2019学年上海市高二上学期期中数学试卷【含答案及解析】
2023-2024学年天津市河东区高二上学期期中数学试卷+答案解析(附后)

2023-2024学年天津市河东区高二上学期期中数学试卷一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若为空间不同的四点,则下列各式不一定为零向量的是( )A. B.C. D.2.若直线与直线互相平行,则( )A. 4B. 6C.D.3.若圆:与圆:外切,则( )A. 22B. 18C. 26D.4.如图,若正四面体的棱长为1,且,则( )A. B. C. D. 15.若圆关于直线对称,则( )A. 0B.C. 2D.6.关于直线,下列说法正确的是( )A. 直线l的倾斜角为B. 向量是直线l的一个方向向量C. 直线l经过点D. 直线l的斜率为7.我国古代数学名著《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图,四棱锥为阳马,平面ABCD,且,若,则( )A. 1B. 2C. 3D. 48.已知,,是三个不共面的向量,,,,且A,B,C,D四点共面,则的值为.( )A. B. 1 C. D. 29.已知直线:与:相交于点M,线段AB是圆C:的一条动弦,且,则的最小值为( )A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。
10.在空间直角坐标系中,已知点,,则__________.11.设直线与圆相交于两点,且弦AB的长为2,则实数m的值是__________.12.已知空间向量,则向量在向量上的投影向量是__________.13.过点作圆的切线则切线长为__________,过切点A,B 的直线方程为__________.14.已知点和向量,,且,则点B的坐标为__________,若点B在平面xoy上的射影为C,则为坐标原点的面积为__________.15.已知曲线C的方程是,给出下列四个结论:①曲线C与两坐标轴有公共点;②曲线C既是中心对称图形,又是轴对称图形;③若点P,Q在曲线C上,则的最大值是;④曲线C围成图形的面积大小在区间内.所有正确结论的序号是__________.三、解答题:本题共5小题,共75分。
上海市上海中学2018-2019学年高二上学期期中数学试题(原卷+解析版)

由
由于B在直线 上,故m=1
故选:A
【点睛】本题考查了线性规划,考查了学生数形结合,转化与划归的能力,属于中档题.
16.如图, 的 边长为 , 分别是 中点,记 , ,则()
A. B.
C. D. ,但 的值不确定
【答案】C
【解析】
试题分析:因为 分别是 中点,所以根据平面向量的线性运算 可得 ,所以 由 可得 ,故选C.
(1)求向量 与 的夹角 ;
(2)若 ,且 ,求实数t的值及 .
【答案】(1) ;(2) , = .
【解析】
【分析】
(1)由向量的数量积,代值计算即可;
(2)由数量积为0,代入计算即可.
【详解】(1)因为
故
解得:
因为 ,所以 .
(2)
则
化简得:
解得:此时=Fra bibliotek==
=
【点睛】本题考查向量数量积的运算,属基础题.
19.
如图,在平面直角坐标系xOy中,平行于x轴且过点A(3 ,2)的入射光线l1
被直线l:y= x反射.反射光线l2交y轴于B点,圆C过点A且与l1,l2都相切.
(1)求l2所在直线的方程和圆C的方程;
(2)设 分别是直线l和圆C上的动点,求 的最小值及此时点 的坐标.
【答案】(1) 所在的直线方程为 ,圆C的方程为 (2)
【解析】
【详解】(1)直线 设 .
的倾斜角为 , 反射光线 所在的直线方程为
.即 .
已知圆C与 , 圆心C在过点D且与 垂直的直线上,
考点:平面向量的线性运算与数量积运算.
三、解答题
17.已知二元一次方程组的增广矩阵为 ,请利用行列式求解此方程组.
上海市杨思中学2018-2019学年高二上学期期中数学试卷及解析

上海市杨思中学2018-2019学年高二上学期期中数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1.若2,3A 、3,4B 、()1,5C ,则ABC ∆的重心G 的坐标为( ) A.()2,4B.()4,2C.()2,4--D.()4,2-2.在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,则这个塔顶有( )盏灯 A.3B.4C.5D.73.在ABC ∆中,“0AB AC ⋅<”是“ABC ∆为钝角三角形”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件4.在自然数范围内定义一种新的运算“*”,观察下列符号*的算式:32347*=+=,24234514*=+++=,7378924*=++=,...,“*”具有如上式子拥有的运算性质.若3*150n =,则n 的值为( ) A.13B.14C.15D.16第II 卷(非选择题)二、填空题(题型注释)5.数列2、4、6、8、的一个通项公式是n a =___________.6.等比数列{}n a 的通项公式为()1*132n n a n N -⎛⎫=⨯∈ ⎪⎝⎭,则3a=__________7.方程组34322x y x y -=⎧⎨+=-⎩的系数矩阵式_____________.8.计算:22322lim 231n n n n n →∝-+=++___________.9.已知()3,4AB =,则与向量AB 同向的单位向量的坐标为_______________.10.三阶行列式283147526---中元素6的代数余子式的值是____________. 11.已知等差数列{}n a 的前n 项和为n S ,298a a +=,则10S =__________. 12.根据框图,写出所打印数列{}n a 的递推公式是_____________.13.已知两点()2,3A -、()1,5B -,若点C 使得2AC CB =-,则点C 的坐标为__________.14.数列{a n }的前n 项和为S n =n 2+1(n ∈N ∗),则它的通项公式是_______.15.已知()()*111122f n n N n n n=+++∈++,则当*k N ∈时,()()1f k f k +-=___________.16.如图,1P 是一块半径为2的半圆形纸板,在1P 的左下端剪去一个半径为1的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得图形3P 、4P 、、n P 、,记纸板n P 的面积为n S ,则lim n n S →∝=________.三、解答题(题型注释)17.设()1,2a =,(),1b x =,若()()2//2a b a b +-,求实数x 的值. 18.利用行列式解关于x 、y 的二元一次方程组42mx y m x my m +=+⎧⎨+=⎩.19.已知向量a 与b 的夹角为120,且2a =,4b =. (1)计算:42a b -;(2)若()()2a b ka b +⊥-,求k 的值.20.运输公司2008年有1万辆公交车,计划2009年投入128辆新型号公交车,以后每年投入的新型号公交车数量均比上年增加50%.(1)2015年应投入多少辆新型号公交车?(2)从2009年到2015年间共投入多少辆新型号公交车?(3)从哪一年开始,该公司新型号公交车总量超过该公司公交车总量的13? 21.己知数列{}n a ,首项12a =,设该数列的前n 项的和为n S ,且()*12n n a S n N +=+∈(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足()()*2121log n n b a a a n N n=∈,求数列{}n b 的通项公式;(3)在第(2)小题的条件下,令11n n n c b b +=,n T 是数列{}n c 的前n 项和,若对n *∈N ,n k T >恒成立,求k 的取值范围.参考答案1.A【解析】1.利用三角形重心坐标公式可求出ABC∆的重心G的坐标.()2,3A、()3,4B、()1,5C,因此,ABC∆的重心G的坐标为231345,33++++⎛⎫ ⎪⎝⎭,即点G的坐标为()2,4.故选:A.2.A【解析】2.设塔的顶层装1a盏灯,则根据每下一层灯的盏数都是上一层的2倍,则从上到下第n层灯的盏数n a构成公比为2的等比数列,然后利用该数列的前7项和为381可求出1a的值. 设塔的顶层装1a盏灯,从上到下第n层灯的盏数为n a,则数列{}n a是以2为公比的等比数列,由题意知,等比数列{}n a的前7项和为()7111212738112aa-==-,解得13a=.因此,这个塔顶有3盏灯.故选:A.3.A【解析】3.由0AB AC⋅<可得出角A为钝角,然后再利用充分条件、必要条件定义得出两条件之间的关系.cos0AB AC AB AC A⋅=⋅<,cos0A∴<,则A为钝角,∴“0AB AC⋅<”⇒“ABC∆是钝角三角形”,另一方面,“ABC∆是钝角三角形”⇒“A是钝角”.因此,“0AB AC⋅<”是“ABC∆为钝角三角形”的充分非必要条件.故选:A.4.C【解析】4.根据题意得出运算“*”的意义,即(),k n k n N**∈表示的是从k 开始(包含k )的n 个连续的正整数之和,结合3*150n =可得出关于n 的方程,解出即可. 由题意可知,(),k n k n N **∈表示的是从k 开始(包含k )的n 个连续的正整数之和,由3*150n =,得()()534521502n n n ++++++==,整理得253000n n +-=,n N *∈,解得15n =.故选:C. 5.212n n+【解析】5.将该数列的前四项表示为与项数相关的代数式,可归纳出该数列的一个通项公式. 由题意知13211221a ⨯+==⨯,25221422a ⨯+==⨯,37231623a ⨯+==⨯,49241824a ⨯+==⨯. 则该数列的一个通项公式为212n n a n+=. 故答案为:212n n+. 6.34【解析】6.将3n =代入数列{}n a 的通项公式,可得出3a 的值.()1*132n n a n N -⎛⎫=⨯∈ ⎪⎝⎭,因此,2313324a ⎛⎫=⨯= ⎪⎝⎭.故答案为:34. 7.3421-⎛⎫ ⎪⎝⎭【解析】7.根据二元一次方程组的系数矩阵可得出该方程组的系数矩阵式.由题意可知,方程组34322x y x y -=⎧⎨+=-⎩的系数矩阵式为3421-⎛⎫ ⎪⎝⎭.故答案为:34 21-⎛⎫ ⎪⎝⎭.8.3 2【解析】8.在分式的分子和分母中同时除以2n,然后利用常用数列极限可计算出所求极限的值.由题意得22222233223003 lim lim3123120022n nn n n nn nn n→∝→∝-+-+-+=== ++++++.故答案为:3 2 .9.34, 55⎛⎫ ⎪⎝⎭【解析】9.计算出向量AB的模,然后利用向量的坐标运算可得出与向量AB 同向的单位向量AB AB的坐标.由题意可得235AB ==,因此,与向量AB 同向的单位向量为134,555 ABABAB⎛⎫== ⎪⎝⎭.故答案为:34,55⎛⎫ ⎪⎝⎭.10.0【解析】10.由代数余子式的概念得出元素6的代数余子式为2814,根据行列式可计算出结果.由题意可知,三阶行列式283147526---中元素6的代数余子式为282418014=⨯-⨯=.故答案为:0.11.40【解析】11.由等差数列的性质计算出110a a +的值,然后利用等差数列的前n 项和公式可计算出10S 的值.由等差数列的性质可得110298a a a a +=+=,因此,()11010101084022a a S +⨯===. 故答案为:40. 12.11,121,2n n n a a n -=⎧=⎨+≥⎩【解析】12.先根据首次打印确定数列{}n a 的首项,然后根据程序框图中“2A A ←*,1A A ←+”可得出数列的递推公式,并利用分段的形式可得出数列{}n a 的递推公式. 根据程序框图可知,数列{}n a 的首项为11a =.当2n ≥时,第1n -次打印的A 为1n a -,经过2A A ←*,12n A a -=,经过1A A ←+,121n A a -=+,则第n 次打印的A 为121n a -+,所以,()1212n n a a n -=+≥.因此,打印数列{}n a 的递推公式是11,121,2n n n a a n -=⎧=⎨+≥⎩. 故答案为:11,121,2n n n a a n -=⎧=⎨+≥⎩. 13.()4,13-【解析】13.设点C 的坐标为(),x y ,根据平面向量的坐标运算结合2AC CB =-可得出关于x 、y 的方程组,解出即可得出点C 的坐标. 设点C 的坐标为(),x y ,()2,3A -,()1,5B -,()2,3AC x y ∴=+-,()1,5CB x y =---, 2AC CB =-,即()()2,321,5x y x y +-=----,可得2223210x x y y +=-⎧⎨-=+⎩,解得413x y =⎧⎨=-⎩. 因此,点C 的坐标为()4,13-. 故答案为:()4,13-. 14.a n ={2,(n =1)2n −1,(n ≥2)【解析】14. 利用a n=S n −S n−1(n ≥2) 求解,但要注意验证n=1时a 1=S 1 是否成立.当n=1时,a 1=S 1=2 ;∵S n =n 2+1∴S n+1=(n +1)2+1(n ≥1)又∵a n =S n −S n−1(n ≥2)∴a n =2n −1(n ≥2) ,a 1=1≠S 1∴ a n ={2,(n =1)2n −1,(n ≥2)15.112122k k -++【解析】15.根据()f n 的表达式可得出()1f k +和()f k 的表达式,两式相减可得出结果.()()*111122f n n N n n n =+++∈++, ()1111112322122f k k k k k k ∴+=+++++++++, ()11111232f k k k k k=+++++++, 因此,()()111111212212122f k f k k k k k k +=+-=-+-++++. 故答案为:112122k k -++. 16.43π【解析】16.设从图形()12n P n -≥减去半径为1n a -的半圆得出图形n P ,由此得出数列{}n S 的递推公式,利用累加法得出数列{}n S 的通项公式,由此可求出lim n n S →∝. 由题意可知,从图形()12n P n -≥减去半径为1n a -的半圆得出图形n P ,且11a =,()112n n a n N a *+=∈,则数列{}n a 是以1为首项,以12为公比的等比数列,则111122n n n a --⎛⎫== ⎪⎝⎭,且21112n n n S a S π---=,2122311222n n n n S S ππ---⎛⎫∴-=-⨯=- ⎪⎝⎭,且211222S ππ=⨯=, ()()()1213213232222n n n n S S S S S S S S ππππ--∴=+-+-++-=----1111212422113414n n ππππ--⎛⎫- ⎪⎛⎫⎝⎭=-=-- ⎪⎝⎭-, 因此,12124lim lim 2123433n n n n S πππππ-→∝→∝⎡⎤⎛⎫=--=-= ⎪⎢⎥⎝⎭⎣⎦. 故答案为:43π. 17.12【解析】17.计算出向量2a b +与向量2a b -的坐标,然后利用共线向量的坐标表示得出有关x 的方程,即可求出实数x 的值.()1,2a =,(),1b x =,()221,4a b x +=+,()22,3a b x -=-,()()2//2a b a b +-,()()32142x x ∴⨯+=⨯-,解得12x =. 18.见解析【解析】18.计算出系数行列式D ,以及x D 、y D ,然后分0D ≠和0D =两种情况讨论,在0D ≠时,直接利用行列式求出方程组的解,在0D =时,得出2m =±,结合行列式讨论原方程组解的情况.系数行列式为2441m D m m==-,()242x m D m m mm+==-,()()222211y m m D m m m m m+==--=-+.①当240D m =-≠时,即当2m ≠±时,原方程组有唯一解()()()2224221142x y m m D m x D m m D m m m y D m m ⎧-===⎪⎪-+⎨-++⎪===⎪-+⎩;②当240D m =-=时,2m =±.(i )当2m =-时,0D =,8x D =,4y D =,原方程组无解;(ii )当2m =时,0x yD D D ===,原方程为24422x y x y +=⎧⎨+=⎩,可化为22x y +=, 该方程组有无数组解,即12x R x y ∈⎧⎪⎨=-⎪⎩.19.(1)2)2.【解析】19.(1)利用平面向量数量积的运算律和定义计算出242a b -的值,即可得出42a b -的值; (2)由()()2a b ka b +⊥-,得出()()20a b ka b +⋅-=,利用平面向量数量积的运算律和定义可求出实数k 的值. (1)()2222224242161641616cos1204a b a ba ab b a a b b-=-=-⋅+=-⋅+2211621624441922⎛⎫=⨯-⨯⨯⨯-+⨯= ⎪⎝⎭,因此,4283a b -=;(2)()()2a b ka b +⊥-,()()()222220a b ka b ka k a b b ∴+⋅-=+-⋅-=,即()22122224402k k ⎛⎫⨯+-⨯⨯⨯--= ⎪⎝⎭,整理得480k -=,解得2k =. 20.(1)1458辆;(2)4118辆;(3)到2016年底.【解析】20.(1)设从第2009年开始第n 年投入的车辆数为n a ,可知数列{}n a 是以128为首项,以32为公比的等比数列,由此可计算出2015年投入的新型号公交车7a 辆; (2)利用等比数列的求和公式计算出数列{}n a 的前7项和,即可得出2009年到2015年间共投入的新型号公交车的数量;(3)求出等比数列{}n a 的前n 项和n S ,然后解不等式100003n n S S +>,得出正整数n 的最小值,即可得出问题的解答.(1)设从第2009年开始第n 年投入的车辆数为n a ,可知数列{}n a 是以128为首项,以32为公比的等比数列, 667133126145822a a ⎛⎫⎛⎫∴=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,因此,2015年应投入1458辆新型号公交车; (2)设等比数列{}n a 的前n 项和为n S ,则773128124118312S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦==-, 因此,从2009年到2015年间共投入4118辆新型号公交车;(3)由等比数列的前n 项和公式得312812325613212n n n S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由题意可得100003n n S S +>,得5000n S >,即3256150002n ⎡⎤⎛⎫⨯->⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 化简得3657232n ⎛⎫> ⎪⎝⎭,732187657212832⎛⎫=< ⎪⎝⎭,836561657225632⎛⎫=> ⎪⎝⎭,8n ∴≥. 因此,从2016年开始,该公司新型号公交车总量超过该公司公交车总量的13. 21.(1)2n n a =;(2)12n n b +=;(3)[)2,+∞.【解析】21.(1)令1n =求出24a =,再令2n ≥,由12n n a S +=+得出12n n a S -=+,两式相减得出12n n a a +=,再结合212a a =可得知数列{}n a 是以2为首项,以2为公比的等比数列,然后利用等比数列的通项公式可求出n a ;(2)将2n n a =代入()2121log n n b a a a n =,结合对数的运算律可求出n b ;(3)利用裂项求和法求出n T ,求出n T 的取值范围,从而可得出实数k 的取值范围. (1)数列{}n a 的前n 项的和为n S ,且()*12n n a S n N +=+∈. 当1n =时,则2124a S =+=; 当2n ≥时,由12n n a S +=+得出12n n a S -=+, 两式相减得1n n n a a a +-=,即12n n a a +=,12n n a a +∴=,又212a a =. 所以,数列{}n a 是以2为首项,以2为公比的等比数列,因此,1222n n n a -=⨯=;(2)22log log 2n n a n ==, 因此,()()212222121log log log 1122log n n n n n a a a n b a a a n n n n +++++++====()1122n n n n ++==; (3)()()11144412121222n n n c n n b b n n n n +====-++++++⋅, 所以,444444422334122n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, 可知数列{}n T 单调递增,所以,123n T T ≥=,且2n T <,则223n T ≤<, 对任意n *∈N ,n k T >恒成立,则2k ≥. 因此,实数k 的取值范围是[)2,+∞.。
高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若(4)“若,则,则有实数解”的逆否命题;”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形B.等腰直角三角形C.有一个内角为30°的直角三角形D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.为的内角,,的对边分别为,,,若,,,则的面积A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1B.16C.8D.4)10.若关于的不等式的解集为,则的取值范围是(A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.114.已知的三边长构成公差为 2 的等差数列,且最大角的正弦值为 ,则这个三角形的周长为________.15.已知数列{a n }的前 n 项和为 S n ,a 1=1,当 n≥2时,a n +2S n - =n ,则 S 2017的值____ ___16.已知变量满足约束条件 若目标函数 的最小值为2,则的最小值为__________.三、解答题:共 6 题,共 70 分,解答应写出必要的文字说明、证明过程或演算步骤。
2019-2020学年上海市上海外国语大学附属中学高一上学期期中数学试题(含答案解析)

2019-2020学年上海市上海外国语大学附属中学高一上学期期中数学试题一、单选题 1.集合2{|1}A y y x ==-,2}{|1B x y x ==-,则下列关系式正确的是( )A .AB = B .A B ⊆C .B A⊆D .[1,)A B ⋂=+∞【答案】D【解析】先分别求得集合A 与集合B,进而即可得集合A 与集合B 的关系. 【详解】 集合2{|1}A y y x ==-,2}{|1B x y x ==-则{|0}A y y =≥,|11}{B x x x =≥≤-或 对比四个选项可知,A 、B 、C 均错误.因为{|0}|11}[1,){A B y y x x x ⋂=≥⋂≥≤-=+∞或 所以D 正确 故选:D 【点睛】本题考查了集合的交集运算,注意集合表示的元素属性和特征,属于基础题. 2.已知命题p 且q 为假命题,则可以肯定( ) A .p 为真命题 B .q 为假命题C .,p q 都是假命题D .,p q 中至少有一个是假命题【答案】D【解析】本题考察的是复合命题.由条件可知,只有当都是真命题时“”才为真命题.所以应选D .3.若:,1A a R a ∈<,:B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】【详解】:,11120A a R a a a ∈<⇒-<<⇒-<,即两根之积小于零,充分性成立,反之不成立,A 是B 的充分不必要条件,故选A.4.买4个苹果和5只桃子的金额之和小于22元,而买6个苹果和3只桃子的金额之和大于24元,那么买2个苹果和买3只桃子的金额比较,其结果是( ) A .2个苹果贵 B .3只桃子C .相同D .不能确定【答案】A【解析】设苹果的单价为a ,桃子的单价为b ,再列出不等式进行求解即可. 【详解】设苹果的单价为a ,桃子的单价为b ,由题可得45226324a b a b +<⎧⎨+>⎩,故1215663015120a b a b +<⎧⎨+>⎩,由不等式性质可知()()1206630151215a b a b -<+-+,化简得3a >.又12156612648a b a b +<⎧⎨+>⎩,由不等式性质可知()()66481215126a b a b ->+-+,化简得2b <.故362b a <<,即买2个苹果贵. 故选:A 【点睛】本题主要考查了根据讲实际中的情景利用数学语言表达,再根据不等式的性质判断分析的方法等.属于中档题.二、填空题5.用列举法表示集合:4,1M mZ m Z m ⎧⎫=∈∈⎨⎬+⎩⎭=_______________. 【答案】{}5,3,2,0,1,3---【解析】易得1m +为4的因数,再分别列举即可. 【详解】 由题41Z m ∈+,故1m +为4的因数,故14,2,1,1,2,4m +=---,故5,3,2,0,1,3m =---.故{}5,3,2,0,1,3M =---. 故答案为:{}5,3,2,0,1,3--- 【点睛】本题主要考查了集合的元素求解,属于基础题.6.若集合A={﹣1,1},B={x|mx=1},且A ∪B=A ,则m 的值为 . 【答案】1或﹣1或0【解析】试题分析:由已知中集合A={﹣1,1},B={x|mx=1},且A ∪B=A ,我们易得到集合A 是集合B 的子集,结合子集的定义,我们分A=∅与A≠∅两种情况讨论,即可求出满足条件的m 的值. 解:∵A ∪B=A , ∴B ⊆A当m=0时,B=∅满足条件 当m≠∅时,B={1},或B={﹣1} 即m=1,或m=﹣1 故m 的值为:1或﹣1或0 故答案:1或﹣1或0【考点】集合的包含关系判断及应用.7.满足{}{},,,,M a b a b c d ⋃=的集合M 有___________个. 【答案】4【解析】由集合{}{},,,,M a b a b c d ⋃=,根据集合并集的运算,列举出所有的可能,即可得到答案. 【详解】由题意,集合满足{}{},,,,M a b a b c d ⋃=,则集合M 可能为{,},{,,},{,,},{,,,}c d a c d b c d a b c d ,共有4种可能,故答案为4个. 【点睛】本题主要考查了集合的并集运算及其应用,其中解答中熟记集合的并集运算,合理列举是解答的关键,着重考查了推理与运算能力,属于基础题.8.设集合{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,则满足()C A B ⊆I 的集合C 为________.【答案】(){}1,2或∅【解析】先求解A B I ,再根据集合间的关系求解即可. 【详解】因为{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,又4613272x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩, 故{(1,2)}A B ⋂=,又()C A B ⊆I ,故(){}1,2C =或C =∅. 故答案为:(){}1,2或∅ 【点睛】本题主要考查了根据集合间的关系求解集合的问题,属于基础题.9.设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________.【解析】根据{}2U C A =与{}22,3,3U a a =+-可知{}23,3A a a =+-,再根据集合相等求解即可. 【详解】由{}2U C A =,{}22,3,3U a a =+-可知{}23,3A a a =+-,即{}{}23,3,3aa a +-=.故232,3a a a a ⎧+-=⎪⎨≠⎪⎩ .当0a ≥时,23a a a a +-=⇒=当0a <时,23a a a +-=-即()()2230130a a a a +-=⇒-+=,故3a =-.不满足2,3a ≠.故a =【点睛】本题主要考查了根据集合的基本关系求解参数的问题,需要根据题意分情况讨论,同时注意集合的互异性,属于中档题.10.命题“末位数字是0或5的整数能被5整除”的逆否命题是_____________. 【答案】不能被5整除的整数末位不是0且不是5 【解析】根据逆否命题的定义直接写出即可. 【详解】命题“末位数字是0或5的整数能被5整除”的逆否命题是“不能被5整除的整数末位不是0且不是5”.故答案为:不能被5整除的整数末位不是0且不是5 【点睛】本题主要考查了原命题的逆否命题,属于基础题.11.有限集S 中的元素个数记作()n S ,设A 、B 是有限集合,给出下列命题: (1)A B =∅I 的充分不必要条件是()()()n A B n A n B =+U ; (2)A B ⊆的必要不充分条件是()()n A n B ≤; (3)A B =的充要条件是()()n A n B = 其中假命题是(写题号)________________. 【答案】(1)(3)【解析】(1)分别判断充分性与必要性证明即可.(2)根据元素与集合的关系以及充分与必要条件的定义判断即可. (3)根据集合相等的定义判断即可. 【详解】(1)当A B =∅I 时,()n A B U 即为集合,A B 的元素个数之和,即为()()n A n B +. 又当()()()n A B n A n B =+U 时,,A B 中的元素个数和等于A B U 中的元素个数,故A B =∅I .故A B =∅I 是()()()n A B n A n B =+U 的充要条件.故(1)错误.(2)当A B ⊆时,A 中的元素个数小于等于B 中的元素个数,故()()n A n B ≤, 但当()()n A n B ≤时A 也可能有不属于B 的元素.故A B ⊆是()()n A n B ≤的充分不必要条件,即A B ⊆的必要不充分条件是()()n A n B ≤.故(2)正确.(3)当()()n A n B =意为,A B 中的元素个数相等,并不一定有A B =.故(3)错误. 故答案为:(1)(3) 【点睛】本题主要考查了集合的基本关系与充分必要条件等的判定,属于基础题.12.集合{}0,1,2,3,4,5S =,A 是S 的一个子集,当x A ∈时,若有1x A -∉且1x A +∉,则称x 为A 的一个“孤立元素”,那么S 的4元子集中无“孤立元素”的子集个数是__________. 【答案】6个【解析】根据孤立元素的定义,并且结合集合S 可以把S 的4元子集进行一一列举,即可得到答案. 【详解】由孤立元素的定义可得:{0S =,1,2,3,4,5}中不含“孤立元素”的集合4个元素有:{0,1,2,3},{0,1,3,4},{0,1,4,5}},{1,2,3,4},{1,2,4,5},{2,3,4,5},所以S 中无“孤立元素”的4个元素的子集A 的个数是6个. 故答案为6个. 【点睛】本题主要考查有关集合的新定义,解决此类问题的关键是正确理解新定义“孤立元素”,并且正确理解S 的4元子集,而在列举时应当做到不重不漏. 13.已知12a b -<<<,则2b a -的范围是______________. 【答案】()1,5-【解析】根据不等式的性质运算求解即可. 【详解】由题12a b -<<<,故12,12a b -<<-<<,0a b -<.故21a -<-<,224b -<<,则425b a -<-<,又1,0b b a >-->,故21b a ->-. 故125b a -<-<. 故答案为:()1,5- 【点睛】本题主要考查了利用不等式的性质求解范围的问题,属于中档题.14.不等式组222230x x x a ⎧+-≥⎨<⎩的解集是空集,则正数a 的取值范围是______________. 【答案】(]0,1【解析】由题可知22x a <有解但与2230x x +-≥无交集在根据区间端点满足的关系式求解即可. 【详解】由题因为正数a ,故22x a a a x ⇒-<<<,又()()2230130x x x x +-≥⇒-+≥,解得1x ≥或3x ≤-.由题意有a x a -<<与1x ≥或3x ≤-无交集,故113a a a ≤⎧⇒≤⎨-≥-⎩. 故正数a 的取值范围是(]0,1. 故答案为:(]0,1 【点睛】本题主要考查了根据集合的解求解参数范围的问题,需要根据题意分别求得不等式的取值范围,再列出区间端点满足的关系式求解即可.属于基础题. 15.关于x 的不等式0ax b ->的解集为(1,)+∞,则关于x 的不等式02ax bx +>-的解集为______【答案】()(),12,-∞-+∞U【解析】不等式0ax b ->的解集为(1,)+∞可以确定a 的正负以及,a b 的关系,从而可得02ax bx +>-的解. 【详解】不等式0ax b ->的解集为(1,)+∞,故0a >且0a b -=,故02ax bx +>-可化为()102a x x +>-即()()120x x +->, 它的解为()(),12,-∞-+∞U ,填()(),12,-∞-+∞U . 【点睛】本题考查一元一次不等式的解与对应方程之间的关系及分式不等式的解法,属于容易题.16.不等式|1||1|x x m ++-≥的解集是R ,则实数m 的取值范围是____________. 【答案】(],2-∞【解析】利用绝对值不等式分段求解的方法求得()|1||1|f x x x =++-的最小值,再利用恒成立问题求得实数m 的取值范围即可. 【详解】设()|1||1|f x x x =++-2,12,112,1x x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,故min ()2f x =.故2m ≤.故答案为:(],2-∞ 【点睛】本题主要考查了去绝对值求解绝对值函数的最值问题,属于基础题.17.已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________.【答案】3(3,)2-【解析】试题分析:因为二次函数()f x 在区间[1,1]-内至少存在一个实数x ,使()0f x >的否定是:“函数()f x 在区间[1,1]-内任意实数x ,使()0f x ≤”,所以(1)0{(1)0f f ≤-≤,即2242(2)210{42(2)210p p p p p p ----+≤+---+≤,整理得222390{210p p p p +-≥--≥,解得32p ≥或3p ≤-,所以二次函数在区间[1,1]-内至少存在一个实数x ,使()0f x >的实数p 的取值范围是3(3,)2-.【考点】一元二次方程的根与系数的关系.【方法点晴】本题主要考查了一元二次方程的根的分布与系数的关系,其中解答中涉及到一元二次函数的图象与性质、不等式组的求解、命题的转化等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,其中根据二次函数的图象是开口方向朝上的抛物线,得到对于区间[1,1]-内的任意一个x 都有()0f x >时,得到不等式组是解答的关键,属于中档试题.18.已知01b a <<+,如果关于x 的不等式222()x b a x ->的解集中恰有3个整数解,则实数a 的取值范围是_______________. 【答案】()1,3【解析】因式分解求222()x b a x ->的解集,再根据解集中恰有3个整数解可求得区间端点满足的不等式再列式求解即可. 【详解】关于x 的不等式222()x b a x ->即()222120a x bx b -+-<, , 化简得()()110a x b a x b +--+<⎡⎤⎡⎤⎣⎦⎣⎦∵()()110a x b a x b +--+<⎡⎤⎡⎤⎣⎦⎣⎦的解集中的整数恰有3个,故二次函数()()1(1)a x b a x x b f ⎡⎤⎡⎤+--+⎣⎦⎣=⎦开口向上,又因为01b a <<+所以10,1a a ->>.∴不等式的解集为11b b x a a -<<-+,因为01b a <<+所以011ba<<+,所以解集里的整数是2,1,0--三个.∴321ba -≤-<--, ∴321ba -≤-<--化简得2233ab a -<≤-,∵1b a <+, ∴221a a -<+, ∴3a < 综上有13a << 故答案为:()1,3 【点睛】本题主要考查了根据不等式的解集求解参数的有关问题,需要注意含参数的二次不等式因式分解求解的方法,同时需要根据函数零点的区间列出对应的不等式求解的方法,属于难题.三、解答题19.已知全集U ,集合A 、B 、C 的关系如图,请在图中用阴影线表示下列集合的运算结果:(1)()U U A C B B C C I U I(2)()()U U A B C C C C B U I U I 【答案】(1)(2)【解析】(1)先分析U A C B ⋂与U B C C I ,再求并集即可. (2)先判断()U A B C C U I 与U C C B I ,再求并集即可. 【详解】(1) 先分析U A C B ⋂与U B C C I ,再求并集可得如图阴影部分.(2) 先判断()U A B C C U I 与U C C B I ,再求并集可得如图阴影部分.【点睛】本题主要考查了根据集合的运算与韦恩图关系的问题,需要根据题意分段分步分析,属于基础题.20.某商场将进货单价是40元的商品按销售单价50元售出时,每月能卖出500件该商品.如果这批商品在销售单价的基础上每涨1元,每月就减少销售10件,问此商品销售价为何值时每月可以获得最大利润?【答案】此商品销售价为70元时每月可以获得最大利润【解析】设售价为x 元,求出销售量与利润再分析最值即可.【详解】设售价为x 元,总利润为y 元,则()()240500105010140040000y x x x x =---=-+-⎡⎤⎣⎦()210709000x =--+,故当70x =元时, y 取得最大值9000.故此商品销售价为70元时每月可以获得最大利润.【点睛】本题主要考查了建立二次函数模型解决实际问题的最优解的问题,需要根据题意建立利润y 与售价x 间的关系,再根据二次的最值求解即可.属于基础题.21.已知不等式3514x x -≤-的解集是A ,不等式1||2x m x ->的解集是B . (1)当4m =时,求A B I ; (2)如果A B ⊆,求实数m 的取值范围.【答案】(1) 831|2x x ⎧<⎫≤⎨⎬⎩⎭;(2) 6m ≥或14m < 【解析】(1)根据分值不等式的求解方法求解集合,A B ,再求交集即可.(2) 先求解1||2x m x ->,再分m 的正负进行讨论,再利用A B ⊆列出区间端点满足的表达式求解即可.【详解】 3535211100444x x x x x x ---≤⇒-≤⇒≤---即()()214040x x x ⎧--≤⎨-≠⎩.解得142x ≤<. (1) 当4m =时, 求解1|4|2x x ->, 当4x <时有18423x x x ->⇒<. 当4x ≥时1482x x x ->⇒>.综上有83x <或8x >.此时A B =I 831|2x x ⎧<⎫≤⎨⎬⎩⎭ (2)先求解集合:B 1||2x m x ->当x m <时, 1223m x x x m ->⇒<;当x m ≥时, 122x m x x m ->⇒>. 故当0m <时,集合B R =,此时A B ⊆恒成立.当0m ≥,因为A B ⊆,且1:|42A x x ⎧⎫≤<⎨⎬⎩⎭,3:2|2x m x x m B ⎧>⎭<⎫⎨⎬⎩或. 此时243m ≤或122m >,解得6m ≥或14m <,即6m ≥或104m ≤< 综上所述, 6m ≥或14m < 【点睛】本题主要考查了分式不等式与绝对值不等式的求解以及根据不等式的解集求解参数范围的问题,需要根据题意分情况讨论求解含参的不等式,再根据集合的基本关系列出区间端点满足的关系式进行求解.属于中档题.22.已知二次函数2()(0,0)f x ax bx c a c =++>>的图像与x 轴有两个不同的交点,其中一个交点坐标是(),0c ,且当0x c <<时,恒有()0f x >.(1)求不等式()0f x <的解(用a 、c 表示);(2)若不等式2210m km b ac -+++≥对所有[]1,1k ∈-恒成立,求实数m 的取值范围.【答案】(1) 1,c a ⎛⎫ ⎪⎝⎭;(2) 2m ≤-或0m =或2m ≥ 【解析】(1)根据二次函数2()(0,0)f x ax bx c a c =++>>的图像与x 轴有两个不同的交点可知20ax bx c ++=有两个不同的实数根,利用过(),0c 与韦达定理可求得20ax bx c ++=的两根,再根据二次函数开口方向求解即可.(2)由题()0f c =可得10ac b ++=,代入2210m km b ac -+++≥有220m km -≥,对所有[]1,1k ∈-恒成立,再分m 与0的大小关系分类讨论即可.【详解】(1) 2()f x ax bx c =++的图像与x 轴有两个不同的交点,且过(),0c 可设另一个根为2x ,利用韦达定理有221c cx x a a=⇒=,又0,0a c >>,且当0x c <<时,恒有()0f x >,则1c a<. ∴()0f x <的解集为1,c a ⎛⎫ ⎪⎝⎭ (2)∵()0f c =∴20ac bc c ++=,又∵0c >,∴10ac b ++=故要使2210m km b ac -+++≥即220m km -≥,对所有[]1,1k ∈-恒成立,则 当0m >时, 2m k ≥恒成立,故 2m ≥当0m <时, 2m k ≤恒成立,故 2m ≤-当0m =时, 20200k -⋅≥对所有[]1,1k ∈-恒成立从而实数m 的取值范围为2m ≤-或0m =或2m ≥【点睛】本题主要考查了二次函数的方程的根与不等式的关系等,同时也考查了恒成立的问题,需要分类讨论进行求解,属于中档题.23.已知集合{}()1,2,3,,2A n n N *=⋅⋅⋅∈,对于A 的一个子集S ,若存在不大于n 的正整数m ,使得对S 中的任意一对元素1s 、2s ,都有12s s m -≠,则称S 具有性质P . (1)当10n =时,试判断集合{}9B x A x =∈>和{}31,C x A x k k N*=∈=-∈是否具有性质P ?并说明理由;(2)当1000n =时,若集合S 具有性质P . ①那么集合{}2001T x x S =-∈是否一定具有性质P ?并说明理由;②求集合S 中元素个数的最大值.【答案】(1)B 不具有性质P ,C 具有性质P ,理由见解析;(2)①T 具有性质P ,理由见解析;②1333.【解析】(1)当10n =时,集合{}1,2,3,.19,20A =L ,{}{}910,11,12,,19,20B x A x =∈>=L ,根据性质P 的定义可知其不具有性质P ;{}31,C x A x k k N *=∈=-∈,令110m =<,利用性质P 的定义即可验证; (2)当1000n =,则{}1,2,3,,1999,2000A =L .①根据{}2001T x x S =-∈,任取02001t x T =-∈,其中0x S ∈,可得0120012000x ≤-≤,利用性质P 的定义加以验证即可说明集合{}2001T x x S =-∈具有性质P ;②设集合S 有k 个元素,由①可知,任给x S ∈,12000x ≤≤,则x 与2001x -中必有1个不超过1000,从而得到集合S 与T 中必有一个集合中至少存在一半元素不超过1000,然后利用性质P 的定义进行分析即可求得20002k k k t +≤+≤,即20002k k +≤,解此不等式得1333k ≤. 【详解】(1)当10n =时,集合{}1,2,3,,19,20A =L ,{}{}910,11,12,,19,20B x A x =∈>=L 不具有性质P .因为对任意不大于10的正整数m ,都可以找到该集合中的两个元素110b =与210b m =+,使得12b b m +=成立. 集合{}31,C x A x k k N *=∈=-∈具有性质P .因为可取110m =<,对于该集合中任一元素1131c k =-,2231c k =-,1k 、2k N *∈. 都有121231c c k k -=-≠;(2)当1000n =时,则{}1,2,3,,1999,2000A =L .①若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P . 首先因为{}2001T x x S =-∈,任取02001t x T =-∈,其中0x S ∈.因为S A ⊆,所以{}01,2,3,,2000x ∈L .从而0120012000x ≤-≤,即t A ∈,所以T A ⊆.由S 具有性质P ,可知存在不大于1000的正整数m ,使得对S 中的任意一对元素1s 、2s ,都有12s s m -≠.对于上述正整数m ,从集合{}2001T x x S =-∈中任取一对元素112001t x =-,222001t x =-,其中1x 、2x S ∈,则有1212t t s s m -=-≠. 所以,集合{}2001T x x S =-∈具有性质P ;②设集合S 有k 个元素,由①可知,若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P .任给x S ∈,12000x ≤≤,则x 与2001x -中必有一个不超过1000.所以集合S 与T 中必有一个集合中至少存在一半元素不超过1000.不妨设S 中有2k t t ⎛⎫≥ ⎪⎝⎭个元素1b 、2b 、L 、t b 不超过1000. 由集合S 具有性质P ,可知存在正整数1000m ≤.使得对S 中任意两个元素1s 、2s ,都有12s s m -≠.所以一定有1b m +、2b m +、L 、t b m S +∉.又100010002000i b m +≤+=,故1b m +、2b m +、L 、t b m A +∈.即集合A 中至少有t 个元素不在子集S 中, 因此20002k k k t +≤+≤,所以20002k k +≤,得1333k ≤. 当{}1,2,,665,666,1334,,1999,2000S =L L 时,取667m =,则易知对集合S 中的任意两个元素1y 、2y ,都有12667y y -≠,即集合S 具有性质P .而此时集合S 中有1333个元素,因此,集合S 元素个数的最大值为1333.【点睛】本题考查集合之间包含关系的判断方法,以及元素与集合之间的关系等基础知识,是新定义问题,在解题时注意对新概念的理解与把握是解题的关键,此题对学生的抽象思维能力要求较高,特别是对数的分析,属于难题.。
人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
上海高二上学期期中考试数学试卷含答案(共5套)

上海市杨浦区高二上学期数学期中试卷(含答案)一、选择题1.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A. B. C. D.2.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. B. C. D.与a的值有关联3.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为,方差为,则A. B.C. D.4.一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于的是()A.P(0<X≤2)B.P(X≤1)C.P(X=1)D.P(X=2)5.设样本数据的均值和方差分别为1和4,若为非零常数,,则的均值和方差分别为()A. B. C. D.6.从区间随机抽取个数,构成个数对,,…,,其中两数的平方和小于的数对有个,则用随机模拟的方法得到的圆周率疋的近似值为()A. B. C. D.7.某学校位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为()A. B. C. D.8.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为()A. B. C. D.9.我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”.如右图所示的程序框图反映了对此问题的一个求解算法,则输出的值为()A. B. C. D.10.下列说法正确的是()A.若残差平方和越小,则相关指数越小B.将一组数据中每一个数据都加上或减去同一常数,方差不变C.若的观测值越大,则判断两个分类变量有关系的把握程度越小D.若所有样本点均落在回归直线上,则相关系数11.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元) 4 2 3 549 26 39 54销售额(万元)根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元12.已知P是△ABC所在平面内﹣点,,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC内的概率是()A. B. C. D.二、填空题13.有一批产品,其中有件次品和件正品,从中任取件,至少有件次品的概率为______.14.运行如图所示的流程图,则输出的结果S为_______.15.在长为的线段上任取一点,并以线段为边作正方形,这个正方形的面积介于与之间的概率为__________.16.为了防止职业病,某企业采用系统抽样方法,从该企业全体名员工中抽名员工做体检,现从名员工从到进行编号,在中随机抽取一个数,如果抽到的是,则从这个数中应抽取的数是__________.17.假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为_________________18.为了在运行下面的程序之后得到输出y=25,键盘输入x应该是____________.INPUT xIF x<0 THENy=(x+1)*(x+1)ELSEy=(x-1)*(x-1)END IFPRINT yEND19.某学生每次投篮的命中概率都为.现采用随机模拟的方法求事件的概率:先由计算器产生0到9之间的整数值随机数,制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3个随机数为一组,代表三次投篮的结果.经随机模拟产生如下20组随机数:989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,据此统计,该学生三次投篮中恰有一次命中的概率约为__________.20.已知函数满足对任意的实数,都有成立,则实数的取值范围为______________;三、解答题21.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.组号分组频率第1组[160,165)0.05第2组0.35第3组0.3第4组0.2第5组0.1合计 1.00(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.22.画出解关于的不等式的程序框图,并用语句描述.23.为检验两条生产线的优品率,现从两条生产线上各抽取件产品进行检测评分,用茎叶图的形式记录,并规定高于分为优品.前件的评分记录如下,第件暂不公布.(1)求所抽取的生产线上的个产品的总分小于生产线上的第个产品的总分的概率;(2)已知生产线的第件产品的评分分别为.①从生产线的件产品里面随机抽取件,设非优品的件数为,求的分布列和数学期望;②以所抽取的样本优品率来估计生产线的优品率,从生产线上随机抽取件产品,记优品的件数为,求的数学期望.24.(1)从区间[1,10]内任意选取一个实数,求的概率;(2)从区间[1,12]内任意选取一个整数,求的概率.25.某药厂为了了解某新药的销售情况,将今年2至6月份的销售额整理得到如下图表:(1)根据2至6月份的数据,求出每月的销售额关于月份的线性回归方程;(2)根据所求线性回归方程预测该药厂今年第三季度(7,8,9月份)这种新药的销售总额.(参考公式:,)26.某“双一流类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:(1)将同一组数据用该区间的中点值作代表,求这100人月薪收入的样本平均数;(2)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:方案一:设区间,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收取600元,月薪落在区间右侧的每人收取800元;方案二:每人按月薪收入的样本平均数的收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?【参考答案】一、选择题1.B解析:B【解析】设正方形边长为,则圆的半径为,正方形的面积为,圆的面积为.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算.2.C解析:C【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为. 考点:几何概型,圆的面积公式.3.A解析:A【解析】【分析】分别根据数据的平均数和方差的计算公式,求得的值,即可得到答案.【详解】由题意,根据平均数的计算公式,可得,设收集的48个准确数据分别记为,则,,故.选A.【点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,数基础题.4.B解析:B【解析】【分析】由题意知本题是一个古典概型,由古典概型公式分别求得P(X=1)和P(X=0),即可判断等式表示的意义.【详解】由题意可知,∴表示选1个白球或者一个白球都没有取得即P(X≤1),故选B.【点睛】本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以用组合数表示出所有事件数.5.A解析:A【解析】试题分析:因为样本数据的平均数是,所以的平均数是;根据(为非零常数,),以及数据的方差为可知数据的方差为,综上故选A.考点:样本数据的方差和平均数.6.B解析:B【解析】【分析】根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可.【详解】如下图:由题意,从区间随机抽取的个数对,,…,,落在面积为4的正方形内,两数的平方和小于对应的区域为半径为2的圆内,满足条件的区域面积为,所以由几何概型可知,所以.故选:B【点睛】本题主要考查几何概型,属于中档题.7.C解析:C【解析】【分析】甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率.【详解】设甲同学收到李老师的信息为事件A,收到张老师的信息为事件B,A、B相互独立,,则甲同学收到李老师或张老师所发活动通知的信息的概率为.故选C.【点睛】本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.8.A解析:A【解析】【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果.【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有种结果,而满足条件的事件是2名学生干部恰好被分在不同组内共有中结果,根据古典概型的概率公式得.故选:A.【点睛】本题主要考查古典概型和组合问题,属于基础题.9.B解析:B【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.【详解】输出;;;;;,退出循环,输出,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.B解析:B【解析】【分析】由残差平方和越小,模型的拟合效果越好,可判断;由方差的性质可判断;由的随机变量的观测值的大小可判断;由相关系数的绝对值趋近于1,相关性越强,可判断.【详解】对于,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,相关指数越大,故错误;对于,将一组数据的每一个数据都加上或减去同一常数后,由方差的性质可得方差不变,故正确;对于,对分类变量与,它们的随机变量的观测值越大,“与有关系”的把握程度越大,故错误;对于,若所有样本点均落在回归直线上,则相关系数,故错误.故选:B.【点睛】本题考查命题的真假判断,主要是线性回归直线的特点和线性相关性的强弱、样本数据的特征值和模型的拟合度,考查判断能力,属于基础题.11.B解析:B【解析】【分析】【详解】试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程12.B解析:B【解析】【分析】推导出点P到BC的距离等于A到BC的距离的.从而S△PBC=S△ABC.由此能求出将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率.【详解】以PB、PC为邻边作平行四边形PBDC,则=,∵,∴,∴,∴P是△ABC边BC上的中线AO的中点,∴点P到BC的距离等于A到BC的距离的.∴S△PBC=S△ABC.∴将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为:P==.故选B.【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.二、填空题13.【解析】【分析】利用古典概型概率公式求出事件至少有件次品的对立事件全都是次品的概率再利用对立事件的概率公式可计算出所求事件的概率【详解】记事件至少有件次品则其对立事件为全都是次品由古典概型的概率公式解析:.【解析】【分析】利用古典概型概率公式求出事件“至少有件次品”的对立事件“全都是次品”的概率,再利用对立事件的概率公式可计算出所求事件的概率.【详解】记事件至少有件次品,则其对立事件为全都是次品,由古典概型的概率公式可得,.因此,至少有件次品的概率为,故答案为.【点睛】本题考查古典概型概率公式以及对立事件概率的计算,在求事件的概率时,若问题中涉及“至少”,可利用对立事件的概率进行计算,可简化分类讨论,考查分析问题的能力和计算能力,属于中等题.14.【解析】【分析】【详解】由题设中提供的算法流程图中的算法程序可知当则执行运算;继续运行:;继续运行:;当时;应填答案解析:【解析】【详解】由题设中提供的算法流程图中的算法程序可知当,则执行运算;继续运行:;继续运行:;当时;,应填答案.15.【解析】若以线段为边的正方形的面积介于与之间则线段的长介于与之间满足条件的点对应的线段长为而线段的总长度为故正方形的面积介于与之间的概率故答案为:解析:【解析】若以线段为边的正方形的面积介于与之间,则线段的长介于与之间,满足条件的点对应的线段长为,而线段的总长度为,故正方形的面积介于与之间的概率.故答案为:.16.52【解析】由题意可知抽取的人数编号组成一个首项为7公差为15的等差数列则从这个数中应抽取的数是:故答案为52解析:52【解析】由题意可知,抽取的人数编号组成一个首项为7,公差为15的等差数列,则从这个数中应抽取的数是:.故答案为52.17.【解析】【分析】根据几何概型的概率公式求出对应的测度即可得到结论【详解】分别设两个互相独立的短信收到的时间为x y则所有事件集可表示为0≤x≤50≤y≤5由题目得如果手机受则到干扰的事件发生必有|x解析:【解析】【分析】根据几何概型的概率公式求出对应的测度,即可得到结论分别设两个互相独立的短信收到的时间为x,y.则所有事件集可表示为0≤x≤5,0≤y≤5.由题目得,如果手机受则到干扰的事件发生,必有|x-y|≤2.三个不等式联立,则该事件即为x-y=2和y-x=2在0≤x≤5,0≤y≤5的正方形中围起来的图形即图中阴影区域而所有事件的集合即为正方型面积52=25,阴影部分的面积,所以阴影区域面积和正方形面积比值即为手机受到干扰的概率为.【点睛】本题主要考查几何概型的概率的计算,分别求出对应区域的面积是解决本题的关键,比较基础.18.-6或6【解析】当x<0时25=(x+1)2解得:x=﹣6或x=4(舍去)当x≥0时25=(x﹣1)2解得:x=6或x=﹣4(舍去)即输入的x值为±6故答案为:﹣6或6点睛:根据流程图(或伪代码)写解析:-6或6【解析】当x<0时,25=(x+1)2,解得:x=﹣6,或x=4(舍去)当x≥0时,25=(x﹣1)2,解得:x=6,或x=﹣4(舍去)即输入的x值为±6故答案为:﹣6或6.点睛:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.19.【解析】这20组随机数中该学生三次投篮中恰有一次命中的有537 730 488 027 257 683 458 925共8组则该学生三次投篮中恰有一次命中的概率约为故填解析:【解析】这20组随机数中,该学生三次投篮中恰有一次命中的有537,730,488,027,257,683,458,925共8组,则该学生三次投篮中恰有一次命中的概率约为,故填.20.【解析】为单独递增函数所以点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性除注意各段的单调性外还要注意解析:【解析】为单独递增函数,所以点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围三、解答题21.(1)3人,2人,1人.(2)0.8.(3)第3组【解析】分析:(Ⅰ)由分层抽样方法可得第组:=人;第组:=人;第组:=人;(Ⅱ)利用列举法可得个人抽取两人共有中不同的结果,其中第组的两位同学至少有一位同学被选中的情况有种,利用古典概型概率公式可得结果;(Ⅲ)由前两组频率和为,中位数可得在第组.详解:(Ⅰ)因为第3,4,5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组学生人数分别为:第3组:=3人;第4组:=2人;第5组:=1人.所以第3,4,5组分别抽取3人,2人,1人.(Ⅱ)设第3组3位同学为A1,A2,A3,第4组2位同学为B1,B2,第5组1位同学为C1,则从6位同学中抽两位同学的情况分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).共有15种.其中第4组的两位同学至少有一位同学被选中的情况分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),共有12种可能.所以,第4组中至少有一名学生被抽中的概率为0.8.答:第4组中至少有一名学生被抽中的概率为0.8.(Ⅲ)第3组点睛:本题主要考查分层抽样以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.22.见解析【解析】【分析】【详解】解:流程图如下:程序如下:INPUT a,bIF a=0 THENIF b<0 THENPRINT“任意实数”ELSEPRINT“无解”ELSEIF a>0 THENPRINT“x<“;﹣b/aELSEPRINT“x>“;﹣b/aENDIFENDIFENDIFEND点睛:解决算法问题的关键是读懂程序框图,明晰顺序结构、条件结构、循环结构的真正含义,本题巧妙而自然地将算法、不等式、交汇在一起,用条件结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②条件出错;③计算出错.23.(1);(2)①详见解析;②2.【解析】【分析】(1)根据生产线前件的总分为,生产线前件的总分为;则要使制取的生产线上的个产品的总分小于生产线上的个产品的总分,则第件产品的差要超过7.(2)①可能取值为,根据超几何分布求解概率,列出分布列,再求期望.②由样品估计总体,优品的概率为,可取且,代入公式求解.【详解】(1)生产线前件的总分为,生产线前件的总分为;要使制取的生产线上的个产品的总分小于生产线上的个产品的总分,则第件产品的评分分别可以是,,,故所求概率为.(2)①可能取值为,,,,随机变量的分布列为:.②由样品估计总体,优品的概率为,可取且,故.【点睛】本题主要考查茎叶图,离散型随机变量的分布列和期望,还考查了转化化归的思想和运算求解的能力,属于中档题.24.(1);(2).【解析】【分析】(1)求解不等式可得的范围,由测度比为长度比求得的概率;(2)求解对数不等式可得满足的的范围,得到整数个数,再由古典概型概率公式求得答案.【详解】解:(1),,又故由几何概型可知,所求概率为.(2),,则在区间内满足的整数为3,4,5,6,7,8,9共有7个,故由古典概型可知,所求概率为.【点睛】本题考查古典概型与几何概型概率的求法,正确理解题意是关键,是基础题.25.(1);(2)万元.【解析】【分析】(1)先计算出,,代入公式求出,结合线性回归方程的表达式求出结果(2)由线性回归方程计算出、、时的值,然后计算出结果【详解】(1)由题意得:,,,,故每月的销售额关于月份的线性回归方程.(2)因为每月的销售额关于月份的线性回归方程,所以当时,;当时,;当时,,则该药企今年第三季度这种新药的销售总额预计为万元.【点睛】本题考查了线性回归方程的实际应用,结合公式求出回归方程是本题关键,较为基础26.(1)2;(2)方案一能收到更多的费用.【解析】【分析】(1)每个区间的中点值乘以相应的频率,然后相加;(2)分别计算两方案收取的费用,然后比较即可.【详解】(1)这100人月薪收入的样本平均数是.(2)方案一:月薪落在区间左侧收活动费用约为(万元);月薪落在区间收活动费用约为(万元);月薪落在区间右侧收活动费用约为(万元);因此方案一,这50人共收活动费用约为3.01(万元);方案二:这50人共收活动费用约为(万元);故方案一能收到更多的费用.【点睛】本题考查频率分布直方图及其应用,属于基础题.上海市嘉定区高二上学期期中考试试卷数学试题考试时间: 120分钟满分: 150分一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.2213limx n n →∞+=____. 2.已知(1,),(2,3),a k b ==若a b 与平行,则k=_____.3.方程组2130x y x y +=⎧⎨-=⎩对应的增广矩阵为____.4.在等差数列{}n a 中,己知则该数列前11项和11S = ___.5.若1312,2433A -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,B 则2A-B=___.6.已知11111()1,234212f n n n=++++++-则f(n+1)-f(n)= ___. 7.已知△ABC 是边长为1的等边三角形, p 为边BC 上一点,满足2,PC BP =则BA AP ⋅=___. 8.已知数列n a 的前n 项和为2*,4,.n n S S n n N =+∈且则n a =___. 9.设无穷等比数列n a 的公比是q ,若1a =34lim(),n x a a a →∞+++则q =___.10.已知点12(1,1),(7,4),P P ==点P 分向量12PP 的比是1,2则向量1PP 在向量方向上的投影为____.11.在△ABC 中, , CB a CA b ==, ∠ACB=120°.若点D 为△ABC 所在平面内一点,且满足条件:①(1)(),(),CD CB CA R CD bCB CA λλλ=+-∈+②则||CD =____.(用a, b 表示)12. 设数列{}n a 的前n 项和为,n S 若存在实数A,使得对任意的*1,n N ∈都有||n S A <,则称数列{}n a 为“T 数列”,则以下{}n a 为“T 数列”的是_______.①{}n a 是等差数列,且10,a >公差d<0; ②若{}n a 是等比数列, 且公比q 满足|q|<1;③若2(1)2n nn a n n +=+;④若120,(1)0n n n a a a +=+-=.二、选择题(本大题共有4题,每题5分,满分20分)13.已知a b c d ⎛⎫⎪⎝⎭为单位矩阵,则向量(,)m a b =的模为()A.0B.1C.2D 14. 已知,a b 为两个非零向量,命题甲: ||||||a b a b -=+,命题乙:向量a 和b 共线,则甲是乙的() A 充分不必要条件B.必要不充分条件C.充要条件D.非充分非必要条件15.标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E ”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的1010倍,若视力4.1的视标边长为a,则视力4.9的视标边长为()45.10A a 109.10B a 45.10C a -910.10D a -16.在△ABC 中, H 是边AB 上一定点,满足AB= 4HB,且对于边AB 上任一点P,恒有PB PC HB HC ⋅≥⋅,则()A ∠ABC= 90° B.∠BAC= 90° C.AB= AC D.AC= BC三、解答题(本大题共有5题,满分76分)解答时必须在答题纸的相应位置写出必要的步骤. 17.(本题14分,第1小题6分,第2小题8分) 已知A(2,1), B=(3,2), D=(-1,4)(1)若四边形A BCD 是矩形,试确定点C 的坐标;(2)已知O 为坐标原点,求.OA OB OC ⋅-。
2019-2020学年上海市复旦附中高一(上)期中数学试卷(解析版)

2019-2020学年上海市复旦附中高一(上)期中数学试卷一、填空题(本大题共有12题,满分48分,第1-6题每题4分,第7-12题每题5分)1.已知集合A={2,0,1,9},则集合A的非空真子集的个数为.2.U={﹣3,﹣2,﹣1,0,1,2,3},A={x|x2﹣1≤0,x∈Z},B={x|﹣1≤x≤3,x∈Z},则(∁U A)∩B=.3.不等式﹣2<<3的解集是.4.设集合T={∅,{∅}},则下列命题:①∅∈T,②∅⊆T,②{∅}∈T,④{∅}⊆T中正确的是(写出所有正确命题对应的序号).5.若集合,则实数a的取值范围是.6.如果全集U含有12个元素,P,Q都是U的子集,P∩Q中含有2个元素,∁U P∩∁U Q 含有4个元素,∁U P∩Q含有3个元素,则P含有个元素.7.已知Rt△ABC的周长为定值2,则它的面积最大值为.8.若f(x)在区间[t,t2﹣2t﹣2]上为奇函数,则实数t的值为.9.已知不等式|x﹣3|﹣|x+4|<a解集非空,则实数a的取值范围为.10.对于集合M,定义函数,对于两个集合A,B,定义集合A*B={x|f A(x)•f B(x)=﹣1}.已知集合,B={x|x(x﹣3)(x+3)>0},则A*B=.11.若实数x,y≥0满足x+3y﹣xy=1,求3x+4y的最小值为.12.已知a>0,且对任意x>0,有(x﹣a)(x2+bx﹣a)≥0恒成立,则的取值范围为.二、选择题(本大题共有4题,满分20分,每题5分)13.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确14.已知a,b∈R,则“|a|<1,|b|<1”是“不等式ab+1>a+b”成立的()条件.A.充分非必要B.必要非充分C.充要D.既不充分又不必要15.定义在R上的偶函数f(x)满足对任意x1,x2∈(﹣∞,0](x1≠x2),有,则当n∈N*时,有()A.f(﹣n)<f(n﹣1)<f(n+1)B.f(n﹣1)<f(﹣n)<f(n+1)C.f(n+1)<f(﹣n)<f(n﹣1)D.f(n+1)<f(n﹣1)<f(﹣n)16.设集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},Q1={x|x2+x+b>0},Q2={x|x2+2x+b >0},其中a,b∈R,下列说法正确的是()A.对任意a,P1是P2的子集,对任意b,Q1不是Q2的子集B.对任意a,P1是P2的子集,存在b,使得Q1是Q2的子集C.存在a,P1不是P2的子集,对任意b,Q1不是Q2的子集D.存在a,P1不是P2的子集,存在b,使得Q1是Q2的子集三、解答题(本大题共有5题,满分38分)17.已知集合A={x|x2﹣(m+3)x+2(m+1)=0},B={x|2x2+(3n+1)x+2=0},其中m,n∈R.(1)若A∩B=A,求m,n的值;(2)若A∪B=A,求m,n的取值范围.18.设a>0,b>0,且.求证:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.19.如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?20.已知函数,(1)判断f(x)的奇偶性,并给出理由;(2)当a=2时,①判断f(x)在x∈(0,1]上的单调性并用定义证明;②若对任意x∈(0,+∞),不等式恒成立,求实数m的取值范围.21.设函数f(x)为定义在R上的奇函数,且当x∈[0,+∞)时,f(x)=﹣x2+2x.(1)求函数f(x)的解析式;(2)求实数a,b,使得函数f(x)在区间[a,b]⊆[1,+∞)上的值域为;(3)若函数f(x)在区间[a,b]上的值域为,则记所有满足条件的区间[a,b]的并集为D,设g(x)=f(x)(x∈D),问是否存在实数m,使得集合{(x,y)|y=g (x)}∩{(x,y)|y=x2+m}恰含有2个元素?若存在,求出m的取值范围;若不存在,请说明理由.2019-2020学年上海市复旦附中高一(上)期中数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分48分,第1-6题每题4分,第7-12题每题5分)1.已知集合A={2,0,1,9},则集合A的非空真子集的个数为14.【解答】解:∵集合A={2,0,1,9},∴集合A的非空真子集的个数为:24﹣2=14.故答案为:14.2.U={﹣3,﹣2,﹣1,0,1,2,3},A={x|x2﹣1≤0,x∈Z},B={x|﹣1≤x≤3,x∈Z},则(∁U A)∩B={2,3}.【解答】解:∵A={x|x2﹣1≤0,x∈Z}={﹣1,0,1},B={x|﹣1≤x≤3,x∈Z}={﹣1,0,1,2,3},∴∁U A={x|x≤﹣2,或x≥2,x∈Z},∴(∁U A)∩B={2,3},故答案为{2,3}.3.不等式﹣2<<3的解集是{x|x或0<x}.【解答】解:∵﹣2<<3,当x>0时,﹣2x<1<3x,解可得,,∴,当x<0时,﹣2x>1>3x,解可得,x,综上可得,不等式的解集为{x|x或0<x}.故答案为:{x|x或0<x}.4.设集合T={∅,{∅}},则下列命题:①∅∈T,②∅⊆T,②{∅}∈T,④{∅}⊆T中正确的是①②③④(写出所有正确命题对应的序号).【解答】解:∵T={∅,{∅}},∴∅∈T,∅⊆T,{∅}∈T,{∅}⊆T.故答案为:①②③④.5.若集合,则实数a的取值范围是(﹣∞,3].【解答】解:由题意可得,x2+2(a+1)x+a2﹣5≥0恒成立,∴△=4(a+1)2﹣4(a2﹣5)≤0,解可得,a≤﹣3,故答案为:(﹣∞,3]6.如果全集U含有12个元素,P,Q都是U的子集,P∩Q中含有2个元素,∁U P∩∁U Q 含有4个元素,∁U P∩Q含有3个元素,则P含有5个元素.【解答】解:由全集U含有12个元素,P,Q都是U的子集,P∩Q中含有2个元素,∁U P∩∁U Q含有4个元素,∁U P∩Q含有3个元素,作出维恩图,图中数字代表集合中包含的元素的个数,由维恩图结合题意得:4+x+2+3=12,解得x=3.∴集合P中含有的元素个数为:2+x=2+3=5.故答案为:5.7.已知Rt△ABC的周长为定值2,则它的面积最大值为3﹣2.【解答】解:设直角边长为a,b,则斜边长为,∵直角三角形ABC的三边之和为2,∴a+b+=2,∴2≥2+,∴≤=2﹣,∴ab≤6﹣4,∴S=ba≤3﹣2,∴△ABC的面积的最大值为3﹣2.故答案为:3﹣2.8.若f(x)在区间[t,t2﹣2t﹣2]上为奇函数,则实数t的值为﹣1.【解答】解:由奇函数的定义域关于原点对称可知,t+t2﹣2t﹣2=0,且t2﹣2t﹣2>0,∴t2﹣t﹣2=0,解可得t=2(舍)或t=﹣1,故答案为:﹣1.9.已知不等式|x﹣3|﹣|x+4|<a解集非空,则实数a的取值范围为(﹣7,+∞).【解答】解:不等式|x﹣3|﹣|x+4|<a解集非空,所以|x﹣3|﹣|x+4|的最小值小于a,又|x﹣3|﹣|x+4|≥﹣7,此时x≥3∴a>﹣7故答案为:(﹣7,+∞).10.对于集合M,定义函数,对于两个集合A,B,定义集合A*B={x|f A(x)•f B(x)=﹣1}.已知集合,B={x|x(x﹣3)(x+3)>0},则A*B=(﹣∞,1)∪(3,+∞).【解答】解:A=(﹣∞,1),B=(﹣∞,﹣3)∪(3,+∞),f A(x)•f B(x)=﹣1,当f A(x)=1,f B(x)=﹣1,A*B=B,当f A(x)=﹣1,f B(x)=1,A*B=[﹣3,1),故A*B=(﹣∞,1)∪(3,+∞),故答案为:(﹣∞,1)∪(3,+∞).11.若实数x,y≥0满足x+3y﹣xy=1,求3x+4y的最小值为.【解答】解:由x+3y﹣xy=1,得;x+3y﹣xy=1≥0,,,当y>1时,;当时,设,=在[]上单调递减,在处取得最小值,3x+4y取得最小值,综上可得3x+4y取得最小值,故答案为:.12.已知a>0,且对任意x>0,有(x﹣a)(x2+bx﹣a)≥0恒成立,则的取值范围为(﹣∞,﹣1)∪(0,+∞).【解答】解:∵对任意x>0,有(x﹣a)(x2+bx﹣a)≥0恒成立,∴x=a是方程x2+bx﹣a=0的根,即a2+ab﹣a=0,又a>0,则a+b﹣1=0,∴(b,a)可理解为直线a+b﹣1=0上纵坐标大于0的点,则的几何意义即为直线a+b ﹣1=0上纵坐标大于0的点与原点连线的斜率,如图,直线a+b﹣1=0的斜率为﹣1,由图象可知,.故答案为:(﹣∞,﹣1)∪(0,+∞).二、选择题(本大题共有4题,满分20分,每题5分)13.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确【解答】解:命题“若p不正确,则q不正确”的逆命题是:“若q不正确,则p不正确”其等价命题是它的逆否命题,即“若p正确,则q正确”故选:D.14.已知a,b∈R,则“|a|<1,|b|<1”是“不等式ab+1>a+b”成立的()条件.A.充分非必要B.必要非充分C.充要D.既不充分又不必要【解答】解:∵“不等式ab+1>a+b”成立等价于“ab+1﹣a﹣b=(b﹣1)(a﹣1)>0”,∴当“|a|<1,|b|<1时,则(b﹣1)(a﹣1)>0成立;当(b﹣1)(a﹣1)>0时,有a>1且b>1;或者a<1且b<1;故“|a|<1,|b|<1”是“不等式ab+1>a+b”成立的充分非必要条件;故选:A.15.定义在R上的偶函数f(x)满足对任意x1,x2∈(﹣∞,0](x1≠x2),有,则当n∈N*时,有()A.f(﹣n)<f(n﹣1)<f(n+1)B.f(n﹣1)<f(﹣n)<f(n+1)C.f(n+1)<f(﹣n)<f(n﹣1)D.f(n+1)<f(n﹣1)<f(﹣n)【解答】解:根据题意,函数f(x)是偶函数,且在(﹣∞,0]递增,(0,+∞)递减,因为0<n﹣1<n<n+1,所以f(n﹣1)>f(n)>f(n+1),故选:C.16.设集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},Q1={x|x2+x+b>0},Q2={x|x2+2x+b >0},其中a,b∈R,下列说法正确的是()A.对任意a,P1是P2的子集,对任意b,Q1不是Q2的子集B.对任意a,P1是P2的子集,存在b,使得Q1是Q2的子集C.存在a,P1不是P2的子集,对任意b,Q1不是Q2的子集D.存在a,P1不是P2的子集,存在b,使得Q1是Q2的子集【解答】解:对于集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},可得当m∈P1,即m2+am+1>0,可得m2+am+2>0,即有m∈P2,可得对任意a,P1是P2的子集;当b=5时,Q1={x|x2+x+5>0}=R,Q2={x|x2+2x+5>0}=R,可得Q1是Q2的子集;当b=1时,Q1={x|x2+x+1>0}=R,Q2={x|x2+2x+1>0}={x|x≠﹣1且x∈R},可得Q1不是Q2的子集.综上可得,对任意a,P1是P2的子集,存在b,使得Q1是Q2的子集.故选:B.三、解答题(本大题共有5题,满分38分)17.已知集合A={x|x2﹣(m+3)x+2(m+1)=0},B={x|2x2+(3n+1)x+2=0},其中m,n∈R.(1)若A∩B=A,求m,n的值;(2)若A∪B=A,求m,n的取值范围.【解答】解:(1)集合A={x|x2﹣(m+3)x+2(m+1)=0},B={x|2x2+(3n+1)x+2=0},其中m,n∈R.解x2﹣(m+3)x+2(m+1)=0得:x=2,或x=m+1,若A∩B=A,则A⊆B,将x=2代入2x2+(3n+1)x+2=0得:n=﹣2,则B={x|2x2+(3n+1)x+2=0,n∈R}={x|2x2﹣5x+2=0}={2,}.则m+1=,则m=﹣,当A={2}时,m+1=2,解得m=1,综上m=﹣,n=﹣2,或m=1,n=﹣2.(2)若A∪B=A,则非空集合B⊆A,当△=(3n+1)2﹣16=0时,n=﹣,B={1},m+1=1,m=0,或n=1时,B={﹣1},m+1=﹣1,m=﹣2;当△=(3n+1)2﹣16≥0,即n≤﹣,或n≥1时,则2∈B,由(1)得:m=﹣,n =﹣2;当△=(3n+1)2﹣16<0时,即﹣时,B=∅,对m∈R,故成立,综上,或或或.18.设a>0,b>0,且.求证:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.【解答】证明:(1)由,得ab=1,由基本不等式及ab=1,有,即a+b≥2.(2)假设a2+a<2与b2+b<2同时成立,则a2+a<2且b2+b<2,则a2+a+b2+b<4,即:(a+b)2+a+b﹣2ab<4,由(1)知ab=1因此(a+b)2+a+b<6①而a+b≥2,因此(a+b)2+a+b≥6②,因此①②矛盾,因此假设不成立,原结论成立.19.如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,);(2)y=x(l﹣3x)=×3x(l﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.20.已知函数,(1)判断f(x)的奇偶性,并给出理由;(2)当a=2时,①判断f(x)在x∈(0,1]上的单调性并用定义证明;②若对任意x∈(0,+∞),不等式恒成立,求实数m的取值范围.【解答】解:(1)当a=0时,f(x)=x2,定义域为{x|x≠0},关于原点对称,此时f(﹣x)=f(x)∴f(x)为偶函数;当a≠0时,,定义域为{x|x≠0},关于原点对称,此时f(1)=1+a,f(﹣1)=1﹣a,故f(﹣1)≠f(1),f(﹣1)≠﹣f(1),∴f(x)无奇偶性.(2),任取0<x1<x2≤1,则=,∵0<x1<x2≤1,∴x1﹣x2<0,x1x2>0,x1x2(x1+x2)<2,∴f(x1)﹣f(x2)>0,所以f(x)在区间(0,1]上是递减.(3)由题意得,由(2)知f(x)在区间(0,1]上是递减,同理可得f(x)在区间[1,+∞)上递增,所以f(x)min=f(1)=3,所以,即,令,则t2﹣t﹣2<0,解得﹣1<t<2,故0≤t<2即,即1≤m<5.21.设函数f(x)为定义在R上的奇函数,且当x∈[0,+∞)时,f(x)=﹣x2+2x.(1)求函数f(x)的解析式;(2)求实数a,b,使得函数f(x)在区间[a,b]⊆[1,+∞)上的值域为;(3)若函数f(x)在区间[a,b]上的值域为,则记所有满足条件的区间[a,b]的并集为D,设g(x)=f(x)(x∈D),问是否存在实数m,使得集合{(x,y)|y=g (x)}∩{(x,y)|y=x2+m}恰含有2个元素?若存在,求出m的取值范围;若不存在,请说明理由.【解答】解:(1)因为f(x)是奇函数,令x<0,则﹣x>0,所以f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x=﹣f(x),所以x<0时,f(x)=x2+2x,所以f(x)=;(2)由(1)可知,当[a,b]⊆[1,+∞)时,f(x)=﹣(x﹣1)2+1,函数f(x)单调递减,则有,解得a=1,b=,(3)由(2)知,函数f(x)在[1,+∞)上满足条件的区间为[1,]当区间[a,b]⊆[0,1]时,⊆[1,+∞),而函数f(x)=﹣x2+2x在[0,1]上的值域为[0,1],所以函数f(x)在[0,1]上不存在这样的区间,故函数f(x)在[0,+∞)上满足条件的区间为[1,].当x∈(﹣∞,0)时,同理可知f(x)的倒值区间为[﹣,﹣1].故g(x)=.若集合{(x,y)|y=g(x)}∩{(x,y)|y=x2+m}恰含有2个元素,即函数g(x)的图象与y=x2+m的图象有两个不同的交点,则这两个交点分别在第一、三象限,故当交点在第一象限时,方程﹣x2+2x=x2+m即m=﹣2x2+2x在区间[1,]内恰有一个解,此时有﹣2≤m≤0;当交点在第三象限时,方程x2+2x=x2+m即m=2x在区间[﹣,﹣1]内恰有一个解,有﹣﹣1≤m≤﹣2;综上可得,m=﹣2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年上海市高二上学期期中数学试卷【含答案及
解析】
姓名___________ 班级____________ 分数__________
一、填空题
1. 已知向量若,则实数 ________ .
2. 行列式中, 6 的代数余子式的值是 _______ .
3. 若向量且,则________________________ .
4. 直线经过点,且点到的距离为,则直线的方程
为________________________ .
5. 执行如图的程序框图,如果输入,则输出的值为
______________ .
6. 已知直线圆,直线被圆所截得的线段长为______________ .
7. 如图与的夹角为与的夹角为,
, 则______________ .(用表示)
8. 过点作圆的切线,切点为,如果,那么的取值范围是 _________ .
9. 在平面直角坐标系中,已知直线,点,若直线
上存在点,满足,则实数的取值范围是 __________ .
10. 已知点关于直线的对称点为 , 则圆
关于直线对称的圆的方程为______________ .
11. 已知向量、,满足,,则的最小值
为 _________ .
12. 在圆上有一点,点是轴上两点,且满足
, 直线,与圆交于,则直线的斜率是 ________ .
二、选择题
13. “ ”是“ 直线与直线平行” 的()
A .充分不必要条件
B .必要不充分条件________
C .充要条件
D .既不充分也不必要
14. 如果命题“坐标满足方程的点都在曲线上”是不正确的,那么下列命题正确的是()
A .坐标满足方程的点都不在曲线上;
B .曲线上的点的坐标不都满足方程 =0 ;
C .坐标满足方程的点,有些在曲线上,有些不在曲线上;
D .至少有一个不在曲线上的点,它的坐标满足
15. 直线的倾斜角的范围是()
A .
B .
C .
D .
16. 已知为圆上三点,的延长线与线段的延长线交于圆
外点。
若则在以下哪个范围内()
________________________ ____________________________ ____________________________
三、解答题
17. 已知,向量满足:,求:
(1)向量在向量上的投影;
( 2 )向量的坐标.
18. 已知圆在轴上的截距为和,在轴上的一个截距为.(1)求圆的标准方程;
( 2 )求过原点且被圆截得的弦长最短时的直线的方程.
19. 设阶方矩阵,则矩阵所对应的矩阵变换为:
,其意义是把点变换为点,矩阵叫做变换矩阵。
(1)当变换矩阵时,点,经矩阵变换后得到点分别是,,求过点的直线的点方向式方程.
( 2 )当变换矩阵时,若直线上的任意点经矩阵变换后得到的点仍在该直线上,求直线方程.
20. 设直线为公海的分界线,一巡逻艇在处发现了北偏东的海面处
有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃
窜.已知巡逻艇的航速是走私船航速的2倍,与公海相距约为 20海里,走私船
可能向任一方向逃窜,请回答下列问题:
(1)如果走私船和巡逻艇都是沿直线航行,那么走私船能被截获的点是哪些?
(2)根据截获点的轨迹,探讨“可截获区域”和“非截获区域”.
21. 现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向)。
在这样的城
市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图)。
在直角坐标平面内,我们定义、两点间的“直角距离”为:。
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“ 圆” 是所有到定点“直角距离” 为定值的点组成的图形,点
,求经过这三个点确定的一个“圆”的方程,并画出大致图像;
(3)设,集合表示的是所有满足的点所组成的集合,点集,求集合
所表示的区域的面积.
参考答案及解析第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】。