完全平方式,则m=﹣7或5.【分析】利用完全平方公式得到92﹣2(m+1)y+4y2=(3±2y)2,则﹣2(m+1)y=±12y,即m+1=±6,然后解m的方程即可.【解答】解:∵多项式92﹣2(m+1)y+4y2是一个完全平方式,∴92﹣2(m+1)y+4y2=(3±2y)2,而(3±2y)2=92±12y+4y2,∴﹣2(m+1)y=±12y,即m+1=±6,∴m=﹣7或5.故答案为=﹣7或5.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2.也考查了完全平方公式.14.如图,△ABC和△CDE都是等边三角形,且∠EBD=70°,则∠AEB=130°.【分析】根据等边三角形性质得出AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,求出∠ACE=∠BCD,证△ACE≌△BCD,根据全等三角形的性质得出∠CAE=∠CBD,求出∠ABE+∠BAE=50°,根据三角形内角和定理求出即可【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,∴∠ACB﹣∠ECB=∠ECD﹣∠ECB,∴∠ACE=∠BCD,在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠EBD=70°,∴70°﹣∠EBC=60°﹣∠BAE,∴70°﹣(60°﹣∠ABE)=60°﹣∠BAE,∴∠ABE+∠BAE=50°,∴∠AEB=180°﹣(∠ABE+∠BAE)=130°.故答案为:130°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等边三角形的性质的应用,能求出∠CAE=∠CBD是解此题的关键,难度适中.15.如图,△ABC中,AB=10,AC=4,点O在边BC上,OD垂直平分BC,AD平分∠BAC,过点D作DM⊥AB于点M,则BM=3.【分析】连接BD,CD,过点D作DG⊥AC,由垂直平分线的性质可得BD=CD,由△ADM≌△ADG,Rt△BDM≌Rt△CDG可得AM=AG,DM=DG,BM=CG,即可求BM的长.【解答】证明:如图,连接BD,CD,过点D作DG⊥AC,交AC的延长线于G,∵OD垂直平分BC,∴BD=CD,∵AD平分∠BAC,∴∠DAM=∠DAG,且AD=AD,∠AMD=∠AGD,∴△ADM≌△ADG(AAS)∴AM=AG,MD=DG,且BD=CD,∴Rt△BDM≌Rt△CDG(HL)∴BM=CG,∵AB=AM+BM=AG+BM=AC+CG+BM=AC+2BM∴10=4+2BM∴BM=3,故答案为:3【点评】本题考查了全等三角形的判定和性质,线段垂直平分线的性质,角平分线的性质,熟练运用全等三角形的判定是本题的关键.16.如图,等腰△ABC中,AB=AC=4,BC=6,△ABD是等边三角形,点P是∠BAC的角平分线上一动点,连PC、PD,则PD+PC的最小值为4.【分析】连接BP,根据AP垂直平分BC,即可得到CP=BP,再根据当B,P,D在在同一直线上时,BP+PD 的最小值为线段BD长,即可得出PD+PC的最小值为4.【解答】解:如图,连接BP,∵点P是∠BAC的角平分线上一动点,AB=AC,∴AP垂直平分BC,∴CP=BP,∴PD+PC=PD+PB,∴当B,P,D在在同一直线上时,BP+PD的最小值为线段BD长,又∵△ABD是等边三角形,AB=BD=4,∴PD+PC的最小值为4,故答案为:4.【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换解决,多数情况要作点关于某直线的对称点.三、解答题(共8题,共72分)17.(12分)解方程或化简分式:(1)﹣1=(2)×﹣(﹣)(3)(﹣2﹣)÷【分析】(1)先把整式方程化为分式方程求出的值,再代入最简公分母进行检验即可;(2)根据分式混合运算的法则把原式进行化简,即可;(3)根据分式混合运算的法则把原式进行化简,即可.【解答】解:(1)方程两边同乘2﹣1,得:2+2+1﹣2+1=3,解得:=,检验:将=代入2﹣1≠0,∴=是原方程的根;(2)×﹣(﹣)=×+=+=;(3)(﹣2﹣)÷=÷=•=﹣﹣4.【点评】本题考查的是解分式方程,分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.(10分)利用乘法公式计算:(1)(﹣3a﹣2)(3a﹣2)+(3a﹣1)2(2)(2+y+1)(2+y﹣1)﹣(2﹣y﹣1)2【分析】(1)先利用平方差公式和完全平方公式展开,然后合并同类项即可;(2)先利用平方差公式和完全平方公式展开,然后合并同类项即可.【解答】解:(1)原式=﹣(3a+2)(3a﹣2)+(3a﹣1)2=﹣(9a2﹣4)+9a2﹣6a+1=﹣9a2+4+9a2﹣6a+1=﹣6a+5;(2)原式=(2+y)2﹣1﹣[(2﹣y)2﹣2(2﹣y)+1]=42+4y+y2﹣1﹣(42﹣4y+y2﹣4+2y+1)=42+4y+y2﹣1﹣42+4y﹣y2+4﹣2y﹣1=8y+4﹣2y﹣2.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2.也考查了完全平方公式.19.(8分)在平面直角坐标系中,A(﹣3,0),B为y轴负半轴上一个动点.(1)如图,若B(0,﹣5),以A点为顶点,AB为腰在第三象限作等腰Rt△ABC,直接写出C点的坐标(﹣8,﹣3);(2)如图,当B点沿y轴负半轴向下运动时,以B为顶点,BA为腰作等腰Rt△ABD(点D在第四象限),过D作DE⊥轴于E点,求OB﹣DE的值.【分析】(1)要求点C的坐标,则求C的横坐标与纵坐标,因为AC=AB,则作CM⊥轴,即求CM和AM的值,容易得△MAC≌△OBA,根据已知即可求得C点的值;(2)求OB﹣DE的值则将其放在同一直线上,过D作DQ⊥OB于Q点,即是求BQ的值,由图易求得△AOB≌△BDQ(AAS),即可求得BQ的长.【解答】解:(1)过C作CM⊥轴于M点,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,则∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=3,MA=OB=5,则点C的坐标为(﹣8,﹣3),故答案为:(﹣8,﹣3);(2)如图2,过D作DQ⊥OB于Q点,则DE=OQ,∴OB﹣DE=OB﹣OQ=BQ,∵∠ABO+∠QBD=90°,∠ABO+∠OAB=90°,则∠QBD=∠OAB,在△AOB和△BDQ中,,∴△AOB≌△BDQ(AAS),∴QB=OA=3,∴OB﹣DE=BQ=OA=3.【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.20.(8分)将下列多项式因式分解:(1)4ab2﹣4a2b﹣b3(2)2﹣5﹣6【分析】(1)直接提取公因式﹣b,再利用完全平方公式分解因式得出答案;(2)直接分解常数项,进而分解因式即可.【解答】解:(1)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(2)2﹣5﹣6=(﹣6)(+1).【点评】此题主要考查了提取公因式法以及公式法、十字相乘法分解因式,正确应用公式是解题关键.21.(8分)对于多项式3﹣52++10,我们把=2代入此多项式,发现=2能使多项式3﹣52++10的值为0,由此可以断定多项式3﹣52++10中有因式(﹣2),(注:把=a代入多项式,能使多项式的值为0,则多项式一定含有因式(﹣a)),于是我们可以把多项式写成:3﹣52++10=(﹣2)(2+m+n),分别求出m、n后再代入3﹣52++10=(﹣2)(2+m+n),就可以把多项式3﹣52++10因式分解.(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式3+52+8+4.【分析】(1)根据3﹣52++10=(﹣2)(2+m+n),得出有关m,n的方程组求出即可;(2)由把=﹣1代入3+52+8+4,得其值为0,则多项式可分解为(+1)(2+a+b)的形式,进而将多项式分解得出答案.【解答】解:(1)在等式3﹣52++10=(﹣2)(2+m+n),中,分别令=0,=1,即可求出:m=﹣3,n=﹣5(2)把=﹣1代入3+52+8+4,得其值为0,则多项式可分解为(+1)(2+a+b)的形式,(7分)用上述方法可求得:a=4,b=4,(8分)所以3+52+8+4=(+1)(2+4+4),=(+1)(+2)2.(10分)【点评】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.22.(10分)列分式方程解应用题:雄楚大街公交快速通道开通后,为相应市政府“绿色出行”的号召,家住关山光谷新城的小童上班由自驾车改为乘坐快速公交车.已知小童家乘坐快速公家车到上班地点18千米,比他自驾车的路线距离少2千米,他乘快速公交车平均每小时行驶的路程是他自驾车平均每小时行驶的路程的1.2倍.他从家出发到达上班地点,乘快速公交车方式比自驾车方式还提前10分钟,求小童用自驾车方式上班平均每小时行驶多少千米?【分析】设小童用自驾车方式上班平均每小时行驶千米,根据“已知小童家乘坐快速公家车到上班地点18千米,比他自驾车的路线距离少2千米,他乘快速公交车平均每小时行驶的路程是他自驾车平均每小时行驶的路程的1.2倍.他从家出发到达上班地点,乘快速公交车方式比自驾车方式还提前10分钟”,列出关于的分式方程,解之,经过检验后即可得到答案.【解答】解:设小童用自驾车方式上班平均每小时行驶千米,根据题意得:﹣=,解得:=30,经检验:=30是原方程的解,答:小童用自驾车方式上班平均每小时行驶30千米.【点评】本题考查了分式方程的应用,正确找出等量关系,列出分式方程是解题的关键.23.(10分)已知△ABC与△ADE是等边三角形,点B、A、D在一条直线上,∠CPN=60°,PN交直线AE于点N.(1)若点P在线段AB上运动,如图1(不与A、B重合),求证:PC=PN;(2)若点P在线段AD上运动(不与A、D重合),在图2中画出图形,猜想线段PC、PN的数量关系并证明你的结论.【分析】(1)在AC上截取AF=AP,可得△PCF≌△PNA,所以PC=PN;(2)当P在AD上时,∠CPN的一边PN交AE的延长线于N,此时也有PC=PN过P作AC的平行线交BC的延长线于F,由平行线的性质可得出∠F=∠BCA=60°,故可得出∠F=∠APF,根据全等三角形的判定定理得出△PCF≌△NPA,由全等三角形的性质即可得出结论.【解答】解:(1)PC=PN;理由如下:如图1所示,在AC上截取AF=AP,∵AP=AF,∠BAC=60°,∴△APF为等边三角形,∴PF=PA,∵∠CPF+∠FPN=60°,∠FPN+∠NPA=60°,∴∠CPF=∠APN,在△PCF和△PNA中,,∴△PCF≌△PNA(ASA),∴PC=PN;(2)PC=PN;理由如下:当P在AD上时,∠CPN的一边PN交AE的延长线于N,此时也有PC=PN;过P作AC的平行线交BC的延长线于F,如图2所示:∴∠F=∠BCA=60°,∠APF=∠BAC=60°,∴∠F=∠APF,∴CF=AP,∵∠CPN=60°,∴∠NPF=60°﹣∠FPC,∵∠BPC=60°﹣∠CPF,∴∠NPF=∠BPC,∵∠F=∠PAN=60°,∴∠FCP=∠APN=60°+∠APC,在△PCF和△NPA中,,∴△PCF≌△NPA(AAS),∴PC=PN;【点评】本题考查了全等三角形的判定与性质及等边三角形的性质;熟练掌握等边三角形的性质及全等三角形的性质,能够利用全等三角形求解线段之间的关系,正确作出辅助线是解答本题的关键.24.(10分)如图,△ABC中(1)若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,求∠ACB的大小.(2)如图,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE=α.①连接DC与BE,G、F分别是DC与BE的中点,求∠AFG的度数.②如图,DC、BE交于点M,连接AM,直接写出∠AMC与α的数量关系是∠AMC=90°+α.【分析】(1)过C作AP的垂线CD,利用等腰三角形的判定和性质解答即可;(2)①连接AG,利用全等三角形的判定和性质解答即可;②由①解答即可.【解答】解:(1)过C作AP的垂线CD,垂足为点D,连接BD:∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC﹣∠ABC=60°﹣45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°﹣15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°;(2)①连接AG,∵∠DAB=∠CAE,∴∠DAB+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,在△ADC和△ABE中,∴△ADC≌△ABE(SAS),∴DC=BE,∠ACD=∠AEB,∵G、F分别是DC与BE的中点,∴EF=CG,在△ACG和△AEF中,∴△ACG≌△AEF(SAS),∴AG=AF,∠CAG=∠EAF,∴∠AGF=∠AFG,∠CAG﹣∠CAF=∠EAF﹣∠CAF,∴∠EAC=∠GAF,∵∠EAC=α,∴∠GAF=α,∵∠GAF+∠AFG+∠AGF=180°,∴∠AFG=90°﹣α;②∠AMC=90°+α.故答案为:∠AMC=90°+α.【点评】此题考查全等三角形的判定与性质,关键是根据全等三角形的判定和性质解答.。

2020-2021学年湖北省武汉市江汉区八年级上学期期末考试数学试卷( 含答案)

2020-2021学年湖北省武汉市江汉区八年级上学期期末考试数学试卷( 含答案)
考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
12.1.6×10-5
【分析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
设∠BAD=∠BDA=x,∠E=∠CAE=y,
∴∠ABC=∠BAD+∠BDA=2x,∠ACB=∠E+∠CAE=2y,
∵∠ABC+∠ACB+∠BAC=180°,
∴2x+2y+50°=180°,
∴x+y=65°,
∴∠DAE=∠DAB+∠CAE+∠BAC=65°+50°=115°.
故答案为:115°.
【点评】
(2)若∠BAC=108°,∠D=36o,则图中共有个等腰三角形.
24.(1)先化简,再求值: ,其中a=2020;
(2)解方程: .
25.如图,所有的网格都是由边长为1的小正方形构成,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形, ABC为格点三角形.
(1)如图,图1,图2,图3都是6×6的正方形网格,点M,点N都是格点,请分别按要求在网格中作图:
解:根据题意,∠ABC=∠EDC,BC=CD,∠ACB=∠ECD,
∴能证明△ABC≌△EDC最直接的依据是ASA.
故选:C.
【点评】
本题考查证明三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)下列平面图形中,不是轴对称图形的为( )A.B.C.D.2.(3分)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm3.(3分)如图,∠DAC=∠BAC,下列条件中,不能判定△ABC≌△ADC的是( )A.DC=BC B.AB=AD C.∠D=∠B D.∠DCA=∠BCA4.(3分)在△ABC中,到三边距离相等的点是△ABC的( )A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点5.(3分)已知正多边形的一个内角为144°,则该正多边形的边数为( )A.12B.10C.8D.66.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F的值是( )A.360°B.480°C.540°D.720°7.(3分)等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF =12,则△FBC的面积为( )A.40B.46C.48D.508.(3分)如图,设△ABC和△CDE都是正三角形,且∠EBD=58°,则∠AEB的度数是( )A.124°B.122°C.120°D.118°9.(3分)如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正确的有( )A.②③B.①②④C.③④D.①②③④10.(3分)如图,锐角∠AOB=x,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠QNO=β,当MP+PQ+QN最小时,则关于α,β,x的数量关系正确的是( )A.α﹣β=2x B.2β+α=90°+2xC.β+α=90°+x D.β+2α=180°﹣2x二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上。

武昌区2020~2021学年度第一学期期末学业水平测试八年级数学试卷

武昌区2020~2021学年度第一学期期末学业水平测试八年级数学试卷

武昌区2020~2021学年度第一学期期末学业水平测试八年级数学试卷一、选择题(共10小题,每小题3分,共30分)1.为了普及科学抗议防控病毒知识,设计了一些防控知识的图片,图片上有图案和文字说明,下面图案是轴对称图形的是( )2.若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( )A .a ≠4B .a =4C .a >4D .a <4 3.下列运算正确的是( )A .a +a =a 2B .(ab )2=ab 2C .a 2a 3=a 5D .(a 2)3=a 5 4.如图,△ABC ≌△ADE ,若∠B =80°,∠C =30°,则∠E =( )A .80°B .35°C .70°D .30°5.某桑蚕丝的直径约为0.000016米,则这种桑蚕丝的直径用科学记数法表示约为( )A .1.6×10-6米 B .1.6×106米 C .1.6×10-5米 D .1.6×105米 6.若(x +3)(x -5)=x 2+mx -15,则m =( ) A .2B .-2C .5D .-57.下列式子为因式分解的是( ) A .x (x -1)=x 2-xB .x 2-x =x (x +1)C .x 2+x =x (x +1)D .x 2-x =x (x +1)(x -1)8.如图,在△ABC 中,∠BAC =90°,∠B =50°,AD ⊥BC ,垂足为D ,△ADB 与△ADB ′关于直线AD 对称,点B 的对称点是点B ′,则CAB ′的度数为( ) A .10°B .20°C .30°D .40°9.如图,在3×3的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中△ABC 是一个格点三角形.在这个3×3的正方形格纸中,与△ABC 成轴对称的格点三角形最多有( ) A .3个B .4个C .5个D .6个10.如图,CA 垂直于直线l 于点A ,CA =4,点B 是直线l 上一动点.以CB 为边向上作等边△MBC ,连接MA ,则MA 的最小值为( ) A .1B .2C .3D .4二、填空题(本大题共6个小题,每小题3分,共18分) 11.若分式11-+x x 的值为0,则x =_______ 12.已知正n 边形的每个内角为144°,则n =_______ 13.若多项式x 2-mx +16是完全平方式,则m =_______14.如图,线段AB 、BC 的垂直平分线l 1、l 2相交于点O .若∠1=39°,则∠AOC =_______° 15.观察下面的式子:41314313121321211211-=⨯-=⨯-=⨯,,,…,可以发现它们的计算规律是111)1(1+-=+n n n n (n 为正整数).若一容器装有1升水,按照如下要求把水倒出:第一次倒出21升水,第二次倒出的水量是21升水的31,第三次倒出的水量是31升水的41,第四次倒出的水量是41升水的51,…,第n 次倒出的水量是n 1升水的11+n ,…按这种倒水方式,前n 次倒出水的总量为________升16.如图,△ABC 中,AB =AC ,∠BAC =90°,点D 在线段BC 上,∠EDB =21∠C ,BE ∠DE ,垂足为E ,DE 与AB 相交于点F .若BE =5,则△BFD 的面积为_________ 三、解答题(共8题,共72分)17.(本题8分)(1) 计算:(x +3)(x -4) (2) 分解因式:b -2b 2+b 318.(本题8分)解下列方程:(1) xx 223=- (2)114112=---+x x x19.(本题8分)如图,AB ⊥AC ,CD ⊥BD ,AB =DC ,AC 与BD 交于点O ,求证:AC =DB20.(本题8分)先化简,再求值:423)252(--÷-++m mm m ,其中m =621.(本题8分)如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,利用网格线按下列要求画图(1) 画△A 1B 1C 1,使它与△ABC 关于直线l 成轴对称 (2) 在直线l 上找一点P ,使点P 到点A 、B 的距离之和最短 (3) 在直线l 上找一点Q ,使点Q 到边AC 、BC 的距离相等22.(本题10分)外出时佩戴口罩可以有效防控流感病毒,童威的某药店用4000元购进若干包医用外科口罩,很快售完.该店又用7500元钱购进第二批同种口罩,第二批所进的包数比第一批多50%,每包口罩的进价比第一批每包的进价多0.5元,请解答下列问题: (1) 求购进的第一批医用口罩有多少包?(2) 政府采取措施,在这两批医用口罩的销售中,售价保持不变.若售完这两批口罩的总利润不高于3500元,那么药店销售该口罩每包的最高售价是多少元?23.(本题10分)如图1,在△ABC中,AF、BE分别是∠BAC和∠ABC的角平分线,AF和BE 相交于D点(1) 求证:CD平分∠ACB(2) 如图2,过F作FP⊥AC于点P,连接PD.若∠ACB=45°,∠PDF=67.5°,求证:PD=CP(3) 如图3,若2∠BAF+3∠ABE=180°,求证:BE-BF=AB-AE24.(本题12分)如图1,在平面直角坐标系中,点A(0,a-2)、B(b,0)、C(b-6,-b),且a、b满足a2-2ab+2b2-16b+64=0,连接AB、AC,AC交x轴于D点(1) 求C点的坐标(2) 求证:∠OAC+∠ABO=45°(3) 如图2,点E在线段AB上,作EG⊥y轴于G点,交AC于F点.若EG=AO,求证:EF=OD+AG。

2020-2021学年湖北省武汉市洪山区九年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市洪山区九年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市洪山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程2x2+1=6x化成一般形式后,一次项和常数项分别是()A. 2x2、1B. 2、6C. −6x、1D. −6、12.下列食品图案中,是中心对称图形的是()A. B. C. D.3.解方程x2−6x+3=0,可用配方法将其变形为()A. (x+3)2=3B. (x−6)2=3C. (x−3)2=3D. (x−3)2=64.平面直角坐标系中,点(−2,9)关于原点对称的点坐标是()A. (−9,2)B. (2,−9)C. (2,9)D. (−2,−9)5.关于x的一元二次方程2x2+5x−1=0根的说法,正确的是()A. 方程没有实数根B. 方程有两个相等实数根C. 方程有两个不相等实数根D. 方程有一个实数根6.将抛物线y=2(x−1)2+3向右移1单位,上移2单位所得到的新抛物线解析式为()A. y=2(x−2)2−5B. y=2x2+4C. y=2(x−3)2+1D. y=2(x−2)2+57.二次函数y=−x2−2x+c在−3≤x≤2的范围内有最大值为−5,则c的值是()A. −2B. 3C. −3D. −68.抛物线y=ax2+bx+c(a>0)与直线y=bx+c在同一坐标系中的大致图象可能为()A. B.C. D.9.如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为()A. 50mB. 45mC. 40mD. 60m10.如图,正方形ABCD中,∠EAF=45°,有以下四个结论:①BE+DF=EF;②BM2+DN2=MN2③若AB=3,BE=1,则BN=3;④若CE=2,则DN=√2,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.若x=2是方程x2−mx+2=0的根,则m=______.12.如图,△ABC是⊙O的内接三角形,∠C=45°,AB=6,则⊙O的半径为______.13.如图,已知A(4,0)、B(0,3),以点B为圆心,AB的长为半径画圆,交y轴正半轴于点C,则线段AC的长度等于______.14.在平面直角坐标系中,以点(2,0)为旋转中心,将点(1,3)顺时针旋转90°所得到的点坐标为______.15.已知抛物线y=a(x−ℎ)2+k与x轴交于(−2,0)、(3,0),则关于x的一元二次方程:a(x−ℎ+6)2+k=0的解为______.16.已知关于x的二次函数y=ax2−4ax+3a2−6,当x<0时,y随x的增大而减小.并且,当−1≤x≤3时,y有最小值1.则a的值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:2x2−3x+1=0.四、解答题(本大题共7小题,共64.0分)18.如图为二次函数y=−x2−x+2的图象,试根据图象回答下列问题:(1)方程−x2−x+2=0的解为______;(2)当y>0时,x的取值范围是______;(3)当−3<x<0时,y的取值范围是______.19.湖北省预计将于今年年底实现全省贫困人口全部脱贫.2018年,湖北省精准脱贫专项资金合计约30亿元,据扶贫办报告,2020年湖北省政府将合计拨款43.2亿元用于脱贫攻坚最后一战.根据以上信息,请你计算在2018~2020年期间,湖北省脱贫专项资金年平均增长率为多少?20.请用直尺按要求在网格中作图,并标明字母(辅助线可用虚线作出,以下作图请勿超出网格范围).(1)作出平行四边形ABDC;(2)以AC为边,作出正方形ACMN;(3)作出一条同时平分平行四边形ABDC与正方形ACMN面积的直线.21.如图,△ABC为⊙O的内接三角形,∠ACB=60°,弦CD平分∠ADB.(1)求证:△ABC为等边三角形;(2)若BD=3,AD=5,过C点作BD的平行线交DA的延长线于点E,试求△CAE面积.22.某商场主营玩具销售,经市场调查发现,某种玩具的月销量y(件)是售价x(元/件)的一次函数,该玩具的月销售总利润W=(售价−成本)×月销量,三者有如下数据:售价x(元/件)152030月销量y(件)500400200月销售总利润W(元)250040004000(1)试求y关于x的函数关系式(x的取值范围不必写出);(2)玩具的成本为______元,当玩具售价x=______元时,月销售总利润有最大值______元;(3)受市场波动原因,从本月起,该玩具成本上涨a元/件(a>0),且物价局规定该玩具售价最高不得超过25元/件.若月销量y与售价x仍满足(1)中的关系,预计本月总利润W最高为3000元,请你求出a的值.23.四边形ABCD若满足∠A+∠C=180°,则我们称该四边形为“对角互补四边形”.(1)如图1,四边形ABCD为对角互补四边形,且满足∠BAD=90°,AB=AD,求∠ACB的度数.小云同学是这么做的:延长CB至M,使得BM=CD,连AM,可证明△CAD≌△MAB,通过判断△MAC的形状,可以得出结论.①在图1中按要求完成作图;②△MAC的形状为______;③∠ACB=______;(2)如图2,四边形ABCD为对角互补四边形,且满足∠BAD=60°,AB=AD,试证明:CA=CB+CD;(3)如图3,等腰△ABD、等腰△CDE的顶点分别为A、C,点B在线段CE上,且∠BAD与∠C互补.请你判断∠DAE与∠DBC的数量关系并证明.24.如图1,抛物线y=x2+(m+1)x−(m+2)(其中m为大于−1的常数)交坐标轴于A、B、C三点.(1)当m=1时,①直接写出A、B、C的坐标A______、B______、C______;②点D在抛物线上,且满足∠DAO=∠BCO,试求D点坐标;(2)如图2,点M在抛物线上且位于x轴下方,直线AM、BM分别交y轴于P、Q两点,MN⊥y轴于N.若OPOC =54,试求ONOQ的值.答案和解析1.【答案】C【解析】解:2x2+1=6x,2x2−6x+1=0,所以一次项和常数项分别是−6x,1,故选:C.先化成一元二次方程的一般形式,再得出答案即可.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键.2.【答案】A【解析】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.根据中心对称图形的概念判断.本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】D【解析】解:方程x2−6x+3=0,移项得:x2−6x=−3,平方得:x2−6x+9=6,即(x−3)2=6.故选:D.方程移项,两边加上一次项系数一半的平方配方得到结果,即可作出判断.此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.4.【答案】B【解析】解:点(−2,9)关于原点对称的点坐标是(2,−9),故选:B.关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,据此可得答案.本题考查了关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).5.【答案】C【解析】解:∵2x2+5x−1=0,∴△=52−4×2×(−1)=25+8=33>0,∴该方程有两个不相等实数根.故选:C.计算方程根的判别式,求其符号进行判断即可.本题主要考查根的判别式,掌握方程根的判别式与方程根的情况是解题的关键.6.【答案】D【解析】解:根据“左加右减,上加下减”的法则可知,将抛物线y=2(x−1)2+3向右移1个单位,再向上移2个单位,那么所得到抛物线的函数关系式是y=2(x−2)2+5.故选:D.根据函数图象平移的法则进行解答即可.本题考查了二次函数图形与几何变换,是基础题,掌握平移规律“左加右减,上加下减”是解题的关键.7.【答案】D【解析】解:把二次函数y=−x2−2x+c转化成顶点坐标式为y=−(x+1)2+c+1,又知二次函数的开口向下,对称轴为x=−1,故当x=−1时,二次函数有最大值为−5,故−1+2+c=−5,故c=−6.首先把二次函数y=−x2−2x+c转化成顶点坐标式,找到其对称轴,然后根据在−3≤x≤2内有最大值,得到−1+2+c=−5,解得即可.本题主要考查二次函数的性质的知识点,解答本题的关键是求出二次函数的对称轴,本题比较简单.8.【答案】B【解析】解:选项A中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a<0,b>0,c>0,故选项A不符合题意;选项B中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a>0,b<0,c>0,故选项B符合题意;选项C中,由一次函数的图象可知b>0,c>0,由二次函数的图象可知a>0,b<0,c>0,故选项C不符合题意;选项D中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a>0,b<0,c<0,故选项D不符合题意;故选:B.根据题意和各个选项中的函数图象,可以得到一次函数中b和c的正负情况和二次函数图象中a、b、c的正负情况,注意a>0,然后即可判断哪个选项中的图象符合题意.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】A【解析】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB⏜于D,连接OA,如图所示:则OA=OD=250,AC=BC=1AB=150,2∴OC=√OA2−AC2=√2502−1502=200,∴CD=OD−OC=250−200=50(m),故选:A.设圆弧的圆心为O,过O作OC⊥AB于C,交AB⏜于D,连接OA,先由垂径定理得AC= BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.本题考查了垂径定理和勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键.10.【答案】C【解析】解:①延长CB,截取BI=DF,连接AI,如图,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABE=∠ADC=90°,∴∠ABI=90°,在△ADF和△ABI中,{AD=AB∠ADF=∠ABI DF=BI,∴△ADF≌△ABI(SAS),∴∠BAI=∠DAF,AI=AF,∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠BAI+∠BAE=45°,即∠EAI=45°,∴∠EAI=∠EAF,∵AE=AE,∴△AIE≌△AFE(SAS),∴IE=FE,即DE+BF=EF,故①正确;②过B作BD的垂线,截取BH=ND,连接AH,HM,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADN,在△ADN和△ABH中,{AD=AB∠ADN=∠ABH DN=BH,∴△ADN≌△ABH(SAS),∴∠DAN=∠BAH,AN=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAN+∠BAM=∠BAH+∠BAM=45°,∴∠MAN=∠HAM=45°,在△AHM和△ANM中,{AH=AN∠HAM=∠NAM AN=AN,∴△AHM≌△ANM(SAS),∴MH=MN,Rt△BHM中,HM2=BH2+BM2,∴MN2=BM2+DN2,故②正确;③连接AC,过E作EH⊥AC于点H,∵四边形ABCD为正方形,AB=3,∴∠ACB=∠BAC=∠ADB=∠CAD=45°,AB=BC=3,∴∠HEC=∠HCE=45°,∵BE=1,∴CE=2,∴EH=√2,∴BE≠HE,∴∠BAE≠∠CAE,∵∠EAF=∠CAD=45°,∴∠CAE=∠DAF,∵∠BAE≠∠DAF,∴∠EAF+∠BAE≠∠ADN+∠DAF,∵∠BAN=∠EAF+∠BAE,∠BNA=≠∠ADN+∠DAF,∴∠BAN≠∠BNA,∴AB≠BN,∵AB=3,∴BN≠3,故③错误;④过点D作DG⊥BD过N作NG//BC,与DG交于点G,连接CG,与AF的延长线交于点H,∵四边形ABCD是正方形,∴AD=CD,∠BDC=45°,∠BCD=90°∴∠CDG=∠ADC=45°,NG⊥CD,∴∠DNG=∠DGN=45°,∴DN=DG,∵∠ADN=∠CDG=45°,∴△ADN≌△CDG(SAS),∴∠DAN=∠DCG,∵∠DAN+∠AFD=90°,∠AFD=∠CFH,∴∠HCF+∠CFH=90°,∴∠CHF=90°,∵∠CBD=∠EAF=45°,∴A、B、E、N四点共圆,∴∠ABE+∠ANE=180°,∵∠ABC=90°,∴∠ANE=90°=∠CHF,∴EN//CG,∴四边形CENG为平行四边形,∴NG=EC=2,∴DN=CG⋅sin45°=2×√2=√2,故④正确,2故选:C.①延长CB,截取BI=DF,连接AI,如图,易证△ADF≌△ABI,△AIE≌△AFE,得IE=FE,即DF+BE=EF,成立;②过B作BD的垂线,截取BH=ND,连接AH,HM,如图,易证△ADN≌△ABH,△AHM≌△ANM,得MN=MH,最后根据勾股定理可作判断;③连接AC,过E作EH⊥AC于点H,证明EH≠EB得∠BAE≠∠CAE,进而证明∠BAN≠∠BNA,得BN≠3;④过点D作DG⊥BD过N作NG//BC,与DG交于点G,连接CG,与AF的延长线交于点H,证明△DNG为等腰直角三角形,证明四边形CENG为平行四边形,便可解决问题.本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.11.【答案】3【解析】解:∵x=2是方程x2−mx+2=0的一个根,∴22−2m+2=0,解得m=3,故答案为:3.将x=2代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.【答案】3√2【解析】解:如图,连接OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴OA=OB=√2AB=3√2,2即⊙O的半径是3√2,故答案为:3√2.连接OA,OB,可得∠AOB=90°,进而利用等腰直角三角形的性质解答即可.此题考查三角形外接圆与外心,关键是根据圆周角与圆心角的关系得出∠AOB=90°.13.【答案】4√5【解析】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB=√OB2+OA2=√32+42=5,∴BC=AB=5,∴OC=BC+OB=5+3=8,在Rt△COA中,由勾股定理得:AC=√OA2+OC2=√42+82=4√5.故答案为:4√5.先根据勾股定理求出AB,再求出OC,然后利用勾股定理即可得到线段BC的长.本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.14.【答案】(5,1)【解析】解:如图,观察图象可知E(1,3)绕点A(2,0),顺时针旋转90°所得到的点F的坐标为(5,1).故答案为:(5,1).利用图象法,画出图形解决问题即可.本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.15.【答案】x1=−8,x2=−3【解析】解:将抛物线y=a(x−ℎ)2+k向左平移6个单位长度后的函数解析式为y= a(x−ℎ+6)2+k,∵抛物线y=a(x−ℎ)2+k经过(−2,0),(3,0)两点,∴当a(x−ℎ+6)2+k=0向左平移6个单位时,对应的解是x1=−8,x2=−3,故答案为:x1=−8,x2=−3.将抛物线y=a(x−ℎ)2+k向左平移6个单位得到y=a(x−ℎ+6)2+k,然后根据抛物线y=a(x−ℎ)2+k经过(−2,0),(3,0)两点,可以得到a(x−ℎ+6)2+k=0的解.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】73【解析】解:∵二次函数y=ax2−4ax+3a2−6=a(x−2)2+3a2−4a−6,∴顶点为(2,3a2−4a−6),对称轴为直线x=2,∵当x<0时,y随x的增大而减小,∴开口向上,a>0,∵当−1≤x≤3时,y有最小值1,∴顶点为(2,1),∴3a2−4a−6=1,解得,a=73或a=−1,∵a>0,a的值为73,故答案为73.解析式化成顶点式,得到顶点为(2,3a2−4a−6),对称轴为直线x=2,根据当x<0时,y随x的增大而减小,即可得到开口向上,a>0,由当−1≤x≤3时,y有最小值1可知顶点为(2,1),即可得到3a2−4a−6=1,解方程组即可求得a的值.本题考查了二次函数的性质,解题的关键是明确题意,得到关于a的方程是解题的关键.17.【答案】解:方程分解因式得:(2x−1)(x−1)=0,可得2x−1=0或x−1=0,解得:x1=12,x2=1.【解析】此题考查了解一元二次方程−因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.方程左边利用十字相乘法分解因式后,利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解.18.【答案】x1=−2,x2=1−2<x<1−4<y≤94【解析】解:(1)令y=−x2−x+2=0,解得x=−2或1,故答案为x1=−2,x2=1;(2)从图象看,当y>0时,x的取值范围是−2<x<1,故答案为−2<x<1;(3)由抛物线的表达式知,顶点坐标为(−12,94 ),当x=−3时,y=−9+3+2=−4,故当−3<x<0时,y的取值范围是为−4<y≤94.(1)令y=−x2−x+2=0,解得x1=−2,x2=1,即可求解;(2)观察函数图象即可求解;(3)由抛物线的表达式知,顶点坐标为(−12,94),当x=−3时,y=−9+3+2=−4,进而求解.本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.19.【答案】解:设在2018~2020年期间,湖北省脱贫专项资金年平均增长率为x,依题意,得:30(1+x)2=43.2,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:在2018~2020年期间,湖北省脱贫专项资金年平均增长率为20%.【解析】设在2018~2020年期间,湖北省脱贫专项资金年平均增长率为x,根据2018年及2020年湖北省政府投入精准脱贫专项资金额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【答案】解:(1)如图,平行四边形ABDC即为所求.(2)如图,正方形ACMN即为所求.(3)如图,直线l即为所求.【解析】(1)根据平行四边形的判定画出图形即可.(2)根据正方形的判定画出图形即可.(3)连接AD,BC交于点G,连接AM,CN交于点H,直线GH即为所求.本题考查作图−应用与设计,三角形的面积,平行四边形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】解:(1)∵CD平分∠ADB,∴∠BDC=∠ADC,∴BC⏜=AC⏜,∴BC=AC,∵∠ACB=60°,∴△ABC为等边三角形;(2)如图,作CM⊥ED于点M,由(1)知:∠CDA=∠BDC=60°,∵CE//BD,∴∠DCE=∠BDC=60°,∴△CDE是等边三角形,∴CD=CE,∵∠BCD=60°−∠ACD=∠ACE,在△BCD和△ACE中,{BC=AC∠BCD=∠ACE DC=EC,∴△BCD≌△ACE(SAS),∴BD=AE=3,∴DC=DE=DA+AE=8,∵CM⊥ED,∴DM=12DE=4,∴CM=√DC2−DM2=4√3,∴△CAE 面积为:12AE ⋅CM =6√3.【解析】(1)根据圆周角定理和等边三角形的判定即可证明;(2)作CM ⊥ED 于点M ,结合(1)可得△CDE 是等边三角形,然后证明△BCD≌△ACE ,可得BD =AE =3,根据等边三角形三线合一可得DM 的长,根据勾股定理得CM 的长进而可得△CAE 面积.本题考查了三角形的外接圆与外心,垂径定理,圆周角定理,等边三角形的判定与性质,熟练掌握圆周角定理是解题的关键.22.【答案】10 25 4500【解析】解:(1)设函数表达式为y =kx +b ,则{15k +b =50020k +b =400,解得{k =−20b =800, 故y 关于x 的函数关系式为y =−20x +800;(2)设成本为m 元,由题意得:(15−m)×500=2500,解得m =10(元),则W =y(x −10)=(−20x +800)(x −10)=−20(x −40)(x −10),∵−20<0,故W 有最大值,当x =12(40+10)=25(元)时,W 的最大值为4500(元);故答案为10,25,4500;(3)由题意得:W =(800−20x)(x −10−a)=−20(x −25−12a)2+5a 2−300a +4500,则当x =25+12a 时,W 有最大值,由题意得x ≤25且25+12a >25,∴当x =25时,有最大利润W =300(15−a)=3000,解得a =5.(1)设y 关于x 的函数解析式为y =kx +b ,用待定系数法求解即可;(2)该商品进价等于周销售利润除以周销售量,再减去进价;根据周销售利润=周销售量×(售价−进价),列出w 关于x 的二次函数,根据二次函数的性质可得答案;(3)根据周销售利润=周销售量×(售价−进价),列出w关于x的二次函数,根据题意及二次函数的性质得出取得最大利润时的售价,再列出关于a的方程,求解即可.本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.23.【答案】等腰直角三角形45°【解析】(1)解:①如图1,②如图1,延长CB至M,使得BM=CD,连AM,∵∠ADC+∠ABC=180°,∠ABM+∠ABC=180°,∴∠ADC=∠ABM,∵AD=AB,∴△CAD≌△MAB(SAS),∴∠CAD=∠MAB,AC=AM,∵∠CAD+∠CAB=90°,∴∠MAB+∠CAB=90°.即∠CAM=90°,∴△MAC为等腰直角三角形;故答案为:等腰直角三角形;③∵△MAC为等腰直角三角形,∴∠ACB=45°.故答案为:45°;(2)证明:如图2,延长CB至M,使得BM=CD,连AM,∵∠ADC+∠ABC=180°,∠ABM+∠ABC=180°,∴∠ADC=∠ABM,∵AD=AB,∴△CAD≌△MAB(SAS),∴∠CAD=∠MAB,AC=AM,∴∠CAM=∠MAB+∠CBA=∠CAD+∠CBA=∠BAD=60°,∴△ACM为等边三角形,∴CA=CM=CB+BM=CB+CD.∠DAE+∠DBC=180°.理由如下:(3)12证明:如图3,延长CD至M,使得DM=CB,连AM,AC,则∠ADM=∠ABC,又AB=AD,∴△ABC≌△ADM(SAS),∴AC=AM,∴∠M=∠ACB=∠ACD,又CD=CE,CA=CA,∴△ACD≌△ACE(SAS),∴AD=AB=AE,∴∠DAE=2∠DBE,∵∠DBE+∠DBC=180°,∴1∠DAE+∠DBC=180°.2(1)①按题意画出图形即可;②延长CB至M,使得BM=CD,连AM,证明△CAD≌△MAB(SAS),由全等三角形的性质得出∠CAD=∠MAB,AC=AM,可得出∠CAM=90°,则可得出答案;③由等腰三角形的性质可得出答案;(2)延长CB至M,使得BM=CD,连AM,证明△CAD≌△MAB(SAS),得出∠CAD=∠MAB,AC=AM,证明△ACM为等边三角形,则可得出答案;(3)延长CD至M,使得DM=CB,连AM,AC,证明△ABC≌△ADM(SAS),得出AC=AM,则∠M=∠ACB=∠ACD,证明△ACD≌△ACE(SAS),由全等三角形的性质得出AD=AB=AE,得出∠DAE=2∠DBE,则可得出答案.本题是四边形综合题,考查了等边三角形的判定与性质,等腰三角形的性质,全等三角形的判定和性质,等腰直角三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是本题的关键.24.【答案】(−3,0)(1,0)(0,−3)【解析】解:(1)①当m=1时,y=x2+(m+1)x−(m+2)=x2+2x−3,令y=x2+2x−3=0,解得x=−3或1,令x=0,则y=−3,故点A、B、C的坐标分别为(−3,0)、(1,0)、(0,−3),故答案为:(−3,0)、(1,0)、(0,−3);②当点D在x轴上方时,设直线AB交y轴于点H,∵OA=OC=3,∠DAO=∠BCO,∠COB=∠AOH=90°,∴△COB≌△AOH(AAS),∴OH=OB=1,x+1,由点A、H的坐标得,直线AH的表达式为y=13则{y =x 2+2x +3y =13x +1,解得{x =43y =139(不合题意的值已舍去), 故点D 的坐标为(43,139);当点D 在x 轴下方时,同理可得点D′(23,−119);故点D 的坐标为(43,139)或(23,−119);(2)对于y =x 2+(m +1)x −(m +2)①,令y =x 2+(m +1)x −(m +2)=0,解得x =1或−m −2,令x =0,则y =−m −2,故点A 、B 、C 的坐标分别为(−m −2,0)、(1,0)、(0,−m −2),设直线BM 的表达式为y =kx +b ,将点B 的坐标代入上式并解得b =−k ,故直线BM 的表达式为y =kx −k②,则OQ =k ,联立①②并整理得:x 2+(m +1−k)x +(k −m −2)=0,则x B x M =k −m −2而x B =1,故x M =k −m −2,设直线AM 的表达式为y =k′x +b′,将点A 的坐标代入上式并解得:b′=mk′+2k′,则直线AM 的表达式为y =k′x +mk′+2k′③,则OP =−k′(m +2),同理可得:x M =k′+1,故k −m −2=k′+1,解得:m =k −k′−3,而OC =m +2=k −k′−1,将x M =k′+1代入y =kx −k =k(k′+1)−k =kk′,故ON =−kk′,则OP CO =−k′(m+2)m+2=−k′=54, 则ON OQ =−kk′k =−k′=54.(1)①令y =x 2+2x −3=0,解得x =−3或1,令x =0,则y =−3,即可求解;②当点D在x轴上方时,证明△COB≌△AOH(AAS),则OH=OB=1,进而求解;当点D在x轴下方时,同理可得点D′(23,−119);(2)确定直线BM的表达式为y=kx−k②,则OQ=k,进而求出x M=k−m−2,同理可得ON=−kk′,进而求解.本题是二次函数综合题,主要考查了一次函数的性质、根与系数关系的运用、三角形全等等,其中(2),要注意分类求解,避免遗漏.。

2020-2021学年湖北省武汉市江岸区八年级(上)期末数学试卷(答案)

2020-2021学年湖北省武汉市江岸区八年级(上)期末数学试卷(答案)
x−2 x−2 【解答】解: x − 2 = 0 ,解得: x = 2 . 方程去分母,得: ax = 4 + x − 2 ,即 (a −1)x = 2 当 a −1 0 时,把 x = 2 代入方程得: 2a = 4 + 2 − 2 , 解得: a = 2 . 当 a −1 = 0 ,即 a = 1 时,原方程无解. 故答案是:2 或 1. 16.(3 分)如图,RtABC 中,ACB = 90 ,B = 30 , AC = 2 ,D 为 BC 上一动点,EF 垂直平分 AD 分别交 AC 于 E 、交 AB 于 F ,则 BF 的最大值为 8 .
3
【解答】解:方法一、 RtABC 中, ACB = 90 , B = 30 , AC = 2 , AB = 2AC = 4 ,
EF 垂直平分 AD , AF = DF ,
若要使 BF 最大,则 AF 需要最小,
以 F 为圆心, AF 为半径的圆与 BC 相切即可,
FD ⊥ BD ,Fra bibliotekAB = AF + 2AF = 4 ,
BCD = ACB + ACD = 180 − 1 (BAC + CAD) = 180 − 1 BAD ,
2
2
BAD = 80 ,
BCD = 140 .
故选:B.
7.(3 分)已知 a + b = 2 ,则 a2 − b2 + 4b 的值是 ( )
A.2
B.3
【解答】解: a + b = 2 ,
C.4
(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响,且要求整
个工期不能超过 24 天,问如何安排两队施工,对道路交通的影响会最小?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洪山区2020-2021学年度第一学期期末质量检测
八年级数学试卷
一、选择题(共10小题,每小题3分,共30分)
1、汉字是世界上最美的文字,形美如画、有的汉字是轴对称图形,下面四个汉字中是轴对称图形 的是( )
2、若分式x -2x +1
无意义,则x 的取值等于( ) A.0 B.﹣1 C.﹣2 D.2
3、下列各式中计算结果为x 6的是( )
A.x 2+x 4
B.x 8-x 2
C.x 2·x 4
D.x 12÷x 2
4、在△ABC 中,△A =x °,△B =(2x +10)°,△C 的外角大小(x +40)°,则x 的值等于( )
A.15
B.20
C.30
D.40
5、下列等式中,从左到右的变形是因式分解的是( )
A.9-a 2=(3+a )(3-a )
B.x 2-2x =x (x -2)
C.x +2=x (1+2x
) D.y (y -2)=y 2-2y 6、如右图,在3×3的正方形网格中,△1+△2+△3=( )
A.105°
B.120°
C.115 °
D.135°
7、如图,阴影部分是边长为a 的大正方形剪去一个边长为b 的小正方形后所得到的图形。

将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )
△ △ △
A.△△
B.△△
C.△△
D.△△△
8、如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分△BAC 交BC 于点D ,
在AB 上截取AE =AC ,则△BDE 的周长为( )
A.8
B.7
C.6
D.5
9、我国古代著作《四元玉鉴》记载“买椽多少”问题:六贯二百一十钱,倩人去买几株椽,每株脚钱三文足,无钱准与一株椽。

其大意为:现请人代买一批椽,这批椽的价钱为6210文。

如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )
A.3(x -1)=6210x
B.6210x -1
=3 C.3x -1=6210x D.6210x =3 10、如图,点A 在y 轴上,G 、B 两点在x 轴上,且G (﹣3,0),
B (﹣2,0),H
C 与GB 关于y 轴对称,△GAH =60°,P 、Q 分别是
AG 、AH 上的动点,则BP +PQ +CQ 的最小值是( )
A.6
B.7
C.8
D.9
二、填空题(共6小题,每小题3分,共18分)
11、△ABC 的外角和等于 。

12、纳秒(ns )是非常小的时间单位,1ns =10﹣
9s ,北斗全球导航系统的授时精度优于20ns ,用科学
计数法表示20ns 是 s 。

13、若x 2-mx +9是一个完全平方式,则m 的值是 。

14、如图,在x 、y 轴上分别截取OA 、OB ,使OA =OB ,再分别以点A 、B 为圆心,以大于12
AB 的长度为半径画弧,两弧交于点C 。

若C 的坐标为( 3a ,a +10),则a = 。

15、由奇数1,3,5,…,2021组成的和式:11×3+13×5+15×7+…+12019×2021
,化简后的结果 为 。

16、已知x 2-3x -1=0,则2x 3-3x 2-11x +1= 。

三、解答题(共8小题,共72分)
17、(本题满分8分)利用乘法公式计算:
(1)198×202 (2)(2y +1)(﹣2y -1)
18、(本题满分8分)因式分解:
(1)2ax 2-4axy +2ay 2 (2)x 2-2x -8。

相关文档
最新文档