初中数学知识点归纳轴对称
初中数学知识点轴对称与中心对称

初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
《高效速记:初中数学必考公式定律与知识梳理》 第13章 轴对称

第13章轴对称0 0D / 高效速记︓初中数学必考公式定律与知识梳理 -@44 D/D/6>D>D/-@>% )一轴对称1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(或轴)对称.2.轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.拓展延伸两个图形成轴对称和轴对称图形的前提不一样,前者是两个图形,后者是一个图形.成轴对称的两个图形不仅大小㊁形状一样,而且与位置有关.OBNRQAM P图131例13.1如图131所示,点P 是øA O B 外的一点,点M ,N 分别是øA O B 两边上的点,点P 关于O A 的对称点Q 恰好落在线段MN 上,点P 关于O B 的对称点R 落在MN 的延长线上.若P M =2.5c m ,P N =3c m ,MN =4c m ,则线段Q R 的长为( )c m .A .4.5B .5.5C .6.5D .7所以P M=M Q,P N=N R.因为P M=2.5c m,P N=3c m,MN=4c m,所以N R=3c m,M Q=2.5c m,即N Q=MN-M Q=4-2.5=1.5(c m),则线段Q R的长为R N+N Q=3+1.5=4.5(c m).答案A3.垂直平分线经过线段中点并且垂直于这条线段的直线,叫作这条线段的垂直平分线.4.线段的垂直平分线的性质(1)线段的垂直平分线上的点,到这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.5.轴对称和轴对称图形的性质(1)如果两个图形关于某条直线对称,那么这条直线叫作对称轴,对称轴是两个图形中任何一对对应点所连线段的垂直平分线.(2)轴对称图形的对称轴是轴对称图形中任何一对对应点所连线段的垂直平分线.关键提醒轴对称图形(或关于某条直线对称的两个图形),它们的对应线段相等,对应角相等.6.轴对称的特征如果一个图形关于某条直线对称,那么连接对称点的线段的垂直平分线就是该图形的对称轴.二画轴对称图形1.作图形的对称轴找对称轴的方法:首先判断是不是轴对称图形,再观察是否存在一条直线将这个图形分成两部分,将这两部分沿这条直线折叠,如果重合,这条直线就是对称轴.另外,要全方位地去找,不要漏掉对称轴.2.画轴对称图形组成几何图形最基本的元素是 点 ,所以画轴对称图形必须掌握对称点的画法(即过已知点作对称轴的垂线并加倍延长即可).画轴对称图形的步骤如下:(1)确定对称轴.(2)作各定点关于对称轴的对称点.(3)按原图的形状依次连接各对称点.例13.2如图132所示,已知әA B C和直线l,试画出әA B C关于直线l的对称图形.解析分别作出A㊁B㊁C三点关于直线l的对称点A'㊁B'㊁C',后顺次连接即可.ABCl图132ACB BC(A )l图133解所画图形如图133所示:әA'B'C'即为所求.3.用坐标表示轴对称(1)已知点关于x轴或y轴对称的点的坐标的规律:点(x,y)关于x(2)如何在坐标系中作一个已知图形的对称图形:只要找到一些特殊点(如多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.例13.3在平面直角坐标系中,已知点A(2,3),则点A关于x轴对称的点的坐标为().A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3)解析因为点A(2,3),所以点A关于x轴对称的点的坐标为(2,-3).答案B三等腰三角形1.等腰三角形有两条边相等的三角形叫作等腰三角形.相等的两条边叫作腰,另一条边叫作底边,两腰所夹的角叫作顶角,底边与腰的夹角叫作底角.2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成 等边对等角 ).性质2:等腰三角形的顶角平分线㊁底边上的中线㊁底边上的高相互重合(简称 三线合一 ).性质3:等腰三角形是轴对称图形,底边的垂直平分线就是它的对称轴.知识拓展等腰三角形是轴对称图形,其顶角的平分线㊁底边上的中线㊁底边上的高线所在的直线是对称轴.等腰三角形的外心㊁内心㊁重心和垂心都在底边的高线上(即 四心共线 ).等腰直角三角形的底角都等于45ʎ.关键提醒运用等腰三角形的性质解题时,在等腰三角形中若已知一内角为锐角,而未指明是底角还是顶角时,应注意分类讨论,防止漏解.3.等腰三角形的判定方法(1)利用定义:两条边相等的三角形是等腰三角形.(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成 等角对等边 ).AE D BC图134例13.4如图134所示,D 为әA B C 内一点,C D 平分øA C B ,B E ʅC D ,垂足为D ,交A C 于点E ,øA =øA B E .若A C =5,B C =3,则B D 的长为( ).A .2.5B .1.5C .2D .1解如图134所示,因为C D 平分øA C B ,B E ʅC D ,所以B C =C E .又因为øA =øA B E ,所以A E =B E .所以B D =12B E =12A E =12(A C -B C ).因为A C =5,B C =3,所以B D =12(5-3)=1.答案D四等边三角形1.等边三角形在等腰三角形中,有一种特殊的等腰三角形 三边都相等的三角形,我们把这样的三角形叫作等边三角形.知识拓展由定义可知,等边三角形是一种特殊的等腰三角形,也就是说等腰三角形包括等边三角形,因而等边三角形具有等腰三角形的一切性质.2.等边三角形的性质和判定方法(1)性质:①等边三角形的三个内角都相等,并且每一个角都等于60ʎ.②等边三角形是轴对称图形,它有三条对称轴.(2)判定:①三个角都相等的三角形是等边三角形.ADCEB图135②有一个角是60ʎ的等腰三角形是等边三角形.例13.5如图135所示,等边әA B C 的边长是6c m ,B D 是中线,延长B C 至E ,使C E =C D ,连接D E ,则D E 的长是c m .解析因为әA B C 是等边三角形,B D 是中线,所以øA B C =øA C B =60ʎ,所以øD B C =30ʎ.又因为C E =C D ,所以øC D E =øC E D .又因为øB C D =øC D E +øC E D ,所以øC D E =øC E D =12øB C D =30ʎ.所以øD B C =øC E D ,即D B =D E .因为等边әA B C 的边长是6c m ,所以D E =B D =33c m .五含30°角的直角三角形在直角三角形中,如果一个锐角等于30ʎ,那么它所对的直角边等于斜边的一半.关键提醒应用此性质的前提条件是 在直角三角形中 .例13.6如图136所示,әA B C 中,øC =90ʎ,A C =3,øB =30ʎ,点P 是B C 边上的动点,则A P 长不可能是( ).30°C BP图136A.3.5B.4.2C.5.8D.7解析由垂线段最短可知,A P的长不可小于3.因为在әA B C中,øC= 90ʎ,A C=3,øB=30ʎ,所以A B=6,所以A P的长不能大于6.故选D.答案D。
初中数学轴对称图形知识点加习题总结

知识点1 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。
知识点2 对称轴的性质1.对称轴是一条直线。
2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4.图形对称例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。
例2.推理游戏:下面应该是什么图形?知识点3线段垂直平分线定义及其性质定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
性质1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为〔〕A.3 B.5 C.6 D.8解析:∵直线CD是线段AB的垂直平分线,∴PB=PA,∵PA=6,∴PB=6.答案C.例4如以下图,DE是线段AB的垂直平分线,以下结论一定成立的是〔〕A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°分析:∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°答案D课堂练习11.点A,B关于直线a对称,P是直线a上的任意一点,以下说法不正确的选项是〔〕A.直线AB与直线a垂直B.直线a是点A和点B的对称轴C.线段PA与线段PB相等D.假设PA=PB,则点P是线段AB的中点2.三角形中到三边的距离相等的点是〔〕A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A、95°B、15°C、95°或15°D、170°或30°4.已知:如图,线段AB垂直平分线段CD则AC=。
初中数学轴对称的几何知识点总结

初中数学轴对称的几何知识点总结轴对称是初中数学中一个重要的几何概念,它涉及到点、线、图形等方面的内容。
下面是数学轴对称的几个重要知识点的总结:1.轴对称的定义:轴对称是指一个图形相对于一些轴线对称,即图形的一部分可通过轴线翻折到另一部分,使得两部分完全重合。
轴线称为对称轴,对称轴上的任意一点,在翻折过程中仍停留在轴上。
轴对称的图形呈镜像对称。
2.轴对称的性质:a.轴对称图形中对称轴的选择不唯一,同一个图形可以有多个对称轴。
b.轴对称的图形上的点经过对称轴翻折后所得的点和原来的点相等。
c.轴对称的图形是封闭的,对称轴上的点保持不变。
d.轴对称的图形上的点和它们的对称点关于对称轴对称。
3.对称图形的判断:判断一个图形是否轴对称有以下几种方法:a.通过纸张折叠法,将图形的一部分折到另一部分,看是否重合。
b.通过将图形看作由简单的基本图形组成,判断每个基本图形是否对称,进而判断整个图形是否对称。
c.观察图形在对称轴上的点,通过比较对称点之间的距离、角度等属性,判断图形是否对称。
4.常见轴对称图形:初中数学中常见的轴对称图形包括:a.点的轴对称:点是轴对称的,即任意一点相对于自身对称。
b.线的轴对称:直线在自身的中点处对称。
c.图形的轴对称:正方形、矩形、正五边形、圆等都是轴对称的图形。
5.轴对称图形的性质:a.轴对称图形的对称中心可以在图形内部或外部。
b.轴对称图形的对称轴通常是图形的中垂线或对角线等。
6.轴对称与平移的关系:轴对称是平移的一种特殊情况,当平移的向量等于对称轴上的一个向量时,平移的结果就是轴对称图形。
7.轴对称的应用:轴对称在几何题目中的应用非常广泛。
例如:a.用轴对称的方法来求图形的面积、周长等属性。
b.利用对称轴的性质来证明等式的成立。
c.利用轴对称的性质来解决几何问题,如寻找图形的对称中心等。
通过以上的总结,希望能够帮助你对初中数学轴对称的几何知识点有一个更全面和深入的了解。
轴对称图形知识点

轴对称图形知识点轴对称图形是初中数学中一个很重要的知识点,也是应用十分广泛的一个概念。
轴对称图形可以用于建模、美术、建筑等领域,是我们生活中不可或缺的一部分。
一、轴对称图形的定义及性质轴对称图形,顾名思义,就是指如果平面上一个图形经过一条直线对称后,得到的图形与原来的图形完全一致,那么这个图形就是轴对称图形。
这条直线就被称为轴对称线或对称轴。
轴对称图形的一个显著性质是:对于图形上的任意一对点,它们关于轴对称线是对称的。
我们可以通过画出一条虚线,把两个关于它对称的点连起来,以此获得轴对称图形的对称性。
二、轴对称图形的制作方法制作轴对称图形的方法有几种。
其中一种方法是通过“折纸法”制作轴对称图形。
我们可以把待制作的图形剪下来,然后将其沿着轴对称线对折,再将两部分黏在一起,就可以得到轴对称的图形。
另一种制作轴对称图形的方法是通过使用计算机绘图软件,例如Photoshop、Illustrator等。
这些软件可以帮助我们轻松地制作各种轴对称图形,并且可以灵活地改变图形的颜色、大小等因素。
三、轴对称图形的应用轴对称图形在各个领域中都有很重要的应用。
例如,在美术领域中,我们经常使用轴对称图形进行将来建构,特别是在双面画和复合画中,更是少不了轴对称图形。
建筑领域中,轴对称图形被广泛应用于大厦、广场、宫殿等建筑的设计和建造中。
此外,在语言和文字领域,轴对称图形也被用于设计会标、字体等。
四、轴对称图形的实例以下是一些常见的轴对称图形实例:1. 五角星五角星是一个非常常见的轴对称图形。
它由两个重叠的正五角形所组成。
2. 心形心形是一个非常常见的轴对称图形。
它由两个相似的弧形线条组成,以轴对称线为轴对称。
3. 十字架十字架也是一个经典的轴对称图形,由一个直线和一条相交的线段组成。
它在基督教和天主教中有着非常深厚的象征意义。
总的来说,轴对称图形是一个非常重要的初中数学知识点,也是不可或缺的一个概念,可以应用于各个领域。
这个概念的掌握对我们日常生活和工作中的许多方面都会产生巨大的影响。
初中数学对称知识点总结

初中数学对称知识点总结一、对称的定义1. 点的对称:如果图形中任意一点关于某条直线对称,那么这个图形就是关于这条直线对称的。
对称的直线称为对称轴。
2. 图形的对称:如果图形关于某条直线对称,那么这个图形就是关于这条直线对称的。
对称的直线称为对称轴。
当一个图形关于一个点对称时,这个点称为图形的中心。
3. 对称性质:对称可以分为轴对称和中心对称。
轴对称是指图形可以关于一条直线对称,中心对称是指图形可以关于一个点对称。
4. 对称图形:轴对称的图形称为轴对称图形,中心对称的图形称为中心对称图形。
轴对称图形有对称轴,中心对称图形有对称中心。
二、对称的性质1. 对称性质是指图形、函数、方程等在平移、旋转或翻转后的性质不变。
2. 对称性质通常包括镜像对称、轴对称、中心对称等。
3. 对称性质在代数、几何、组合等数学领域中有着广泛的应用。
三、对称图形1. 关于坐标系的对称图形:在平面直角坐标系中,可以通过坐标变换和对称变换来研究对称图形的性质。
常见的对称图形包括点、直线、圆等。
2. 关于轴对称的图形:轴对称图形是指图形可以关于一条直线对称的图形。
常见的轴对称图形包括正方形、矩形、菱形等。
3. 关于中心对称的图形:中心对称图形是指图形可以关于一个点对称的图形。
常见的中心对称图形包括正圆、正多边形等。
四、对称的应用1. 对称在代数中的应用:对称性质在代数中有着重要的应用,可以简化问题的求解和证明过程。
2. 对称在几何中的应用:对称性质在几何中有着广泛的应用,可以帮助求解几何问题和证明几何定理。
3. 对称在组合中的应用:对称性质在组合问题中有着重要的应用,可以帮助求解排列组合和图形的对称性质等问题。
总之,对称是数学中一个非常重要的概念,它在数学的各个领域都有着广泛的应用。
对称性质可以帮助简化问题的求解和证明过程,可以帮助学生更好地理解和掌握数学的知识。
因此,学生应该认真学习对称的知识,掌握对称的定义、性质和应用,以便更好地应用对称来解决问题和证明定理。
初中数学轴对称知识点

初中数学轴对称知识点初中数学轴对称知识点1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的.点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是"一个图形与一条直线的对称关系" ;轴对称讨论的是"两个图形与一条直线的对称关系"。
(2)联系。
把轴对称图形中"对称轴两旁的部分看作两个图形"便是轴对称;把轴对称的"两个图形看作一个整体"便是轴对称图形。
学习方法1.注重预习培养自学能力在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。
上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。
预习可以用“一划、二批、三试、四分”的预习方法。
一划:就是圈划知识要点,基本概念。
二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。
三试:就是尝试性地做一些简单的练习,检验自己预习的效果。
四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。
2、把握课堂,提高学习效果课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到。
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。
另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。
初中七年级数学轴对称

轴对称一、知识点1、关于“轴对称图形”与“轴对称”的认识⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。
⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。
两个图形中的对应点叫做__________2、线段垂直平分线的性质⑴线段是轴对称图形,它的对称轴是__________________⑵线段的垂直平分线上的点到______________________相等3、角平分线的性质⑴角是轴对称图形,其对称轴是_______________⑵角平分线上的点到______________________________相等4、等腰三角形的特征和识别⑴等腰三角形的两个_____________相等(简写成“________________”)⑵等腰三角形的_________________、_________________、_________________互相重合(简称为“________________”)⑶如果一个三角形有两个角相等,那么这两个角所对的________也相等(简称为“____________________”)5、等边三角形的特征和识别⑴等边三角形的各____相等,各____相等并且每一个角都等于________⑵三个角相等的三角形是__________三角形⑶有一个角是60°的____________三角形是等边三角形一、选择题1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有()A.1个B.2个C.3个D.4个2.图9-19中,轴对称图形的个数是()A.4个B.3个C.2个D.1个3.下列判断正确的是()A.经过线段中点的直线是该线段的对称轴B.若两条线段相等,那么这两条线段关于某直线对称C.若两条线段关于某直线对称,那么这两条线段相等D.锐角三角形都是轴对称图形4.下列图形中不是轴对称图形的是()A.有两个角相等的三角形;B.有一个角是45°的直角三角形.C.有两个角分别是50°和80°的三角形D.平行四边形.5.一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是( ) A.25°B.40°C.25°或40°D.不确定.6.有一个等腰三角形的周长为25,一边长为11,那么腰长为( ) A.11 B.7 C.14 D.7或117.若三角形中最大内角是60°,那么这个三角形是()CBDAA .等腰三角形B .等边三角形C .不等边三角形D .不确定 8.等边三角形的两条高线相交所成钝角的度数是( ) A .105° B .120° C .135° D .150°9.若△ABC 两边的垂直平分线的交点在三角形的外部,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .都有可能10.若三角形一边上的高也平分这条边, 那么这个三角形是( ) A .直角三角形 B .有两条边相等 C .等边三角形 D .锐角三角形 11.图9-12中,点D 在BC 上,且D E ⊥AB ,DF ⊥AC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点归纳轴
对称
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
初中数学知识点归纳:轴对称
一、轴对称与轴对称图形:
1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段
3.轴对称的性质:
(1)关于某条直线对称的两个图形是全等形;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;
(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:
(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.
(2)性质:①在角的平分线上的点到这个角的两边的距离相等.
②到一个角的两边距离相等的点,在这个角的平分线上.
注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.
6.等腰三角形的性质与判定:
性质:
(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;
(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;
(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;
③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
7.等边三角形的性质与判定:
性质:(1)等边三角形的三个角都相等,并且每个角都等于60°;
(2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”。
因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。
判定定理:有一个角是60°的等腰三角形是等边三角形。
说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。