初一-有理数的乘除法、乘方运算-练习题
初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显示如下图的结果,对这个结果表示正确的解释应该是().A.1.677025×10—14B.1.677025×1014C.(1.677025×10)—14D.1.677025×10×(—14)【答案】A.【解析】0.0000001295×0.0000001295,=0.00000000000001677025,=1.677025×10-14.故选A.【考点】计算器—有理数.2.计算:【答案】41.【解析】针对有理数的乘方、绝对值分别进行计算,然后根据实数的运算法则求得计算结果.原式=.【考点】1.有理数的乘方;2..绝对值;3.实数的运算法则.3.人一根头发的直径大约为0.00072分米,用科学记数法表示正确的是()A.B.C.D.【答案】D.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。
在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00072第一个有效数字前有4个0(含小数点前的1个0),从而.故选D.【考点】科学记数法.4.中学数学中,我们知道加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算,如式子可写成,式子也可写成;已知式子表示为,则用表示时,=()A.6B.C.D.【答案】B.【解析】根据观察式子23=8可以变形为3=log28,2=log525也可以变形为52=25,可发现规律,根据同底数幂的乘法,可得答案.由y=log318,得3y=183x=2,32=932×3x=32+x=183y=18=32+x所以y=2+x.故选B.【考点】有理数的乘方.5.计算(1)[(x+y)2-(x-y)2]÷(2xy)(2)(3)【答案】(1)2;(2)-0.1;(3)-4.【解析】(1)原式中括号中利用完全平方公式展开,再利用多项式除以单项式法则计算即可得到结果.(2)先算积的乘方,再进行除法运算即可;(3)根据乘方、零次幂、负整数指数幂的意义进行计算即可求出答案.试题解析:(1)原式=(x2+2xy+y2-x2+2xy-y2)÷(2xy)=4xy÷(2xy)=2;(2) 原式====-0.1;(3)原式=-4+4×1-4=-4+4-4=-4【考点】1.完全平方公式;2.整式的除法;3.实数的混合运算.6.用小数表示2.014×10-3是 .【答案】0.002014.【解析】把数据2.014×10-3中2.014的小数点向左移动3位就可以得到.试题解析:2.014×10-3=0.002014.考点: 科学记数法—原数.7.已知,则=_______.【答案】-3.【解析】把变形为3-3,即可求出m的值.试题解析:∵∴m=-3.考点: 负整数指数幂.8.根据下图所示的程序计算代数式的值,若输入n的值为5,则输出的结果为()A.16B.2.5C.18.5D.13.5【答案】A【解析】由程序图可知输出的结果为3.9.明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.10.小彬从家里步行到学校需100步,他到学校的距离可能是()A.250 m B.200 m C.150 m D.50 m【答案】D【解析】0.5×100=50(m).故选D.11.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.【答案】-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.12.比较下列各对数的大小.(1)与;(2)与;(3)与.【答案】(1)<(2)<(3)<【解析】解:(1)因为|-4+5|=1,|-4|+|5|=9,所以|-4+5|<|-4|+|5|.(2)因为,所以.(3)因为,,所以.13.务川电视台天气预报,12月20日的气温是﹣2℃~7℃,则这一天的温差是℃【答案】9【解析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.7﹣(﹣2)=7+2=9℃.故答案为:9.【考点】有理数的减法.14.)计算:(1)(2);(3);(4).【答案】(1)-2.5;(2);(3)-15;(4)1.【解析】(1)原式==0.5+(-3)=-2.5.(2)原式==(-1)×=.(3)原式=-25+=-25+12+16-18=-15(4)原式==1【考点】有理数的运算.15.一振子从点A开始左右振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时0.22秒,则共用时多少秒?【答案】(1)5.5;(2)13.53.【解析】(1)将8次的记录相加,得到的数就是停止时所在位置距A点的距离,如果是“正”则在A点右边,如果是“负”则在A点左边;(2)将8次记录的绝对值相加就是它振运8次的距离,再乘以0.22,即可得到共用时间.试题解析:(1)+10-9+8-6+7.5-6+8-7=5.5;答:振子停止时位于A点右边5.5毫米处.(2)10+9+8+6+7.5+6+8+7=61.5,61.5×0.22=13.53(秒)答:振子共用时13.53秒.【考点】正数和负数.16.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.【答案】3.397×107【解析】科学记数法的表示方法:科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.17. (-2)4表示A.(-2)×4B.(-2)×(-2)×(-2)×(-2)C.-4×4D.(-2)+(-2)+(-2)+(-2)【答案】B【解析】有理数的乘方的定义:几个相同因数的积叫做有理数的乘方.(-2)×(-2)×(-2)×(-2),故选B.【考点】有理数的乘方点评:本题属于基础应用题,只需学生熟练掌握有理数的乘方的定义,即可完成.18.按四舍五入法则取近似值:2.096≈(精确到百分位).-0.03445≈(精确到0.001).【答案】2.10,-0.034【解析】精确到百分位即是对千分位四舍五入,精确到0.001即是对0.0001位四舍五入.按四舍五入法则取近似值:2.096≈2.10(精确到百分位).-0.03445≈-0.034(精确到0.001).【考点】近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握取近似数的方法,即可完成.19.下表是小明记录的10月份某一周内每天中午12时的气温的变化情况(气温比前一天上升记为正数,下降记为负数)星期一二三四五六日(2)本周的最高气温与最低气温相差多少摄氏度?【答案】(1)由题意得【解析】(1)根据气温比前一天上升记为正数,下降记为负数即可依次计算出各天的实际气温;(2)根据(1)中得到的结果即可计算出本周的最高气温与最低气温的差.(1)由题意得13111614131716【考点】有理数的减法法则的应用点评:解题的关键是读懂气温比前一天上升记为正数,下降记为负数,分别计算出各天的实际气温.20.研究下列算式,你会发现什么规律?……问题探究(1)请你找出规律并计算=_____________=( ).(2)用含有的式子表示上面的规律:_____________________________.问题解决(3)用找到的规律解决下面的问题:计算: =_______________.写出运算过程:【答案】(1)8(2)(3)【解析】1)=64=8(2)n(n+2)+1=(3)解:原式==【考点】找规律-数字的变化点评:解答本题的关键是仔细分析题意得到规律,再把这个规律应用于解题.21. 2008年全国人民共向四川地震灾区捐款约43681000000元,这笔款额用科学记数法表示(保留三个有效数字)正确的是()A.0.437×1011B.4.4×1010C.4.37×1010D.43.7×109【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.43681000000,故选C.【考点】科学记数法的表示方法,近似数与有效数字点评:解题的关键是熟练掌握从左边第一个不为0的数开始到末尾数字为止,所有的数字都是这个数的有效数字,注意有效数字的个数与乘方的次数无关.22.钓鱼岛自古以来是中国的领土,岛屿周围的海域面积约170 000平方公里,相当于五个台湾本岛面积. 这里的“170 000”用科学记数法表示为 .【答案】【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【考点】本题考查的是科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.23.有理数3.645精确到百分位的近似数为A.3.6B.3.64C.3.7D.3.65【答案】D【解析】由题意精确到百分位就是对千分位四舍五入取近似值.有理数3.645精确到百分位的近似数为3.65,故选D.【考点】近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握四舍五入取近似值的方法,即可完成.24.计算:(1)(2)(3)(4)【答案】(1)0;(2)-1;(3)7;(4)6【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=-3+3=0;(2)原式==;(3)原式==;(4)原式==.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算的顺序,即可完成.25.若a、b互为相反数,c、d互为倒数,∣m∣=2,求+m2-3cd的值.【答案】-2【解析】由题意可得,,,再整体代入求值即可.由题意得,,则【考点】代数式求值点评:解题的关键是熟记相反数之和为0,倒数之积为1,相反数的两个数的绝对值相等.26.计算:(1)4―-3×;(2)【答案】(1)-1;(2)【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=4-6+1=-1;(2) 原式=-1-=.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算,即可完成.27.的个位数字是()A.2B.4C.6D.8【答案】C【解析】∵一个数的乘方的个位数字=这个数的个位数字的乘方的个位数字。
七年级有理数的加减乘除乘方计算训练(80小题)-有解析

有理数的加减乘除乘方计算(80小题)1.计算:(1)(−37)−(−47);(2)(−53)−16;(3)(−210)−87;(4)1.3−(−2.7).【答案】解:(1)(−37)−(−47)=−37+47=10;(2)(−53)−16=−69;(3)(−210)−87=−297;(4)1.3−(−2.7)=1.3+2.7=4.【解析】此题主要考查有理数的减法,解题关键是掌握有理数的减法法则,据此求解即可.(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可;(4)根据有理数的减法法则计算即可.2.计算:(1)−7+3−5+20;(2)223+(−223)+513−(−512);(3)4.25+(−2.18)−(−2.75)+5.18;(4)43−(−87)−2−13−17【答案】解:(1)原式=−12+23=11;(2)原式=0+163+112=326+336=656=1056;(3)原式=(4.25+2.75)+(5.18−2.18)=7+3=10;(4)原式=(43−13)−2+(87−17)=1−2+1=0.【解析】此题考查有理数的加减混合运算,熟练掌握有理数的加减混合运算法则和运算律是解题关键.(1)根据结合律和交换律先同号相加,再异号相加即可求解;(2)根据结合律和相反数的定义算223+(−223)并将513和512化成假分数,然后通分后算加法得出结果再化成带分数即可;(3)根据结合律和交换律先算4.25−(−2.75)和(−2.18)+5.18,再算加法即可求解;(4)根据结合律和交换律先算43−13和87−17,再算加减即可求解.3. 计算:(1)|−7|+|−9715|; (2)(+4.85)+(−3.25);(3)(−3.1)+6.9;(4)−(−15)+(−645);(5)(−3.125)+(+318). 【答案】解:(1)原式=7+9715=16715;(2)原式=4.85−3.25=1.6;(3)原式=−(6.9−3.1)=−3.8;(4)原式=15−645=−635;(5)原式=−3.125+3.125=0.【解析】本题考查有理数的加法,以及绝对值,掌握运算法则是解题关键.(1)先化简绝对值,再计算加法即可;(2)先化简括号,再计算即可;(3)根据异号两数相加,取绝对值较大的符号,再用较大的绝对值减较小的绝对值即可;(4)先化简括号,再计算即可;(5)将分数化为小数,再计算即可.4. 用简便方法计算:(1)−13×23−0.34×27+13×(−13)−57×0.34;(2)(−13−14+15−715)×(−60).【答案】解:(1)原式=(−13)×(23+13)+0.34×(−17−57)=−13×1+0.34×(−1)=−13−0.34=−13.34;(2)原式=−13×(−60)−14×(−60)+15×(−60)−715×(−60)=20+15−12+28=51【解析】本题主要考查了有理数的混合运算,关键是熟练掌握乘法运算律.(1)运用乘法分配律进行计算可得结果;(2)利用乘法分配律进行计算,最后计算加减可得结果.5. 计算:(1)(−8)×9×(−1.25)×(−19);(2)−113×214÷(−112);(3)(−132)÷(134−58+12);(4)(−3)÷134×0.75×|−213|÷9.【答案】解:(1)原式=(−8)×(−1.25)×[9×(−19)]=10×(−1)=−10;(2)原式=−43×94×(−23) =2;(3)原式=(−132)÷(148−58+48)=(−132)÷138 =−132×813=−152;(4)原式=−3×47×34×73×19=−13.【解析】本题主要考查的是有理数的乘法,有理数的混合运算的有关知识.(1)利用有理数的乘法的计算法则进行计算即可;(2)利用混合运算的运算法则进行计算即可;(3)利用混合运算的运算法则进行计算即可;(4)利用混合运算的运算法则进行计算即可.6.计算:(1)−2.2+(−4.3)(2)−(−334)+(−15.5)(3)−(−5)−|−4|(4)−21−12+33+12−67.【答案】解:(1)−2.2+(−4.3)=−(2.2+4.3)=−6.5(2)−(−334)+(−15.5)=3.75−15.5=−(15.5−3.75)=−11.75(3)−(−5)−|−4|=5−4=1(4)−21−12+33+12−67=−100+45=−55.【解析】此题主要考查有理数的加减及混合运算(1)根据同号两数相加,取相同的符号,并把绝对值相加求解(2)先求出相反数,根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(3)先求出相反数和绝对值,再相减(4)利用分组法,符号相同的加在一起,再根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解7.计算:(1)(−99)+(−103);(2)(−16)+9;(3)3+(−8)+(−1).(4)|−18|+|−6|;(5)|−36|+|+24|.【答案】解:(1)(−99)+(−103)=−(99+103)=−202(2)(−16)+9=−(16−9)=−7;(3)3+(−8)+(−1)=3+(−9)=−(9−3)=−6.(4)|−18|+|−6|=18+6=24;(5)|−36|+|+24|=36+24=60.【解析】此题主要考查有理数的加法,根据同号两数相加,取相同的符号,并把绝对值相加,异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(1)根据同号两数相加,取相同的符号,并把绝对值相加求解(2)根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值求解(3)先同号相加,再异号相加求解较简便(4)先求个数的绝对值,再相加(5)先求个数的绝对值,再相加8.计算题(1)−(−8)+(−32)+(−|−16|)+(+28)(2)0.36+(−7.4)+0.3+(−0.6)+0.64;。
有理数的加减乘除乘方混合运算专题训练(带答案)

1.先乘方,再乘除,最后加减;之阿布丰王创作3.同级运算,从左到右进行;4.如有括号,先做括号内的运算,按小括号、中括号、年夜括号依次进行.1357911、—22—(—2)2—23+(—2)3 12、13、15、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49+ 2×(-3 )2 + (-6 )÷(17、-14 + ( 1-0.5 )[2×(-3)2] 18、(-2)2-2×[(2-3192123、 24、25、6-(-12、(-48)÷ 8 -(-5)27、420.25 2829、(-5)×6+(-125) ÷(-5)3311、【基础题】计算:(1÷(2)(3(4(1(2(3(4(1(34(5(6(7(8;(9)10(1)11+(-22)-3×(-11);(2)(34;(5(6(7)(-6)(8)(1(2(34(5(6)-10+84×3;(7(81-0.5)(1)(-8)×5-40;(2)()÷(-(-2);(3)-20÷5×(-3)÷15;(4)-3[-5+(÷-2)];(5)-23÷2÷(2;(6×(-2.4)参考谜底1、-1/52、-13、224、95、96、 07、-48 8、-1 9、-15 10、-15/34311、-24 12、-89 13、3 14、215、-2016、23 17、2 18、24 19、-2820、9/1621、1 22、10 23、-1/12 24、104/325、926、1427、-3128、-81又1/81 29、-9 30、-2931、-1/5 32、91、【谜底】(1)17;(2(3)31;(4)-112、【谜底】(1)-10;(2)22;(3)-16;(4)3、【谜底】(1)1;(2)0;(3)42;(4(5)18;(6)0;(7)-4.64;(8(9)8;(104、【谜底】(1)22;(2)0;(3)-17;(4(5(6)-95;(7)-85;(8)6 .5、【谜底】(1)3;(2)1;(3)-54;(4)0;(5)(6)-20;(7)-2;(86、【谜底】(1)-80;(2)5.6;(3)-2;(4)16;(5)-复习有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分)1.3×(-2)=________,(-6=________.2.(-3)2的底数是________,;-32的底数是________,结果是________.3=________=________;(+8)÷(-=________.4.233=________2=________.5________=1________=-162.4=________.7.-32×(-5)23=________.83600平方公里,________.9.________;________10①23________222________3③32________22)3________)2二、判断题(每小题1分,共5分)11.零除以任何数都得零()12.互为相反数的两个数的积为负数()13.如果ab>0,则a>0且b>0()14.1除以一个非零数的商叫做这个数的倒数()15.(-3)5暗示5个-3相乘()三、选择题(每小题3分,共21分)16.下列说法,其中毛病的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A.1个B.2个C.3个D.4个17.下列各对数:①1与1;②-1与1;③a-b与b-a;④-1与-1;⑤-5与|6|,其中互为倒数的是A.①②③B.①③⑤C.①③④D.①④18.下列各题中两个式子的值相等的是A.-23与(-2)3 B.32与23C.(-2)2与-22 D.|-2|与-|-2|19.下列结论中,其中正确的个数为①0的倒数是0;②一个不即是0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数即是自身的数是±1;④若a,b互为倒数,则-ab=-1.A.4 B.3C.2 D.120.下列各式中结果年夜于0的是A.1-910×3 B.(1-910)×3C.1-(9×3)10 D.(1-9)10×3 21.下列说法中正确的是A.一个数的平方必为正数B.一个数的平方必小于这个数的绝对值C.一个数的平方必年夜于这个数D.一个数的平方不成能为负数22.用科学记数法暗示的数2.89×104,原来是A.2890 B.2890000 C.28900 D.289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+1224.(3分)-6÷(+3)÷(-4)×(+2)25.(3分)-5-626.(3分)(-81)÷16)27.(3分)-22×(-328.(3分)(-1)2000200120021)200329.(3分)(-2)×(-20011-200230.(331.(332.(3分)(-2.53)33.(5分)30五、解答题(934.已知A=a+a2+a3+……+a2000(1)若a=1,求A的值.(2)若a=-1,求A的值.一、1.-6 2 2.-3 9 3 -9 3-3245103平方公里9.>>><13.×14.√15.√三、16.A 17.D 18.A 19.B 21.D 22.C四、23.-90 24.1 25.-3 2627.15 28.1 29.-200230.1 31.30 3233.-4五、34.(1)2000 (2)0。
有理数乘除法及乘方运算(较难)

有理数乘法及乘方练习题一、填空题1、我市六月份连续五天的日最高气温(单位:)分别为35,33,37,34,39,则我市这五天的日最高气温的平均值为.2、我们规定一种运算法则“※”,对任意两个有理数a、b,有a※b=2a+6.若有理数x满足(2x+1)※(-4)=5※(3-x),则x=.3、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……则÷99的值为________。
4、若与互为相反数,、互为倒数,则的值为 .5、若的相反数是2,则的值是 .6、已知A=a+ a2+ a3+……+ a2000若a=1,则A= ,若a=-1,则A= ,7、若+(b+4)=0,则b a=________.8、已知:,,,…若(、为正整数),则;9、若,那么= ,=10、我们知道,,,,,……那么:=___________.利用上面规律解答下面问题:算一算:=___________.二、选择题11、若( )×(-2)=1,则括号内填一个实数应该是 ( )A. B.2 C.-2 D.-12、按100分制60分及格来算,满分是150分的及格分是()A.60分B.72分C.90分D.105分13、若|a+b+1|与(a-b+1)2互为相反数,则a与b的大小关系是()A.a>b B.a=b C.a<b D.a≥b三、简答题14、观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)证明你猜想的结论;(3)求和:+++…+.15、有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n。
若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。
试计算:a2=______,a3=____,a4=_____,a5=______。
有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)1)+(-3)×2答案:20改写:先做除法,再乘法和乘法,最后加减。
18-3*2*(-1)-6/(-2)=202)(-3)²+1/2÷(-2/3)×(-6/5)答案:8/5改写:先做除法,再乘法和乘法,最后加减。
(-3)^2+1/2/(-2/3)*(-6/5)=8/53)(-1/2)²-(-2/3)³×(-3/4)²-2/5答案:-49/144改写:同级运算,从左到右进行。
(-1/2)^2-(-2/3)^3*(-3/4)^2-2/5=-49/1444)(-1/2)²×(-2/3)³÷(-3/4)²-2/5答案:-25/162改写:先做乘方,再做乘除法,最后加减。
(-1/2)^2*(-2/3)^3/(-3/4)^2-2/5=-25/1625)(-5)×6+(-125)÷(-5)³答案:-24改写:先做除法,再乘法和乘法,最后加减。
-5*6+(-125)/(-5)^3=-246)(-4)²÷(-2/3)³×(-3/4)²-2/5答案:-51/4改写:先做乘方,再做乘除法,最后加减。
(-4)^2/(-2/3)^3*(-3/4)^2-2/5=-51/47)(-7)÷6-(-5)÷(-12)²答案:-191/216改写:先做乘方,再做除法,最后加减。
-7/6-(-5)/(-12)^2=-191/2168)(-81)÷(-2.25)×(-1)÷16答案:9/8改写:先做乘除法,最后加减。
(-81)/(-2.25)*(-1)/16=9/89)(-1/4)²-2/3×(-6/5)³答案:-217/200改写:先做乘方,再做乘除法,最后加减。
有理数的加减乘除乘方混合运算专题训练(带答案)

1.先乘方,再乘除,最后加减;之樊仲川亿创作3. 同级运算,从左到右进行;4.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷ 3、11(22)3(11)+--⨯- 4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、33102(4)8-÷--7、)]21)21[(122--÷8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯--10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯20、0)132()43(2⨯+-+- 21、6)12()4365127(÷-⨯+-22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(- 27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯-30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32; (3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯;(4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ]; (9)[ 2253)-(-)(- ]÷)(-2;(10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-;(4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯;(4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31; (1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4) 参考答案1、-1/52、-13、224、95、96、 07、-48 8、-1 9、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-2016、23 17、2 18、24 19、-28 20、9/1621、1 22、10 23、-1/12 24、104/3 25、926、1427、-3128、-81又1/81 29、-9 30、-29 31、-1/5 32、9 1、【答案】 (1)17; (2)511; (3)31; (4)-11 2、【答案】 (1)-10; (2)22; (3)-16; (4)-25 3、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64; (8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67.6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9温习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方千米,用科学记数法暗示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3 ③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为正数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( ) 15.(-3)5暗示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是 A .1-910×3 B .(1-910)×3 C .1-(9×3)10 D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不成能为正数22.用科学记数法暗示的数2.89×104,原来是 A .2890 B .2890000 C .28900 D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a2+a3+……+a2000 (1)若a=1,求A 的值. (2)若a=-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91913-32 4.-81 -161 5.-2323 6.-1.2 7.1800 8.3.6×103平方千米 9.32 -14110.> > > <二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4。
有理数的乘、除、乘方、混合运算习题

有理数的乘法、除法、乘方练习一、有理数的乘法运算法则:(一)没有0因数相乘的情况下:1、由负因数的个数确定符号----------+⎧⎨⎩奇数(如1,3,5,)个负因数,积为“—”偶数(如2,4,6,)个负因数,积为“”,可省略,再把绝对值相乘---------- (二)有一个以上的0因数相乘,积为0(三)适用的运算律: 1.2.()3.()a b b a a b c a b c a b c d a b a c a d ⨯=⨯⎧⎪⨯⨯=⨯⨯⎨⎪ ⨯+-=⨯+⨯-⨯⎩(四)策略:在有理数的乘、除中,碰到小数就 ,碰到带分数就练习:1、(–4)×(–9)= 2、(–52)×81 = 3、(–253)×135=4、(–12)×2.45×0×9×1005、10.12512(16)(2)2-⨯⨯-⨯- 6、(-6)×(-4)-(-5)×107、(0.7-103-254+ 0.03)×(-100) 8、(–11)×52+(–11)×953二、有理数的倒数:(一)定义:如 ,则称a 与b 互为倒数;其中一个是另一个的倒数。
(二)几种情况下的倒数:1、整数:2的倒数是 ;12-的倒数是 ;0没有倒数2、分数:12的倒数是 ;23-的倒数是 ;112的倒数是 ;223-的倒数是 ;发现:求倒数时,碰到带分数,必须化为3、小数:0.25的倒数是 ; 1.125-的倒数是 ; 发现:求倒数时,碰到小数,必须化为 ,练习:求下列各数的倒数: 4.25-是 235是 1.14-是三、有理数的除法法则:(a b a b ÷=⨯的 )即看到除法,就转化为 练习:1、(-18)÷(-9)2、-3÷(-31) 3、0÷(–105) 4、(-2)÷(-1.5)×(-3)5、 -0.2÷(-151)×(-261) 6、[65÷(-21-31)+281]÷(-181)四、乘方:(一)在n a 中,a 称为 ;n 称为 ;n a 称为 。
初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入人群和新参加工作的大学生住房的需求,将36 000 000用科学记数法表示应是()A.B.C.D.【答案】A.【解析】科学计数法的定义:将一个数字表示成(×10的n次幂的形式),其中1≤<10,n表示整数.对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数;本题中第一个数为3,3后面有7位数.故选A.【考点】科学计数法.2.若正整数使得在计算的过程中,各数位均不产生进位现象,则称为“本位数”.例如:2和30是“本位数”,而5和91不是“本位数”.在不超过100的所有本位数中,全体奇数的和为 .【答案】64.【解析】先确定出所有大于0且小于100的“本位数”,再确定奇数后,再求和.试题解析:所有大于0且小于100的“本位数”有:1、2、10、11、12、20、21、22、30、31、32共有11个,但奇数只有:1,11,21,31四个,故和为1+11+21+31=64.【考点】有理数的概念与运算.3.()A.2B.C.D.【答案】B.【解析】.故选B.考点: 1.负整数指数幂;2.积的乘方.4.如果a-3与a+1互为相反数,那么a= .【答案】1【解析】若a-3与a+1互为相反数,则a-3+a+1=0,解得a=1.5.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.【答案】-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.6.已知:且,求的值.【答案】-125【解析】解:因为=3,所以=±3.因为=2,所以=±2.又因为,所以=-3,=±2.所以或.7.某股民上周五收盘时买进某公司股票1000股,每股27元.股票交易时间是周一到周五上午9:30-11:30,下午1:00-3:00. 下表为本周内每日股票的涨跌情况:(单价:元)星期一二三四五(1)根据上表填空:星期三收盘时,每股是元;本周内最高价是每股元,最低价是每股元;(2)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期五收盘时才将股票全部卖出,请算算他本周的收益如何.【答案】(1)34.5,35.5,28;(2)889.5元.【解析】(1)先根据题意列出式子解出结果即可;(2)先算出刚买股票后去掉手续费剩余的钱是多少,然后再算出周五卖出股票后所剩的钱,最后再减去当时的钱,剩下的钱就是所收益的.试题解析:(1)根据题意得:每股价(元);最高价(元);最低价(元).(2)∵27×1000×(1+0.15%)=27000×(1+0.15%)=27040.5(元),28×1000-28×1000×0.15%-28×1000×0.1%=28000-28000×0.15%-28000×0.1%=28000-42-28=27930(元),∴他本周的收益为27930-27040.5=889.5(元)【考点】有理数的混合运算.8.已知,,则、、按从小到大的顺序排列为()A.B.C.D.【答案】B.【解析】∵,,∴,,∴.故选B.【考点】有理数大小比较.9.如果三个有理数的积是负数,那么这三个有理数中().A.只有一个负数B.有两个负数C.三个都是负数D.有一个或三个负数【答案】D【解析】几个不相等0的数相乘,积得符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正.解:如果三个有理数的积是负数,那么这三个有理数中有一个或三个负数,故选D.【考点】有理数乘法的符号法则点评:本题属于基础应用题,只需学生熟练掌握有理数乘法的符号法则,即可完成.10.有理数0.0050400的有效数字的个数是().A.3个B.4个C.5个D.6个【答案】C【解析】有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:有理数0.0050400的有效数字有5、0、4、0、0这5个,故选C.【考点】近似数和有效数字点评:本题是基础应用题,只需学生熟练掌握有效数字的定义,即可完成.11.计算:(1)(2)(3)【答案】(1);(2);(3)【解析】(1)先算有理数的乘方,再算加减即可;(2)先算幂的乘方、同底数幂的乘法,再合并同类项即可;(3)先根据完全平方公式、多项式乘多项式法则去括号,再合并同类项即可.(1)原式;(2)原式;(3)原式.【考点】有理数的乘方,整式的化简点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是【】美元.A.1.5×104B.1.5×105C.1.5×1012D.1.5×1013【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.15000亿,故选C.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.13.(1);(2)解方程:【答案】(1)101;(2)【解析】(1)有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算;(2)解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1(1);(2).【考点】有理数的混合运算,解一元一次方程点评:有理数的混合运算及解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.14.在,,,这四个数中,最大的数比最小的数要大A.13B.10C.8D.5【答案】A【解析】先根据有理数的乘方法则计算出各个数的值,再用最大的数减最小的数即可.∵=-1,=1,=-4,=9∴最大的数比最小的数要大故选A.【考点】有理数的乘方,有理数的减法点评:解题的关键是熟记正数的任何次幂均为正数,负数的奇数次幂为负,负数的偶数次幂为正.15.若x=(-4),则x=【答案】±4【解析】先计算出(-4)=16,再根据有理数的乘方法则即可求得结果.x=(-4)x=16x=±4.【考点】有理数的乘方点评:解题的关键是熟练掌握互为相反数的两个数的平方相同.16.据科学家估计,地球的年龄大约是4600000000年,这个数用科学记数法表示为A.4.6×108B.46×108C.4.6×109D.0.46×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.所以4600000000=4.6×109【考点】科学计数法点评:任何一个数都可以用科学记数法表示成a×10n(1≤|a|<10,n是整数)的形式,表示时关键要正确确定a的值以及n的值17.计算:(1)-2+6÷(-2)×;(2)(-2)3-(1-)×.【答案】(1)-;(2)-12【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=-2+6×(-)×=-2-=-;(2)原式=-8-×6=-8-4=-12.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算,即可完成.18.下列式子中,正确的是A.5-|-5|=10B.(-1)99= -99C.-102 = (-10)×(-10)D.-(-22)=4【答案】D【解析】解:A中,5-|-5|=0B中,(-1)99= -1C中,-102 = -100,故不选D中,正确故选D【考点】绝对值,平方的符号点评:负数的绝对值是其相反数,正数的绝对值是其本身。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘除法、乘方运算 练习题
一、有理数的乘除法
1、有理数乘法法则:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘都得0; —
(3)多个有理数相乘:
a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。
2、乘法运算律:(1)乘法交换律;(2)乘法结合律;(3)乘法分配律。
3、有理数除法法则:
(1)法则:除以一个数等于乘以这个数的倒数
(2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。
~
(3)0除以任何一个非零数,等于0;0不能作除数!
二、有理数乘方:
1、n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂;用字母表示
a
n a a a a 个⋅⋅⋅⋅记作n
a ,其中a 叫做底数,n 叫做指数,n a 的结果叫做幂;读法:n
a 读作a 的n 次方。
2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
练习题
一、选择题:
1、一个有理数和它的相反数之积( )
A .符号必为正
B .符号必为负
C .一定不大于零
D .一定不小于零
2、若0ab >,则下列说法中,正确的是( )
A .a ,b 之和大于0
B .a ,b 之和小于0
C .,a b m 同号
D .无法确定
!
3、下列说法中,正确的是( )
A .两个有理数的乘积一定大于每一个因数。
B .若一个数的绝对值等于它本身,这个数一定是正数。
C .有理数的乘法就是求几个加数的和的运算。
D .两个连续自然数的积一定是一个偶数。
4、下列说法中,正确的是( )
A .若两个有理数在数轴上的对应点分别在原点的两侧,那么这两个有理数的积一定为负数 ,
B .若两个有理数的积是负数,则这两个数一定互为相反数
C .若两个有理数互为相反数,则这两个有理数的积一定为负数
D .若a 是任意有理数,则
1
a
是它的倒数
5、若ab =0,那么a ,b 的值为( )
A .都为0
B .都不为0
C .至少有一个为0
D .无法确定
6、几个不等于0的有理数相乘,它们的积的符号( ) !
A .由因数的个数而定
B .由正因数的个数而定
C .由负因数的个数而定
D .由负因数的大小而定
7、下列说法中,正确的是( )
A .若0a b +=,那么0a b ==
B .或0ab =,则0a b ==
C .若0ab ≠,则a ,b 都不等于0
D .若0a b +≠,则a ,b 都不等于0
二、填空题:
—
1、n 个相同因数a 相乘,即 个n a a a a ⋅⋅记作________.这种求n 个相同_________的运算叫做乘方,乘方的结果叫________,在n
a 中,a 叫_________,_________叫指数.
2、平方得9的数有________个,分别是________.
3、正数的任何次幂都是________;负数的________次幂是负数,偶次幂是________;0的任何次幂都是________.
4、若a 为有理数,则2a ________0.
~
5、若22a b =,则a 与b 的关系是_________.
6、计算()()()()()2
3
4
2003
11111-+-+-+-+⋅⋅⋅+-=____________.
三、计算:
1、(1)()()3
2
23-⨯- (2)()2
32714⎛⎫
-+-÷- ⎪⎝⎭
(3)2
342293⎛⎫-÷⨯ ⎪⎝⎭
@
(4)()2411[23]6---- (5)2
2122243⎛⎫⎛⎫
-÷-⨯- ⎪ ⎪⎝⎭⎝⎭
/
(6)()()()23540.25548⎛⎫-⨯--⨯-⨯- ⎪⎝⎭ (7)(
()221420325⎛
⎫⎡⎤-⨯÷--- ⎪⎣⎦⎝
⎭
\
2、(1)()2001
20020.254-⨯ (2)求()
2003
3-的个位数字.。
3、(1)3482773⎛⎫⎛⎫÷-⨯÷- ⎪ ⎪⎝⎭⎝⎭ (2)31121422⎛⎫⎛⎫⎛⎫
-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
`
(3)()()51
0.25564816⎛⎫-÷-⨯-⨯- ⎪⎝⎭ (4)1111735105⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+---+÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎝⎭⎣⎦
(
(5) 63999177⎛⎫
÷- ⎪⎝⎭
(6) ()3.1435.2 6.2823.3 1.5736.4-⨯+⨯--⨯
^
(7) ()1111603456⎛⎫-÷-+- ⎪⎝⎭ (8) ()()220.2518133⎛⎫⎛⎫
-÷-⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭。
(9) -14-(1-×3
1×[2-(-3)2]
(10) -5 2-(-5) 2×{(-1)50-[(-1)51-1÷(-2
1
)×2]}
(11) [-21×(-1)3 + |-6|÷
31×3-(-5)2]×7
1。