安徽省中考数学模拟试卷 9
2024年安徽省滁州市天长市中考一模数学试卷含答案

2024年中考第一次模拟考试数学(试题卷)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.2024-的绝对值等于()A.2024- B.2024C.2024±D.12024-2.如图,该几何体的主视图是()A. B. C. D.3.下列计算正确的是()A.2510m m m ⋅=B.m =C.()222m n m n +=+ D.()3393327m n m n -=-4.截至2023年10月末,我国建成G 基站总数为321.5万个,占移动基站总数的28.1%.其中数据321.5万用科学记数法可表示为10n a ⨯的形式,则n 的值为()A.4 B.5 C.6 D.75.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,即三角形的三边长分别为a ,b ,c ,记2a b c P ++=,那么面积S =.若某个三角形的三边长分别为2,3,3,其面积S 介于整数n 1-和n 之间,则n 的值为()A.2 B.3 C.4 D.56.如图,分别过ABC 的顶点A ,B 作AD BE ,若25CAD ∠=︒,80EBC ∠=︒,则ACB ∠的度数为()A.60︒B.65︒C.75︒D.85︒7.为落实“垃圾分类”,换位部门将某住宅小区的垃圾箱设置为,,A B C 三类.广宇家附近恰好有,,A B C 三类垃圾箱各一个,广宇姐姐将家中的垃圾对应分为,A B 两包,如果广宇将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的概率是()A.13 B.29 C.19 D.168.如图,ABCD Y 的对角线AC ,BD 相交于点O ,点E 为边BC 的中点,连接EO 并延长交边AD 于点F ,60ABC ∠=︒,2BC AB =.下列结论错误的是()A.AB AC⊥ B.4AD OE =C.四边形AECF 为菱形 D.13BOE ABC S S =△△9.已知非负数a ,b ,c 满足123234a b c ---==,设23S a b c =++,则S 的取值范围是()A.1116S ≤≤ B.1611S -≤≤- C.58S ≤≤ D.1116S <<10.如图,在ABC 中,AB AC =,AC 的垂直平分线交AC 于点F ,交AB 于点E ,连接EC ,10AB =,BEC 的周长为18.若点P 在直线EF 上,连接PA ,PB ,则PA PB -的最大值为()A.5B.8C.10D.13二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:a 3-a =______.12.如图,ABC 内接于O ,连接OC ,若64A ∠=︒,则OCB ∠的度数为______.13.如图,点A 在反比例函数()0k y k x =≠图像的一支上,点B 在反比例函数2k y x=-图像的一支上,点C ,D 在x 轴上,若四边形ABCD 是面积为9的正方形,则实数k 的值为______.14.在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 是抛物线()20y ax bx c a =++>上任意两点,设抛物线的对称轴为直线x t =.(1)若对于11x =,23x =有12y y =,则t =______;(2)若对于112x <<,223x <<12y y <,则t 的取值范围是______.三、(本大题共2小题,每小题8分,满分16分)15.计算:()231112-⎛⎫-+-- ⎪⎝⎭16.某商店对A ,B 两种商品开展促销活动,方案如下:商品A B 标价(单位:元)200400每件商品出售价格按标价降价20%按标价降价%a (1)商品B 降价后的标价为元;(用含a 的式子表示)(2)小艺购买A 商品20件,B 商品10件,共花费6000元,试求a 的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在由边长为1个单位长度的小正方形组成的99⨯网格中,已知点O ,A ,B ,C 均为网格线的交点.(1)以点O 为位似中心,在网格中画出ABC 的位似图形111A B C △使原图形与新图形的相似比为1:2;(2)把ABC 向上平移3个单位长度后得到222A B C △,请画出222A B C △;(3)111A B C △的面积为______.18.如图所示是用地板砖铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖,从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形……依次递推.(1)第3层有6个正方形和______个正三角形;(2)第n 层有6个正方形和n 的式子表示);(3)若第n 层有6个正方形和2022个正三角形,求n 的值.五、(本大题共2小题,每小题10分,满分20分)19.如图,AD 是一条东西走向的马路,某勘察员在A 处测得建筑物Р在他的东北方向上,他沿AD 行走30m 到达B 处,再向正北方向走45m 到达C 处,此时测得建筑物P 在他北偏东53︒方向上,求PC 的长.(参考数据:sin 530.80︒≈,cos 530.60︒≈,tan 5343︒≈)20.如图,AB 为O 的直径,在BA 的延长线上取一点C ,CD 与O 相切于点D ,AE CD ∥交O 于点E ,且30BAE ∠=︒,连接DE .(1)求证:四边形ACDE为平行四边形;(2)已知F为 AB的中点,连接EF.若CD=EF的长.六、(本题满分12分)21.在“双减”政策的落实中,某区教育部门想了解该区A,B两所学校九年级各500名学生每天的课后书面作业的时长(单位:min)情况,从这两所学校分别随机抽取50名九年级学生进行调查,整理数据(保留整数)得出如下不完整的统计图表(作业时长用minx表示):A,B两所学校分别被抽取的50名学生每天的课后书面作业的时长频数分布表A学校50名九年级学生中每天课后书面作业时长在70.580.5x≤<的具体数据如下:80,78,77,77,77,76,76,76,75,75,75,75,75,74,74,73,72,72.请根据以上信息,完成下列问题:(1)=a ______,b =______,补全频数直方图;(2)A 学校50名九年级学生每天课后书面作业时长的中位数是______;(3)依据国家政策,九年级学生每天课后书面作业时长不得超过90min ,估计两所学校1000名学生中,能在90min 内(包含90min )完成当日课后书面作业的学生共有多少人.七、(本题满分12分)22.如图,ABC 中,AB AC =,ABC α∠=,D ,E 分别是直线BC ,AC 边上的点,直线AD ,BE 交于点F .(1)如图1,若60AFE α∠==︒,求证:BE AD =;(2)如图2,若45AFE α∠==︒,求BE AD 的值;(3)如图3,若AFB α∠=,5cos 12α=,求BE AD 的值.八、(本题满分14分)23.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中3m AB =,4m BC =,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E ,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3A 点恰好照射到C 点,此时大棚截面的阴影为BK ,求BK 的长.2024年中考第一次模拟考试数学一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.【1题答案】B 【2题答案】A 【3题答案】D 【4题答案】C 【5题答案】B【6题答案】C 【7题答案】D 【8题答案】D 【9题答案】A 【10题答案】B二、填空题(本大题共4小题,每小题5分,满分20分)【11题答案】a (a -1)(a +1)【12题答案】26︒##26度【13题答案】6-【14题答案】①.2②.32t ≤三、(本大题共2小题,每小题8分,满分16分)【15题答案】6--【16题答案】(1)()4001%a -;(2)30四、(本大题共2小题,每小题8分,满分16分)【17题答案】(3)8【18题答案】(1)30;(2)()126n -;(3)169n =.五、(本大题共2小题,每小题10分,满分20分)【19题答案】PC 的长为75m【20题答案】(2+六、(本题满分12分)【21题答案】(1)15,12(2)74.5(3)能在90min 内(包含90min )完成当日课后书面作业的学生共有920人.七、(本题满分12分)【22题答案】(2)BE AD =(3)56BE AD =八、(本题满分14分)【23题答案】(1)2144y x =-+(2)0.5m(3)97m 12。
安徽省2021年中考数学模拟试题汇编(含答案)

安徽省中考数学精选真题预测(含答案)注意事项:1、本试卷共八大题,满分150分,考试时间为120分钟。
2、请将答案填写在答题卷上。
考试结束后,将试题卷和答题卷一并交回。
一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个2.如图,点D ,E 分别是△ABC 的边AB ,AC 的中点,则△ADE 的面积与四边形BCED 的面积的比为( )(第2题) (第3题) (第4题)A.1:2B.1:3C.1:4D.1:13.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =xk的图象经过点B ,则k 的值是( ) A.1 B.2 C. 3 D.234.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A.BP AB =CB AC B.∠APB =∠ABC C.AB AP =ACAB D.∠ABP =∠C 5.在△ABC 中,(2cos A ﹣2)2+|1﹣tan B |=0,则△ABC 一定是( )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形 6.已知x =1是方程x 2+bx ﹣2=0的一个根,则方程的另一个根是( ) A.1 B.2 C.﹣2 D.﹣17.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y =2x ,y =x 2-3(x >0),y =x 2(x >0),y =-x31(x <0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y 随x 的增大而增大的概率是( )A.41 B.21 C.43D.1 8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论中正确的是( )(第8题) (第9题) (第10题) A.a >0 B.3是方程ax 2+bx +c =0的一个根 C.a +b +c =0 D.当x <1时,y 随x 的增大而减小 9.如图所示,直线l 和反比例函数y =xk(k >0)的图象的一支交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( )A.S 1<S 2<S 3B.S 1>S 2>S 3C.S 1= S 2>S 3D.S 1= S 2<S 3 10.如图,⊙O 是△ABC 的外接圆,弦AC 的长为3,sin B =43,则⊙O 的半径为( ) A.4 B.3 C.2 D.3二、填空题:(本大题共4小题,每小题5分,满分20分)11.如图,若点A 的坐标为(1,3),则sin∠1= .(第11题) (第12题)12.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan∠OAB =21,则AB 的长是____________. 13.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是___________________.(第13题) (第14题)14.在矩形ABCD 中,AB =6,BC =8,AC ,BD 相交于O ,P 是边BC 上一点,AP 与BD 交于点M ,DP 与AC 交于点N .①若点P 为BC 的中点,则AM :PM =2:1;②若点P 为BC 的中点,则四边形OMPN 的面积是8; ③若点P 为BC 的中点,则图中阴影部分的总面积为28; ④若点P 在BC 的运动,则图中阴影部分的总面积不变. 其中正确的是_____________.(填序号即可)三、解答题(本大题共2个小题,每小题8分,满分16分)15.计算:(2﹣1)0+(﹣1)2015+(31)-1﹣2sin30°16.解方程:x 2﹣5x +3=0四、(本大题共2个小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD (顶点是网格线的交点),按要求画出四边形AB 1C 1D 1和四边形AB 2C 2D 2. ⑴以A 为旋转中心,将四边形ABCD 顺时针旋转90°,得到四边形AB 1C 1D 1;⑵以A 为位似中心,将四边形ABCD 作位似变换,且放大到原来的两倍,得到四边形AB 2C 2D 2.18.如图,专业救助船“沪救1”轮、“沪救2”轮分别位于A 、B 两处,同时测得事发地点C 在A 的南偏东60°且C 在B 的南偏东30°上.已知B 在A 的正东方向,且相距100里,请分别求出两艘船到达事发地点C 的距离.(注:里是海程单位,相当于一海里.结果保留根号)五、(本大题共2个小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,直线y =﹣21x +2分别与x 、y 轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE ⊥x 轴于点E ,OE =2.⑴求反比例函数的解析式; ⑵连接OD ,求△OBD 的面积.20.如图,已知△ABC 为直角三角形,∠C =90°,边BC 是⊙O 的切线,切点为D ,AB经过圆心O 并与圆相交于点E ,连接AD . ⑴求证:AD 平分∠BAC ; ⑵若AC =8,tan∠DAC =43,求⊙O 的半径.六、(本题满分12分)21.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.⑴先从袋中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,填空:若A 为必然事件,则m 的值为_______,若A 为随机事件,则m 的取值为______;⑵若从袋中随机摸出2个球,正好红球、黑球各1个,用列表法与树状图法求这个事件的概率.七、(本题满分12分)22.如图1,在四边形ABCD 中,∠DAB 被对角线AC 平分,且AC 2=AB ·AD ,我们称该四边形为“可分四边形”,∠DAB 称为“可分角”.⑴如图2,四边形ABCD 为“可分四边形”,∠DAB 为“可分角”,如果∠DCB =∠DAB ,则∠DAB =_________.⑵如图3,在四边形ABCD 中,∠DAB =60°,AC 平分∠DAB ,且∠BCD =150°,求证:四边形ABCD 为“可分四边形”;⑶现有四边形ABCD 为“可分四边形”,∠DAB 为“可分角”,且AC =4,BC =2,∠D =90°,求AD 的长?图1 图2 图3八、(本题满分14分)23.已知抛物线l 1:y =﹣x 2+2x +3与x 轴交于点A 、B (点A 在点B 左边),与y 轴交于点C ,抛物线l 2经过点A ,与x 轴的另一个交点为E (4,0),与y 轴交于点D (0,﹣2).⑴求抛物线l 2的解析式;⑵点P为线段AB上一动点(不与A、B重合),过点P作y轴的平行线交抛物线l1于点M,交抛物线l2于点N.①当四边形AMBN的面积最大时,求点P的坐标;②当CM=DN≠0时,求点P的坐标.备用图数学参考答案一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1—5 CBCAD,6-10 CCBDC二、填空:11、 12、 8 13、 x<﹣1,或0<x<2 14、①③三、解答题:15、(8分)原式=216、(8分) x1=,x2=.17、(8分)18、(8分)解:作BG⊥AC于G,∵点C在A的南偏东60°,∴∠A=90°﹣60°=30°,∵C在B的南偏东30°,∴∠ABC=120°,∴∠C=30°,∴BC=AB=100里,∴BG=BC•sin30°=50里,CG=BC•cos30°=50里,∴AC=2CG=100里.答:A船到达事发地点C的距离是100里,B船到达事发地点C的距离是100里.19、(10分)解:(1)∵OE=2,CE ⊥x 轴于点E . ∴C 的横坐标为﹣2, 把x=﹣2代入y=﹣x+2得,y=﹣×(﹣2)+2=3, ∴点C 的坐标为C (﹣2,3).设反比例函数的解析式为y=,(m ≠0) 将点C 的坐标代入,得3=.∴m=﹣6. ∴该反比例函数的解析式为y=﹣. (2)由直线线y=﹣x+2可知B (4,0),解得,,∴D (6,﹣1), ∴S △OBD =×4×1=2.20(10分)解:(1)连接OD , ∵BC 是⊙O 的切线, ∴OD⊥BC ∴∠ODB=90° 又∵∠C=90° ∴AC∥OD ∴∠CAD=∠ADO又∵OA=OD ∴∠OAD=∠ADO ∴∠CAD=∠OAD∴ AD 平分∠BAC (2)在R t △ACD 中 AD=1022=+CD AC连接DE ,∵AE 为⊙O 的直径 ∴∠ADE=90° ∴∠ADE=∠C ∵∠CAD=∠OAD∴△ACD∽△ADE∴AD AE AC AD =,即10810AE= ∴AE=225∴⊙O 的半径是42521、解:(1)∵“摸出黑球”为必然事件, ∴m=3, ∵“摸出黑球”为随机事件,且m >1, ∴m=2; 故答案为:3,2; (2)画树状图得:∵共有20种等可能的结果,从袋中随机摸出2个球,正好红球、黑球各1个的有12种情况,∴从袋中随机摸出2个球,正好红球、黑球各1个的概率为: =.22(1)︒=∠120DAB (2)∵AC 平分∠DAB,∠DAB=60°∴∠DAC=∠CAB=30° ∵∠DCB=150° ∴∠DCA=150°-∠ACB在△ADC 中,∠ADC=180°- ∠DAC - ∠DCA =180°-30°-(150°-∠ACB)=∠ACB ∴△ACD∽△ABC ∴ABACAC AD =∴AD AB AC ⋅=2, 即证四边形ABCD 为“可分四边形”(3)∵四边形ABCD 为“可分四边形”,∠DAB 为“可分角” ∴AC 平分∠DAB,AD AB AC ⋅=2 即∠DAC=∠CAB,ABACAC AD =∴△ACD∽△ABC ∴∠ACB=∠D=90° 在Rt△ACB 中AB=5222=+BC AC∵ AD AB AC ⋅=2∴AD=55852422==AB AC23.解:(1)∵令﹣x 2+2x+3=0,解得:x 1=﹣1,x 2=3, ∴A (﹣1,0),B (3,0).设抛物线l 2的解析式为y=a (x+1)(x ﹣4).∵将D (0,﹣2)代入得:﹣4a=﹣2, ∴a=. ∴抛物线的解析式为y=x 2﹣x ﹣2;(2)①如图1所示:∵A (﹣1,0),B (3,0), ∴AB=4.设P (x ,0),则M (x ,﹣x 2+2x+3),N (x , x 2﹣x ﹣2). ∵MN ⊥AB , ∴S AMBN =AB ·MN=﹣3x 2+7x+10(﹣1<x <3). ∴当x=时,S AMBN 有最大值. ∴此时P 的坐标为(,0). ②如图2所示:作CG ⊥MN 于G ,DH ⊥MN 于H ,如果CM 与DN 不平行. ∵DC ∥MN ,CM=DN , ∴四边形CDNM 为等腰梯形. ∴∠DNH=∠CMG . 在△CGM 和△DNH 中,∴△CGM ≌△DNH . ∴MG=HN . ∴PM ﹣PN=1.设P(x,0),则M(x,﹣x2+2x+3),N(x, x2﹣x﹣2).∴(﹣x2+2x+3)+(x2﹣x﹣2)=1,解得:x1=0(舍去),x2=1.∴P(1,0).当CM∥DN时,如图3所示:∵DC∥MN,CM∥DN,∴四边形CDNM为平行四边形.∴DC=MN.=5 ∴﹣x2+2x+3﹣(x2﹣x﹣2)=5,∴x1=0(舍去),x2=,∴P(,0).总上所述P点坐标为(1,0),或(,0).安徽省中考数学精选真题预测(含答案)(满分150分,时间120分钟)一、选择题(本大题共10小题,每题4分,共40分)1.﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.下列运算中,正确的是()A.5a﹣2a=3 B.(x+2y)2=x2+4y2C.x8÷x4=x2D.(2a)3=8a33.据统计,中国水资源总量约为27500亿立方米,居世界第六位,其中数据27500亿用科学记数法表示为()A.2.75×108B.2.75×1012C.27.5×1013D.0.275×10134.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B. C. D.5.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:成绩(m) 2.35 2.4 2.45 2.5 2.55次数 1 1 2 5 1则下列关于这组数据的说法中正确的是()A.众数是2.45 B.平均数是2.45 C.中位数是2.5 D.方差是0.486.某人沿坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的.设人行通道的宽度为x千米,则下列方程正确的是( )A.(2-3x)(1-2x)=1B.(2-3x)(1-2x)=1C.(2-3x)(1-2x)=1D.(2-3x)(1-2x)=28.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD9.设△ABC的一边长为x,这条边上的高为y,y与x满足的反比例函数关系如图所示,当△ABC 为等腰直角三角形时,x+y的值为( )A.4B.5C.5或3D.4或310. 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题共4小题,每题5分,共20分)11.分解因式:ax2﹣6ax+9a= .12 如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为 .13.如图1,一张纸条上依次写有10个数,如图2,一卡片每次可以盖住纸条上的3个数,那么随机地用卡片盖住的3个数中有且只有一个是负数的概率.14.已知,如图,Rt△ABC中,∠BAC=90°,以AB为直径的☉O交BC于D,OD交AC的延长线于E,OA=1,AE=3.则下列结论正确的有.①∠B=∠CAD;②点C是AE的中点;③;④tan B=.三、(本大题共2小题,每题8分,共16分)15. 计算:-(-1)0-2sin 60°.16. 解方程:x2+4x-2=0.四.(本大题共2小题,每题8分,共16分)17. 如图,方格纸中每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立如图所示的平面直角坐标系.(1)将△ABC向左平移7个单位后再向下平移3个单位,请画出两次平移后的△A1B1C1.若M 为△ABC内的一点,其坐标为(a,b),直接写出两次平移后点M的对应点M1的坐标;(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1∶2.请在网格内画出在第三象限内的△A2B2C2,并写出点A2的坐标.18. 甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?五.(本大题共2小题,每题10分,共20分)19. 如图,AB为☉O的直径,点C在☉O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。
2024年安徽省九年级中考数学模拟试卷(含解析)

2024年安徽数学中考模拟试温馨提示:1试卷满分150分,考试时间120分钟。
2 本试卷共六页,共23题。
一、选择题(本题10小题,每小题4分,共40分)1.的倒数是( )A .B .C.D .2.天宫二号空间实验室的运行轨道距离地球约393000米,将393000用科学记数法表示应为( )A .B .C .D .3. 下列运算正确的是( )A .B .CD4.某物体如图所示,其俯视图是( )A .B .C .D .5.已知直线,将一块含角的直角三角板ABC 按如图方式放置,若,则的度数是( )A .B .C .D .6.如图,在Rt 中,4,点是斜边BC 的中点,以AM 为边作正方形AMEF.若S 正方形AMEF =16,则( )20232023-20231202312023-70.39310⨯53.9310⨯63.9310⨯339310⨯22a b ab +=()32528x x -=-4=-=a b 45︒124∠=︒2∠56︒66︒76︒86︒ABC AB =M ABC S =A .B .C .12D .167.已知(a+b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .28.将分别标有“大”、“美”、“织”、“金”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“织金”的概率是( )A.B .C .D .9.已知点,,在同一个函数图象上,这个函数图象可以是( )A .B .C .D .10.如图,在矩形 中, 、 分别是边 、 上的点, ,连接 、, 与对角线 交于点 ,且 , , ,则的长为( )18161412()21A a --,()1B a -,()1C a ,ABCD E F AB CD AE CF =EF BF EF AC O BE BF =2BEF BAC ∠=∠2FC =ABA .B .C .4D .6二、填空题(本题4小题,每小题5分,共20分)11.已知,则 .12.关于的方程的解是,则的值是 .13.如图,四边形为⊙O 的内接四边形,已知,则度数为 .14.如图,将一把矩形直尺和一块含角的三角板摆放在平面直角坐标系中,在轴上,点与点重合,点在上,三角板的直角边交于点,反比例函数的图象恰好经过点,若直尺的宽,三角板的斜边,则 .三、(本题2小题,每小题8分,共16分)15.先化简,再求值:,其中.16.如图,为了测量旗杆的高度,在离旗杆底部米的处,用高米的测角仪测得旗杆顶端处的仰角为求旗杆的高.精确到米参考数据:,,23(4)0x y ++-=x y -=x 323x k -=1-k ABCD 140BOD ∠=︒BCD ∠ABCD 30︒EFG AB x G A F AD EF BC M ky (x 0)x=>F M.CD 2=FG =k =236214422x x x x x x --÷-++++260430x tan sin =︒-︒BC 12A 1.5DA C α47.︒BC (0.1)[sin470.73︒≈cos470.68︒≈tan47 1.07]︒≈四(本题2小题,每小题8分,共16分)17.某水果商从批发市场用16000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)在运输过程中大樱桃损耗了,若大樱桃售价为每千克80元,要使此次销售获利不少于6700元,则小樱桃的售价最少应为每千克多少元?18.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x ,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.五、(本题2小题,每小题10分,共20分)19.如图所示,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABO的三个顶点分别为 A(-1,3),B(-4,3),O(0,0).(1)画出△ABO 关于原点对称的图形△A 1B 1O ,并写出点B 1的坐标;(2)画出△ABO 绕O 点顺时针旋转90°后得到的图形△A 2B 2O ,并写出点B 2的坐标.20.如图,内接于,,它的外角的平分线交于点D ,连接交于点F.15%ABC O 90ABC ∠>︒EAC ∠O DB DC DB ,,AC(1)若,求的度数.(2)求证:.(3)若,当,求的度数(用含的代数式表示).六、(本题2小题,每小题12分,共24分)21.我市教育局为深入贯彻落实立德树人根本任务,2022年在全市中小学部署开展“六个一”德育行动.某校为了更好地开展此项活动,随机抽取部分学生对学校前段时间开展活动的情况进行了满意度调查,满意度分为四个等级:A :非常满意;B :满意;C :一般;D :不满意.根据调查数据绘制了如下两幅不完整的统计图表:等级人数A 72B 108C 48Dm请你根据图表中的信息,解答下列问题:(1)本次被调查的学生人数是多少?(2)求以上图表中m ,n 的值及扇形统计图中A 等级对应的圆心角度数;(3)若该校共有学生1200人,估计满意度为A ,B 等级的学生共有多少人?75EAD ∠=︒ BCDB DC =DA DF =αABC ∠=DFC ∠α22.(1)问题如图1,在四边形中,点P 为上一点,当时,求证:.(2)探究若将角改为锐角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在中,,,以点A 为直角顶点作等腰.点D 在上,点E 在上,点F 在上,且,若,求的长.七、(本题1小题,共14分)23.如图,已知抛物线经过、、三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当的值最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使为等腰三角形,若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.答案解析ABCD AB 90DPC A B ∠=∠=∠=︒AD BC AP BP ⋅=⋅90︒ABCAB =45B ∠=︒Rt ADE BC AC BC 45EFD ∠=︒CE =CD 2y ax bx c =++(10)A -,(30)B ,(03)C ,PA PC +MAC【解析】【解答】解:由题意得的倒数是,故答案为:C【分析】根据有理数的倒数结合题意即可得到2023的倒数,进而即可求解。
2024年安徽省中考数学(模拟)试卷

2024年安徽省中考数学(模拟)试卷一.选择题(共10小题,满分40分,每小题4分)1.﹣2024的绝对值是()A.2024 B.﹣2024 C.D.2.下列运算正确的是()A.x3+x=x4 B. C.3x3y2÷3x2=xy2 D.(x﹣y)2=x2﹣y2 3.如图,该几何体的主视图是()A. B. C. D.4.据《安徽经济新闻网》2024年1月10日报道:2024年伊始,合肥高新区传来好消息,南岗科技成果加速器北区已经正式开工建设.总投资约16.9亿元,占地面积约179亩,总建筑面积约24.7万平方米.其中数据16.9亿用科学记数法表示为()A.1.69×10 B.1.69×108C.1.69×109D.1.69×10105.随着“二胎政策”出生的孩子越来越多,纷纷到了入学年龄,某校2021年学生数比2020年增长了8.5%,2022年新学期开学统计,该校学生数又比2021年增长了9.6%,设2021、2022这两年该校学生数平均增长率为x,则x满足的方程是()A.2x=8.5%+9.6% B.2(1+x)=(1+8.5%)(1+9.6%)C.2(1+x)2=(1+8.5%+9.6%) D.(1+x)2=(1+8.5%)(1+9.6%)6.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°第6题图第7题图第8题图7.如图,今年十一旅游黄金周期间,西溪景区规定A和B为入口,C,D,E为出口,小红随机选一个入口景区,游玩后任选一个出口离开,则她选择从A口进入,从D口离开的概率是()A.B.C.D.8.如图,菱形ABCD的对角线交于点O,AE⊥BC于点E,若,AB=10,则AC的长为()A.12 B.10 C.D.9.如图,在▱ABCD中,AB=4,AD=2,∠DAE=60°,DE为∠ADC的角平分线,点F为DE上一动点,点G为CF的中点,连接AG,则AG的最小值是()A.2 B.C.4 D.10.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.第9题图第10题图二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:2m3﹣8mn2=.12.如图所示,AB是⊙O的直径,弦CE⊥AB,垂足为M,过点C作⊙O的切线交BA的延长线于点D,若AM =1,BM=5,则AD=.第12题图第13题图第14题图13.如图,A、B是反比例函数y=(k<0)图象上的两点,A、B两点的横坐标分别是﹣3、﹣,直线AB 与y轴交于点C,若△AOB的面积为7,则k的值为.14.在平行四边形ABCD中,AB=4,BC=6,点E是BC边上的点,连接AE,将△ABE沿AE翻折至△AFE,连接CF.(1)如图1,连接BF,若点E为BC边中点,且CF=AB时,则∠ABF=°;(2)如图2,连接DF,当点D、F、E三点共线时,恰有∠DCF=∠ADF,则CF的长为.三、(本大题共2小题,每小题8分,满分16分)15.先化简再求值:,其a从﹣2,2,﹣3,3中选一个合适的数代入求值.16.如图,在由边长为1个单位的小正方形组成的网格中,点A,B,C均为格点(网格线的交点),A(2,3),B(3,2),C(1,0).(1)将△ABC向下平移3个单位,再向左平移4个单位,得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕点O逆时针旋转90°,得到△A2B2C2,请画出△A2B2C2.(3)在(2)的旋转过程中,点C1经过的路径长为.四、(本大题共2小题,每小题8分,满分16分)17.我国航天事业的飞速发展引发了航空航天纪念品的热销,某商店准备购进甲、乙两类关于航空航天的纪念品进行销售.已知甲类纪念品的进价为m元/件,乙类纪念品的进价比甲类的进价多5元/件.若每件甲类纪念品的售价是在其进价的基础上提高了60%,每件乙类纪念品的售价是在其进价的基础上提高了40%,根据上述条件,回答下面问题:(1)请用含有m的代数式填写表:进价/元售价/元甲类纪念品m乙类纪念品(2)该商店分别购进甲类纪念品100件,乙类纪念品80件.两类纪念品全部售出后所得的总利润为1080元,问每件甲、乙两类纪念品进价分别多少元?18.五一期间,某人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推.请观察图形规律,解答下列问题(1)第10层有个盆栽,第n层有个盆栽;(2)计算:1+3+5+…+49=;(3)拓展应用:求51+53+55+…+1949的值.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,小南家A位于一条东西走向的笔直马路上,超市B在A地的正东方.午休时间,小南从家A出发沿北偏东60°方向步行600米至菜鸟驿站C取快递.下午第一节网课是美术课,此时距离上课时间只有7分钟,他决定先沿西南方向步行至超市B购买素描画纸,再沿正西方向回到家上网课.(参考数据:,)(1)求菜鸟驿站C与超市B的距离(精确到个位);(2)若小南的步行速度为80米/分钟,那么他上美术网课会迟到吗?请说明理由.(忽略小南买素描画纸的时间)20.(10分)如图,已知AB为⊙O的直径,CD与⊙O相切,且∠DAC=∠BAC,AD与⊙O交于点E.(1)求证:AD⊥CD;(2)连接BE,若,AB=10,求DE的值.六、(本题满分12分)21.(12分)2023年10月1日是中华人民共和国成立74周年,学校开展了“迎国庆•弘扬中华传统文化”知识竞赛活动,学校从初中三个年级各随机抽取10人进行相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行整理、描述和分析,下面给出了相关信息:a.30名同学中华传统文化知识测试成绩的统计图如图1;b.30名同学中华传统文化知识测试成绩的频数分布直方图如图2(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100).c.测试成绩在70≤x<80这一组的是:70 72 72 74 74 74 75 77d.小明的中华传统文化知识测试成绩为77分.根据以上信息,回答下列问题:(1)测试成绩在70≤x<80这一组的同学成绩的众数为分;(2)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第名;(3)抽取的30名同学的成绩的中位数为分;(4)序号(见图1横轴)为1﹣10的学生是七年级的,他们成绩的方差记为;序号为11﹣20的学生是八年级的,他们成绩的方差记为;序号为21﹣30的学生是九年级的,他们成绩的方差记为,直接写出,②,③中最小的是(填序号);(5)成绩80分及以上记为优秀,若该校初中三个年级1800名同学都参加测试,请估计成绩优秀的同学人数.七、(本题满分12分)22.(12分)如图1,△ABC是等边三角形,点D在CA的延长线上,点E在BC上,BD=DE,AB,DE交于点F.(1)①求证:∠ABD=∠CDE;②求证:AD=CE;(2)如图2,若点E是BC的中点,求的值.八、(本题满分14分)23.(14分)在平面直角坐标系xOy中,已知抛物线y=a(x+1)(x﹣4)与x轴交于A、B两点,与y轴交于点C(0,﹣2).(1)求a的值;(2)点D为第四象限抛物线上一点.①求△BCD的面积最大值;②连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值.。
精选安徽省中考数学模拟试卷及参考详细答案(word版)

安徽省初中毕业学业考试数 学(试题卷)注意事项:1. 你拿到的试卷满分为150分,考试时间为120分钟。
2. 本试卷包括“试题卷”和“答题卷”两部分。
“试题卷”共4页,“答题卷”共6页。
3. 请务必在“答题卷...”上答题,在“试题卷”上答题是无效的。
4. 考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.-2的绝对值是A .-2B .2C .2±D .21 2.计算)0(210≠÷a a a的结果是 A .5a B .5-a C .8a D .8-a3. 2016年3月份我省农产品实现出口额8362万美元. 其中8362万用科学记数法表示为A .710362.8⨯B .61062.83⨯C .8108362.0⨯D .810362.8⨯4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是5.方程3112=-+x x 的解是 A .54- B .54 C .4- D .4 6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长了9.5%.若2013年和2015我省财政收入分别为a 亿元和b 亿元和b 亿元,则a 、b 之间满足的关系式是A. b =a (1+8.9%+9.5%)B. b =a (1+8.9%⨯9.5%)C. b =a (1+8.9%)(1+9.5%)D. b =a (1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有A. 18户B. 20户C. 22户D. 24户数学试题卷 第1页(共4页)8.如图,ABC ∆中,AD 是中线,DAC B BC ∠=∠=,8,则线段AC 的长为A .4B .24C .6D .349.一段笔直的公路AC 长为20千米,途中有一处休息点AB B ,长为15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点,B 原地休息半小时后,再以10千米/时 的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、 乙两人出发后2小时内运动路程 y (千米)与时间 x (小时)函数关系的图像是10.如图,ABC Rt ∆中,P BC AB BC AB .4,6,==⊥是ABC ∆内部的一个动点,且满足.PBC PAB ∠=∠则线段CP 长的最小值为A .23 B .2 C .13138 D .131312二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式12≥-x 的解集是 .12.因式分解:=-a a 3 .13.如图,已知⊙O 的半径为2,A 为⊙O 外一点.过点A 作⊙O 的一条切线AB ,切点是B . AO 的延长线交⊙O 于点C .若︒=∠30BAC ,则劣弧的长为 .14.如图,在矩形纸片ABCD 中,10,6==BC AB .点E 在CD 上,将BCE ∆沿BE 折叠, 点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG ∆沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论:其中正确的是 .(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15.计算:︒+-+-45tan 8)2016(30.16.解方程:422=-x x .数学试题卷 第2页(共4页)四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的1212⨯网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点四边形D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形 .18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:()12(531+-+⋅⋅⋅+++n =+++⋅⋅⋅+-+135)12()n五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸1l 与2l 相互平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点.某人在点A 处测得︒=∠︒=∠30,90DAB CAB ,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得︒=∠60DEB ,求C 、D 两点间的距离.数学试题卷 第3页(共4页)19.如图,一次函数b kx y +=的图像分别与反比例函数x a y =的图像在第一象限交于点 )3,4(A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求函数b kx y +=和xa y =的表达式; (2)已知点)5,0(C ,试在该一次函数图像上确定一点M ,使得MC MB =.求此时点M 的坐标.六、(本题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现 规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均 匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22.如图,二次函数bx ax y +=2的图象经过点)4,2(A 与)0,6(B .(1)求b a ,的值;(2)点C 是该二次函数图象上B A ,两点之间的一动点,横坐标为)62(<<x x .写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.八、(本题满分14分)22.如图1,B A ,分别在射线ON OM ,上,且MON ∠为钝角.现以线段OB OA ,为斜边向MON ∠的外侧作等腰直角三角形,分别是OBQ OAP ∆∆,,点E D C ,,分别是AB OB OA ,,的中点.(1)求证:EDQ PCE ∆≅∆;(2)延长DQ PC ,交于点R .① 如图2,若︒=∠150MON ,求证:ABR ∆为等边三角形;② 如图3,若ARB ∆∽PEQ ∆,求MON ∠大小和PQAB 的值.数学试题卷 第4页(共4页)。
2020年中考数学模拟试题(九)

2020年中考模拟试题(九)数学注意事项:1. 本试卷共8页,26个小题,满分为120分,考试时间为120分钟。
2. 根据阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。
3. 考试结束后,将本试卷保管好并将答题卡上交。
一、选择题(本大题包括10个小题,每小题3分,共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.估算面积为3的正方形的边长b的值()A.在0和1之间B.在1和2之间C.在2和3之间D.在3和4之间2.2020年5月5日18时,长征五号B运载火箭首飞成功,标志着我国空间站工程建设进入实质阶段.长征五号B运载火箭运载能力超过22000千克,是目前我国近地轨道运载能力最大的火箭.将22000用科学记数法表示应为()A.2.2×104B.2.2×105C.22×103D.0.22×1053.下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6 4.下列防控疫情的图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是()A.B.C.D.6.“某学校改造过程中整修门口1500m的道路,但是在实际施工时,……,求实际每天整修道路多少米?”在这个题目中,若设实际每天整修道路xm,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多修5m,结果延期10天完成B.每天比原计划多修5m,结果提前10天完成C.每天比原计划少修5m,结果延期10天完成D.每天比原计划少修5m,结果提前10天完成7.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=(x>0)的图象上,顶点B在反比例函数y=(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC的面积为8,则k2﹣k1的值为()A.4 B.8C.12D.168.如图,在△ABC中,AB<BC,在BC上取一点P,使得PC=BC﹣P A.根据圆规作图的痕迹,可以用直尺成功找到点P的是()A.B.C.D.9.宽和长的比为的矩形称为黄金矩形,如图,黄金矩形ABCD中,宽AB=2,将黄金矩形ABCD沿EF折叠,使得点C落在点A处,点D落在点D′处,则△AEF的面积为()A.B.C.D.10.如图,在边长为2cm的等边△ABC中,AD⊥BC于D,点M、N同时从A点出发,分别沿A﹣B﹣D、A﹣D运动,速度都是1cm/s,直到两点都到达点D即停止运动.设点M、N运动的时间为x(s),△AMN的面积为y(cm2),则y与x的函数图象大致是()A.B.C.D.二、填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.如果y=(k﹣3)x2+k(x﹣3)是二次函数,那么k需满足的条件是.12.分解因式:5a3﹣20a=.13.如果一组数据x1,x2,x3,x4,x5的方差是1,那么数x1﹣10,x2﹣10,x3﹣10,x4﹣10,x5﹣10的方差是.14.如图,正方形ABCD的四个顶点分别在扇形OEF的半径OE,OF和上,且点A是线段OB的中点,若的长为π,则OD长为.15.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为.16.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.17.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,且OA=OC,对称轴为直线x=1,则下列结论:①;②;③关于x的方程ax2+bx+c+2=0无实根,④ac﹣b+1=0;⑤OA⋅OB=﹣.其中正确结论的有.三、解答题(本题包括9个小题,共69分,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.计算:4sin45°﹣+()﹣2+|3﹣π|.19.先化简:,然后在﹣内找一个你喜欢的整数代入求值.20.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,F是BD中点.求证:EF平分∠BED.21.2019年是新中国成立70周年,在“庆祝新中国成立70年华诞”主题教育活动月,深圳某学校组织开展了丰富多彩的活动,活动设置了“A:诗歌朗诵展演,B:歌舞表演,C:书画作品展览,D:手工作品展览”四个专项活动,每个学生限选一个专项活动参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图:(1)本次随机调查的学生人数是人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角为度.(4)小涛和小华各自随机参与其中的一个专项活动,请你用画树状图或列表的方式求他们恰好选中同一个专项活动的概率.22.某次台风来袭时,一棵笔直大树树干AB(树干AB垂直于水平地面)被刮倾斜后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA=37°,∠ACD=60°,AD=5米,求这棵大树AB的高度.(结果精确到0.1米)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)23.某酒店计划购买一批换气扇,已知购买2台A型换气扇和2台B型换气扇共需220元;购买3台A型换气扇和1台B型换气扇共需200元.(1)求A,B两种型号的换气扇的单价.(2)若该酒店准备同时购进这两种型号的换气扇共60台,并且A型换气扇的数量不多于B型换气扇数量的2倍,请设计出最省钱的购买方案,并说明理由.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.25.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=,试求的值.26.如图,抛物线y=x2﹣ax+a﹣1与x轴交于A,B两点(点B在正半轴上),与y轴交于点C,OA=3OB.点P在CA的延长线上,点Q在第二象限抛物线上,S△PBQ=S△ABQ.(1)求抛物线的解析式.(2)求直线BQ的解析式.(3)若∠P AQ=∠APB,求点P的坐标.2020年中考模拟数学试题(九)参考答案一.选择题(共10小题)1.估算面积为3的正方形的边长b的值()A.在0和1之间B.在1和2之间C.在2和3之间D.在3和4之间【分析】根据正方形的面积公式可得面积为3的正方形的边长b的值为,因为1<<2,由此可以得到b的值的范围.【解答】解:面积为3的正方形的边长b的值为,∵1<<2,∴实数的值在整数1和2之间.故选:B.2.2020年5月5日18时,长征五号B运载火箭首飞成功,标志着我国空间站工程建设进入实质阶段.长征五号B运载火箭运载能力超过22000千克,是目前我国近地轨道运载能力最大的火箭.将22000用科学记数法表示应为()A.2.2×104B.2.2×105C.22×103D.0.22×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:22000用科学记数法表示为:2.2×104.故选:A.3.下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3+a2,不是同类项,无法合并,故此选项错误;B、a3÷a=a2,故此选项错误;C、a2•a3=a5,正确;D、(a2)4=a8,故此选项错误;故选:C.4.下列防控疫情的图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.5.如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是()A.B.C.D.【分析】主视图是从几何体的正面看所得到的视图,注意看不到的棱需要画成虚线.【解答】解:该几何体的主视图是一个矩形,矩形的右边有一条线段把矩形分成了一个梯形和三角形.故选:B.6.“某学校改造过程中整修门口1500m的道路,但是在实际施工时,……,求实际每天整修道路多少米?”在这个题目中,若设实际每天整修道路xm,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多修5m,结果延期10天完成B.每天比原计划多修5m,结果提前10天完成C.每天比原计划少修5m,结果延期10天完成D.每天比原计划少修5m,结果提前10天完成【分析】由x代表的含义找出(x﹣5)代表的含义,再分析所列方程选用的等量关系,即可找出结论.【解答】解:设实际每天整修道路xm,则(x﹣5)m表示:实际施工时,每天比原计划多修5m,∵方程,其中表示原计划施工所需时间,表示实际施工所需时间,∴原方程所选用的等量关系为实际施工比原计划提前10天完成.故选:B.7.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=(x>0)的图象上,顶点B在反比例函数y=(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC的面积为8,则k2﹣k1的值为()A.4B.8C.12D.16【分析】延长BA交y轴于D,连接OB,如图,利用平行四边形的性质得到AB⊥y轴,S△AOB=S▱ABCO=4,再利用反比例函数k的几何意义得到S△AOD=k1,S△BOD=k2,从而得到k2﹣k1=4.【解答】解:延长BA交y轴于D,连接OB,如图,∵四边形ABCO为平行四边形,∴AB∥x轴,即AB⊥y轴,S△AOB=S▱ABCO=×8=4,∵S△AOD=|k1|=k1,S△BOD=|k2|=k2,∴k2﹣k1=4,∴k2﹣k1=8.故选:B.8.如图,在△ABC中,AB<BC,在BC上取一点P,使得PC=BC﹣P A.根据圆规作图的痕迹,可以用直尺成功找到点P的是()A.B.C.D.【分析】根据线段垂直平分线的性质即可在BC上取一点P,使得PC=BC﹣P A.【解答】解:如图,根据题意可知:作AB的垂直平分线交BC于点P,所以P A=PB,所以PC=BC﹣PB=BC﹣P A,故选:A.9.宽和长的比为的矩形称为黄金矩形,如图,黄金矩形ABCD中,宽AB=2,将黄金矩形ABCD沿EF折叠,使得点C落在点A处,点D落在点D′处,则△AEF的面积为()A.B.C.D.【分析】依据黄金矩形ABCD中,宽AB=2,可得BC的长,设AF=CF=x,则BF=+1﹣x,再根据勾股定理即可得到AF的长,进而得出△AEF的面积.【解答】解:∵黄金矩形ABCD中,宽AB=2,∴,即BC==+1,设AF=CF=x,则BF=+1﹣x,∵∠B=90°,∴Rt△ABF中,AB2+BF2=AF2,即=x2,解得x=,∴AF=,又∵AD'=CD=AB=2,∴△AEF的面积=AF×AD'=××2=,故选:A.10.如图,在边长为2cm的等边△ABC中,AD⊥BC于D,点M、N同时从A点出发,分别沿A﹣B﹣D、A﹣D运动,速度都是1cm/s,直到两点都到达点D即停止运动.设点M、N运动的时间为x(s),△AMN的面积为y(cm2),则y与x的函数图象大致是()A.B.C.D.【分析】分0≤t≤时、<2、2≤t≤3,三种情况分别求解即可.【解答】解:AD=AB sin60°=,①当0≤t≤时,过点M作MH⊥AD于点H,y=AN×MH=t×AM×sin∠BAD=t2,为开口向上的抛物线;②当<2时,同理可得:y=×t×sin30°=t,为一次函数;③2≤t≤3时,同理可得:y=(3﹣t)×=(3﹣t),为一次函数;故选:C.二.填空题(共7小题)11.如果y=(k﹣3)x2+k(x﹣3)是二次函数,那么k需满足的条件是k≠3.【分析】直接利用二次函数的定义分析得出答案.【解答】解:∵y=(k﹣3)x2+k(x﹣3)是二次函数,∴k﹣3≠0,解得:k≠3,∴k需满足的条件是:k≠3,故答案为:k≠3.12.分解因式:5a3﹣20a=5a(a﹣2)(a+2).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=5a(a2﹣4)=5a(a﹣2)(a+2).故答案为:5a(a﹣2)(a+2).13.如果一组数据x1,x2,x3,x4,x5的方差是1,那么数x1﹣10,x2﹣10,x3﹣10,x4﹣10,x5﹣10的方差是1.【分析】根据题意得;数据x1,x2,x3,x4,x5的平均数设为a,则数据x1﹣10,x2﹣10,x3﹣10,x4﹣10,x5﹣10的平均数为a﹣10,在根据方差公式进行计算:S22=[(x1﹣)2+(x2﹣)2+…(x5﹣)2]即可得到答案.【解答】解:根据题意得;数据x1,x2,x3,x4,x5的平均数设为a,则数据x1﹣10,x2﹣10,x3﹣10,x4﹣10,x5﹣10的平均数为a﹣10,根据方差公式:S12=[(x1﹣a)2+(x2﹣a)2+…(x5﹣a)2]=1.则:S22={[(x1﹣10)﹣(a﹣10)]2+[(x2﹣10)﹣(a﹣10)]2+…(x5﹣10)﹣(a﹣10)]}2,=[(x1﹣a)2+(x2﹣a)2+…(x5﹣a)2],=1,故答案为:114.如图,正方形ABCD的四个顶点分别在扇形OEF的半径OE,OF和上,且点A是线段OB的中点,若的长为π,则OD长为4.【分析】根据正方形的性质得到AD=AB,∠DAB=90°,求得∠EOF=45°,根据弧长公式得到OF=4,连接OC,求得OC=OF=4,设OA=BC=x,根据勾股定理得到OC=x=4,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴点A是线段OB的中点,∴OA=AB,∴OA=AD,∵∠OAD=∠DAB=90°,∴∠EOF=45°,∵的长为π,∴=π,∴OF=4,连接OC,∴OC=OF=4,设OA=BC=x,∴OB=2x,∴OC=x=4,∴x=4,∴OA=AD=4,∴OD=4,故答案为:4.15.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为.【分析】连接BE,则△ABE与△BEC都是直角三角形,在直角△ABE利用勾股定理即可求得BE的长,在直角△BEC中利用射影定理即可求得EC的长,根据切割线定理即可得到:AD•AB=AE•AC.据此即可求得AD的长.【解答】解:连接BE.∵BC是直径.∴∠AEB=∠BEC=90°在直角△ABE中,根据勾股定理可得:BE2=AB2﹣AE2=82﹣22=60.∵=5∴设FC=x,则BF=5x,BC=6x.又∵BE2=BF•BC即:30x2=60解得:x=,∴EC2=FC•BC=6x2=12∴EC=2,∴AC=AE+EC=2+2,∵AD•AB=AE•AC∴AD===.故答案为.16.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.【分析】以BD为对称轴作N的对称点N',连接PN',MN',依据PM﹣PN=PM﹣PN'≤MN',可得当P,M,N'三点共线时,取“=”,再求得==,即可得出PM∥AB∥CD,∠CMN'=90°,再根据△N'CM为等腰直角三角形,即可得到CM=MN'=2.【解答】解:如图所示,以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.17.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,且OA=OC,对称轴为直线x=1,则下列结论:①;②;③关于x的方程ax2+bx+c+2=0无实根,④ac﹣b+1=0;⑤OA⋅OB=﹣.其中正确结论的有④⑤.【分析】根据二次函数的图象和性质,对称轴、与x轴、y轴的交点坐标,以及二次函数与一元二次方程的关系,逐个进行判断,得出答案.【解答】解:抛物线与x轴有两个不同交点,因此b2﹣4ac>0,开口向下,a<0,因此<0,故①不正确;抛物线与y轴交于正半轴,因此c>0,对称轴为x=1,所以﹣=1,也就是a=﹣b,∴a+b+c=﹣b+b+c=c>0,故②不正确;当y=﹣2时,根据图象可得ax2+bx+c=﹣2有两个不同实数根,即ax2+bx+c+2=0有两个不等实根,因此③不正确;∵OA=OC,∴A(﹣c,0)代入得:ac2﹣bc+c=0,即:ac﹣b+1=0,因此④正确;设A(x1,0),B(x2,0),有x1、x2是方程ax2+bx+c=0的两个根,有有x1+x2=,又∵OA=﹣x1,OB=x2,所以OA•OB=﹣,故⑤正确;综上所述,正确的有④⑤,故答案为:④⑤三.解答题(共23小题)18.计算:4sin45°﹣+()﹣2+|3﹣π|.【分析】根据绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简的计算法则进行计算即可求得结果.【解答】解:4sin45°﹣+()﹣2+|3﹣π|=4×﹣2+4+π﹣3=2﹣2+4+π﹣3=π+1.19.先化简:,然后在﹣内找一个你喜欢的整数代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=(﹣)÷=•=x(x﹣2),∵x≠±2且x≠0,∴取x=1,则原式=1×(1﹣2)=1×(﹣1)=﹣1.20.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,F是BD中点.求证:EF平分∠BED.【分析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,证明EB=ED,根据等腰三角形的三线合一证明结论.【解答】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠BDE=∠CBD,∴EB=ED,∵EB=ED,F是BD中点,∴EF平分∠BED.21.2019年是新中国成立70周年,在“庆祝新中国成立70年华诞”主题教育活动月,深圳某学校组织开展了丰富多彩的活动,活动设置了“A:诗歌朗诵展演,B:歌舞表演,C:书画作品展览,D:手工作品展览”四个专项活动,每个学生限选一个专项活动参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图:(1)本次随机调查的学生人数是60人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角为108度.(4)小涛和小华各自随机参与其中的一个专项活动,请你用画树状图或列表的方式求他们恰好选中同一个专项活动的概率.【分析】(1)从两个统计图中可得“A组”的有15人,占调查人数的28%,可求出调查人数;(2)求出“C组”部分的人数,即可补全条形统计图;(3)样本中“B组”占调查人数的,因此圆心角占360°的,可求出圆心角的度数;(4)画出树状图,由概率公式即可得出结果.【解答】解:(1)15÷25%=60人,答:本次随机调查的学生人数是60人;故答案为:60;(2)C组:60﹣15﹣18﹣9=18人,补全条形统计图如图所示:(3)B”所在扇形的圆心角为:360°×=108°故答案为:108;(4)画树状图如图2所示:共有16个等可能的结果,小涛和小华恰好选中同一个主题活动的结果有4个,∴小涛和小华恰好选中同一个主题活动的概率==.22.某次台风来袭时,一棵笔直大树树干AB(树干AB垂直于水平地面)被刮倾斜后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA=37°,∠ACD=60°,AD=5米,求这棵大树AB的高度.(结果精确到0.1米)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)【分析】过点A作AE⊥CD于点E,解Rt△AED,求出DE及AE的长度,再解Rt△AEC,得出CE及AC的长,进而可得出结论.【解答】解:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.∵在Rt△AED中,∠ADC=37°,∴cos37°===0.8,∴DE=4,∵sin37°===0.6,∴AE=3.在Rt△AEC中,∵∠CAE=90°﹣∠ACE=90°﹣60°=30°,∴CE=AE=,∴AC=2CE=2,∴AB=AC+CE+ED=2++4=3+4(米).答:这棵大树AB原来的高度是(3+4)米.23.某酒店计划购买一批换气扇,已知购买2台A型换气扇和2台B型换气扇共需220元;购买3台A型换气扇和1台B型换气扇共需200元.(1)求A,B两种型号的换气扇的单价.(2)若该酒店准备同时购进这两种型号的换气扇共60台,并且A型换气扇的数量不多于B型换气扇数量的2倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)根据题意,可以得到相应的二元一次方程组,从而可以求得A,B两种型号的换气扇的单价;(2)根据题意,可以得到费用与购买A型换气扇数量的函数关系,然后根据一次函数的性质,即可得到最省钱的购买方案.【解答】解:(1)设A,B两种型号的换气扇的单价分别为a元、b元,,得,答:A,B两种型号的换气扇的单价分别为45元、65元;(2)最省钱的购买方案是购买A型换气扇40台,B型换气扇20台,理由:设购买A型换气扇x台,则购买B型换气扇(60﹣x)台,费用为w元,w=45x+65(60﹣x)=﹣20x+3900,∵x≤2(60﹣x),∴x≤40,∴当x=40时,w取得最小值,此时w=3100,60﹣x=20,即最省钱的购买方案是购买A型换气扇40台,B型换气扇20台.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=BE,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=DE.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.【分析】问题背景:利用平行四边形的性质以及等边三角形的性质即可解决问题.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.证明△FHE≌△MKN(AAS)可得结论.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.证明△MNG 是等腰直角三角形即可解决问题.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接P A交BD于O.证明AP=CD,求出P A的最小值即可解决问题.【解答】解:问题背景:根据平行四边形的性质可知AC=BE,根据等边三角形的性质可知CD=DE,故答案为BE,DE.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.∵四边形ABCD是正方形,∴∠A=∠B=∠C=90°,∵FH⊥BC,∴∠FHB=90°,∴四边形AFHB是矩形,∴FH=AB,同理可证:MK=BC,∵AB=BC,∴FH=MK,∵MN⊥EF,∴∠EON=∠ECN=90°,∴∠MNK+∠CEO=180°,∵∠FEH+∠CEO=180°,∴∠MNK=∠FEH,∵∠FHE=∠MKN=90°,∴△FHE≌△MKN(AAS),∴EF=MN.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.∴FM=EG,FM∥EG,EF=MG,EF∥MG,∴∠NOE=∠NMG=90°,∵MN=EF,∴MN=MG,∴GN=MG=EF,∵FM+EN=EG+EN≥NG,∵EF≥AB=4,∴FM+NE≥4.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接P A交BD于O.∴DP=AB=BC,∴∠DPB=∠ABC=∠ACB,∵DP=AC,∠DPB=∠ACB,PC=OC,∴△DPC≌△ACP(SAS),∴DC=AP,∵A到DB的距离为2,∴AO≥2,∴DC=AP=2AO≥4,∴CD的最小值为4.25.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=,试求的值.【分析】(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;(3)可得出tan∠P=tan∠ODF=,设OF=5x,则DF=12x,求出AE,BE,得出,证明△PEA∽△PBE,得出,过点H作HK⊥P A于点K,证明∠P=∠P AH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.【解答】解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴=,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=,设OF=5x,则DF=12x,∴OD==13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE==4x,BE==6x,∵∠PEA=∠B,∠EP A=∠BPE,∴△PEA∽△PBE,∴,∵∠P+∠PEF=∠F AG+∠AGF=90°,∴∠HEG=∠HGE,∴∠P=∠F AG,又∵∠F AG=∠P AH,∴∠P=∠P AH,∴PH=AH,过点H作HK⊥P A于点K,∴PK=AK,∴,∵tan∠P=,设HK=5a,PK=12a,∴PH=13a,∴AH=13a,PE=36a,∴HE=HG=36a﹣13a=23a,∴AG=GH﹣AH=23a﹣13a=10a,∴.26.如图,抛物线y=x2﹣ax+a﹣1与x轴交于A,B两点(点B在正半轴上),与y轴交于点C,OA=3OB.点P在CA的延长线上,点Q在第二象限抛物线上,S△PBQ=S△ABQ.(1)求抛物线的解析式.(2)求直线BQ的解析式.(3)若∠P AQ=∠APB,求点P的坐标.【分析】(1)令y=x2﹣ax+a﹣1=0,解得:x=a﹣1或1,故点A、B的坐标分别为:(a ﹣1,0)、(1,0),即可求解;(2)S△PBQ=S△ABQ,则△PBQ和△ABQ底边BQ边上的高相等,故直线PC∥BQ,即可求解;(3)证明△PBQ≌△AQB(SAS),则∠PQB=∠ABQ=45°,则PQ∥y轴,即可求解.【解答】解:(1)令y=x2﹣ax+a﹣1=0,解得:x=a﹣1或1,故点A、B的坐标分别为:(a﹣1,0)、(1,0),∵OA=3OB,故1﹣a=3,解得:a=﹣2,故抛物线的表达式为:y=x2+2x﹣3;(2)对于y=x2+2x﹣3,令x=0,则y=﹣3,故点C(0,﹣3),∵S△PBQ=S△ABQ,∴△PBQ和△ABQ底边BQ边上的高相等,故直线PC∥BQ,设直线AC的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=﹣x﹣3,则设直线BQ的表达式为:y=﹣x+b,将点B的坐标代入上式并解得:b=1,故直线BQ的表达式为:y=﹣x+1;(3)设直线PB交AQ于点D,由直线BQ的表达式知∠ABQ=45°,由(2)知PC∥BQ,∴∠QAP=∠AQB,∠BP A=∠QBP,而∠P AQ=∠APB,∴∠AQB=∠PBQ,∴DB=DQ,∵∠P AQ=∠APB,∴DP=DA,∴P A=AQ,而BQ=BQ,∴△PBQ≌△AQB(SAS),∴∠PQB=∠ABQ=45°,∴PQ∥y轴,联立直线PQ和抛物线的表达式,得,解得或,即x=1或﹣4(舍去1),故点Q的横坐标为﹣4,即为点P的横坐标,而点P在直线AC:y=﹣x﹣3,故点P(﹣4,1).。
2023年安徽省中考数学模拟试卷(含答案)

2023年安徽省中考模拟试卷数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一项符合题目要求)1.(4分)在5、0、﹣3、﹣5四个数中最小的数是( ) A .5B .0C .﹣3D .﹣52.(4分)2022年1月4日上午备受瞩目的安徽G 3铜陵长江公铁大桥正式动工兴建,新的一年开建的这座大桥总投资87.8亿元,其中87.8亿用科学记数法表示为( ) A .87.8×108B .8.78×109C .87.8×109D .8.78×1083.(4分)如图是某一物体的三视图,则此三视图对应的物体是( )A .B .C .D .4.(4分)下列计算正确的是( ) A .2a +3a =6aB .(﹣2a )2=4a 2C .﹣2(3a +1)=﹣6a ﹣1D .(a +2)(a ﹣2)=a 2﹣25.(4分)已知x ﹣y =2xy (x ≠0),则5x−5y−4xyx−y的值为( )A .−13B .﹣3C .13D .36.(4分)刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y (米)与他行走的时间t (分)(t >15)之间的函数关系为( ) A .y =﹣50t +1350B .y =50t ﹣150C .y =﹣40t +1350D .y =﹣10t +13507.(4分)若a 、b 、c 、d 是正整数,且a +b =c ,b +c =d ,下列结论正确的是( ) A .b <c <aB .a <c <bC .a +d =2cD .a +d =2b8.(4分)如图,在矩形ABCD 中,AB =24,BC =25,以点B 为圆心,BC 长为半径画弧,交边AD 于点E ,则四边形ABCE 的周长为( )A .79B .86C .82D .929.(4分)如图是建平同学收集到的四张“新基建“图标卡片,这四张卡片除正面的图标内容外,其余完全相同,将卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,则抽到的两张卡片恰好是“5G 基站建设“和“大数据中心“的概率是( )A .13B .14C .16D .3810.(4分)正方形ABCD 的边长为8,点E 、F 分别在边AD 、BC 上,将正方形沿EF 折叠,使点A 落在A '处,点B 落在B '处,A 'B '交BC 于G .下列结论错误的是( )A .当A '为CD 中点时,则 tan ∠DA 'E =34 B .当A 'D :DE :A ′E =3:4:5时,则A ′C =163C .连接AA ',则AA '=EFD .当A '(点A '不与C 、D 重合)在CD 上移动时,△A 'CG 周长随着A '位置变化而变化 二、填空题(本大题共4个小题,每小题5分,共20分) 11.(5分)计算:√2×√8+(﹣tan30°)0= .12.(5分)大自然是美的设计师,即使是一片小小的树叶,也蕴含着“美学”,如图.BP AP=√5−12,这个比值介于整数n 和n +1之间,则n 的值是 .13.(5分)如图,△ABC 内接于⊙O .若∠ABC =38°,AC ̂=2AB ̂,OC =12,则BC ̂的长是 .14.(5分)如图,△ABC 是等腰直角三角形,∠ACB =90°,AB 边上高为3.动点P 从点A 开始出发,以每秒3个单位长度的速度在射线AB 上运动.连接CP ,以CP 为直角边向右作等腰Rt △CDP ,使∠DCP =90°,连接BD ,设点P 的运动时间为t 秒. (1)AB 长度为 .(2)当BP :BD =1:2,且t >2时,则t 的值为 .三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解不等式:2−5x+13≤0. 16.(8分)如图,△ABC 在平面坐标内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)先将△ABC 向下平移5个单位长度,再向左平移3个单位长度得到△A 1B 1C 1,请画出△A1B1C1.(2)把△A1B1C1绕点B1顺时针方向旋转90°后得到△A2B1C2,请画出△A2B1C2并直接写出点C2的坐标.四、(本大题共2小题,每小题8分,,满分16分)17.(8分)为了丰富学生社会实践活动,学校组织学生到红色文化基地A和人工智能科技馆C参观学习.如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向的(2+2√3)km处.求学校B和红色文化基地A之间的距离.18.(8分)观察下列等式:第1个等式:a1=22×4=12−14;第2个等式:a2=24×6=14−16;第3个等式:a3=26×8=16−18;第4个等式:a4=28×10=18−110......请解答下列问题:(1)按以上规律列出第5个等式: .(2)用含有n 的代数式表示第n 个等式: (n 为正整数). (3)试比较代数式a 1+a 2+a 3+a 4+…+a 2022的值与12的大小关系.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,一次函数y =x +b 的图象交反比例函数y =mx (x >0)的图象于点A (2,﹣4)和点B . (1)求m ,b 的值.(2)根据图象,写出一次函数y =x +b 的值不小于反比例函数y =mx(x >0)的值时x 取值范围.20.(10分)如图,⊙O 中两条互相垂直的弦AB ,CD 交于点E .(1)OM ⊥CD 于点M ,CD =24,⊙O 的半径长为4√10,求OM 的长. (2)点G 在BD 上,且AG ⊥BD 交CD 于点F ,求证:CE =EF .六、(本题满分12分)21.(12分)2021年12月4日是第八个国家宪法日,11月29日至12月5日是第四个“宪法宣传周“,合肥某校主办了以“学习法理,弘扬法治“为主题的大赛,全校10000名学生都参加了此次大赛,赛后发现所有参赛学生的成绩均不低于50分且没有满分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩进行分组,分别为A 组:50≤x <60;B 组:60≤x <70;C 组:70≤x <80;D 组:80≤x <90;E 组:90≤x <100,并绘制了频数分布直方图. (1)求出频数分布直方图中m 的值.(2)判断这200名学生的成绩的中位数落在哪一组(直接写出结果).(3)根据上述信息,估计全校10000名学生中成绩不低于70分的约有多少人.七、(本题满分12分)22.(12分)已知二次函数y=x2+bx﹣c的图象经过点(3,0),且对称轴为直线x=1.(1)求b+c的值.(2)当﹣4≤x≤3时,求y的最大值.(3)平移抛物线y=x2+bx﹣c,使其顶点始终在二次函数y=2x2﹣x﹣1上,求平移后所得抛物线与y轴交点纵坐标的最小值.八、(本题满分14分)23.(14分)感知:数学课上,老师给出了一个模型:如图1,点A在直线DE上,且∠BDA =∠BAC=∠AEC=90°,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角“模型.应用:(1)如图2,Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证;△BEC≌△CDA.(2)如图3,在△ABC中,D是BC上一点,∠CAD=90°,AC=AD,∠DBA=∠DAB,AB=2√3,求点C到AB边的距离.(3)如图4,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若∠DEF=∠B,AB=10,BE=6,求EFDE的值.2022年安徽省滁州市全椒县中考数学一模试卷参考答案与详解一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一项符合题目要求)1.(4分)在5、0、﹣3、﹣5四个数中最小的数是()A.5B.0C.﹣3D.﹣5【分析】根据有理数的大小比较法则:正数>0>负数;两个负数,绝对值大的其值反而小,即可得出答案.【解答】解:∵|﹣3|=3,|﹣5|=5,而3<5,∴﹣5<﹣3<0<5,∴在5、0、﹣3、﹣5四个数中最小的数是﹣5.故选:D.2.(4分)2022年1月4日上午备受瞩目的安徽G3铜陵长江公铁大桥正式动工兴建,新的一年开建的这座大桥总投资87.8亿元,其中87.8亿用科学记数法表示为()A.87.8×108B.8.78×109C.87.8×109D.8.78×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:87.8亿=878000000=8.78×109,故选:B.3.(4分)如图是某一物体的三视图,则此三视图对应的物体是()A.B.C .D .【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B ,C ,D .【解答】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,从上面物体的三视图看出这是一个圆柱体,故排除B ,C ,D 选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体. 故选:A .4.(4分)下列计算正确的是( ) A .2a +3a =6aB .(﹣2a )2=4a 2C .﹣2(3a +1)=﹣6a ﹣1D .(a +2)(a ﹣2)=a 2﹣2【分析】直接利用合并同类项、积的乘方运算法则、乘法公式分别化简得出答案. 【解答】解:A 、2a +3a =5a ,故此选项不符合题意; B 、(﹣2a )2=4a 2,故此选项符合题意;C 、﹣2( 3a +1)=﹣6a ﹣2,故此选项不符合题意;D 、(a +2)(a ﹣2)=a 2﹣4,故此选项不符合题意. 故选:B .5.(4分)已知x ﹣y =2xy (x ≠0),则5x−5y−4xyx−y的值为( )A .−13B .﹣3C .13D .3【分析】将分式变形后整体代换. 【解答】解:∵x ﹣2y =2xy , ∴原式=5(x−y)−4xyx−y=10xy−4xy2xy =6xy2xy =3. 故选:D .6.(4分)刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y (米)与他行走的时间t (分)(t >15)之间的函数关系为( ) A .y =﹣50t +1350 B .y =50t ﹣150 C .y =﹣40t +1350D .y =﹣10t +1350【分析】由题意可得前半程所需时间为15分钟,则剩下路程所需时间为(t ﹣15)分,再由1200﹣y =600+50(t ﹣15),可求函数关系式. 【解答】解:∵以每分钟40米的速度行走了前半程, ∴以每分钟40米的速度行走了600米, ∴600÷40=15(分),∴剩下路程所需时间为(t ﹣15)分, ∴1200﹣y =600+50(t ﹣15), 整理得y =﹣50t +1350, 故选:A .7.(4分)若a 、b 、c 、d 是正整数,且a +b =c ,b +c =d ,下列结论正确的是( ) A .b <c <aB .a <c <bC .a +d =2cD .a +d =2b【分析】将已知的两条式子联立方程便可得出等量关系式. 【解答】解:由题意可知:{a +b =c ①b +c =d②,由①﹣②,得a ﹣c =c ﹣d ,得a +d =2c . 故选:C .8.(4分)如图,在矩形ABCD 中,AB =24,BC =25,以点B 为圆心,BC 长为半径画弧,交边AD 于点E ,则四边形ABCE 的周长为( )A .79B .86C .82D .92【分析】根据勾股定理得出AE ,进而利用矩形的性质和勾股定理得出EC 即可. 【解答】解:连接BE ,由题意知,BE =BC =25, ∵四边形ABCD 是矩形,∴∠A =∠D =90°,AB =DC =24,AD =BC =25, 在Rt △ABE 中,AE =√BE 2−AB 2=√252−242=7, ∴DE =AD ﹣AE =25﹣7=18,在Rt △EDC 中,EC =√DE 2+CD 2=√182+242=30, ∴四边形ABCE 的周长=AB +BC +AE +CE =24+25+7+30=86, 故选:B .9.(4分)如图是建平同学收集到的四张“新基建“图标卡片,这四张卡片除正面的图标内容外,其余完全相同,将卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,则抽到的两张卡片恰好是“5G 基站建设“和“大数据中心“的概率是( )A .13B .14C .16D .38【分析】根据题意画出树状图得出所有等可能结果,从中找到符合条件的结果数,根据概率公式求解可得.【解答】解:5G 基站建设、工业互联网、大数据中心、人工智能分别用A 、B 、C 、D 表示,根据题意画图如下:由图可知,共有12种等可能结果,其中恰好是“5G基站建设“和“大数据中心“的有2种,则抽到的两张卡片恰好是“5G基站建设“和“大数据中心“的概率是212=16.故选:C.10.(4分)正方形ABCD的边长为8,点E、F分别在边AD、BC上,将正方形沿EF折叠,使点A落在A'处,点B落在B'处,A'B'交BC于G.下列结论错误的是()A.当A'为CD中点时,则tan∠DA'E=3 4B.当A'D:DE:A′E=3:4:5时,则A′C=16 3C.连接AA',则AA'=EFD.当A'(点A'不与C、D重合)在CD上移动时,△A'CG周长随着A'位置变化而变化【分析】A.当A′为CD中点时,设A'E=AE=x,则DE=8﹣x,根据勾股定理列出方程求解,可推出A正确;B.当△A'DE三边之比为3:4:5时,假设A'D=3a,DE=4a,A'E=5a,根据AD=AE+DE=8,可求得a的值,进一步求得A'D=83,即可判断出B正确;C.过点E作EM⊥BC,垂足为M,连接A'A交EM,EF于点N,Q,证明△AA′D≌△EFM(ASA),即得C正确;D.过点A作AH⊥A'G,垂足为H,连接A'A,AG,先证△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再证Rt△ABG≌Rt△AHG,可得HG=BG,由此证得△A'CG周长=16,即可得出D错误.【解答】解:∵A′为CD中点,正方形ABCD的边长为8,∴AD=8,A'D=12CD=4,∠D=90o,∵折叠,∴设A'E=AE=x,则DE=8﹣x∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=DEDA′=34,故A正确;当△A'DE三边之比为3:4:5时,假设A'D=3a,DE=4a,A'E=5a,则AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=8 9,∴A'D=3a=83,A'C=CD﹣A'D=8−83=163,故B正确;如图,过点E作EM⊥BC,垂足为M,连接A'A交EM,EF于点N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,{∠DAA ′=∠FEMAD =EM ∠D =∠ENF =90°, ∴△AA ′D ≌△EFM (ASA ), ∴AA '=EF , 故C 正确;如图,过点A 作AH ⊥A 'G ,垂足为H ,连接A 'A ,AG ,则∠AHA '=∠AHG =90°,∵折叠,∴∠EA 'G =∠EAB =90°,A 'E =AE , ∵∠D =90o∴∠EAA '+∠DA 'A =90o , ∴∠AA 'G =∠DA 'A , ∴△AA 'D ≌△AA 'H (AAS ), ∴AD =AH ,A 'D =A 'H , ∵AD =AB , ∴AH =AB ,在Rt △ABG 与Rt △AHG 中, {AB =AH AG =AG, ∴Rt △ABG ≌Rt △AHG (HL ), ∴HG =BG ,∴△A 'CG 周长=A 'C +A 'G +CG =A 'C +A 'H +HG +CG =A 'C +A 'D +BG +CG =CD +BC =8+8 =16,∴当A '在CD 上移动时,△A 'CG 周长不变, 故D 错误. 故选:D .二、填空题(本大题共4个小题,每小题5分,共20分) 11.(5分)计算:√2×√8+(﹣tan30°)0= 5 .【分析】根据二次根式的乘法和零指数幂可以计算出所求式子的值. 【解答】解:√2×√8+(﹣tan30°)0 =√16+1 =4+1 =5, 故答案为:5.12.(5分)大自然是美的设计师,即使是一片小小的树叶,也蕴含着“美学”,如图.BP AP=√5−12,这个比值介于整数n 和n +1之间,则n 的值是 0 .【分析】先估计√5,再求n 值. 【解答】解:∵2<√5<3, ∴1<√5−1<2, ∴12<√5−12<1 ∵n <√5−12<n +1,n 为整数,∴n =0. 故答案为0.13.(5分)如图,△ABC 内接于⊙O .若∠ABC =38°,AĈ=2AB ̂,OC =12,则BC ̂的长是 38π5.【分析】连接OA ,OB ,由圆周角定理求得∠AOC =76°,从而求得AC ̂,再根据AC ̂=2AB ̂,BĈ=AC ̂+AB ̂即可求解. 【解答】解:如图,连接OA ,OB ,∵∠ABC =38°, ∴∠AOC =76°, ∴AĈ的长=nπr 180=76×π×12180=7615π, ∵AĈ=2AB ̂, ∴BĈ的长=32AC ̂=385π, 故答案为:385π.14.(5分)如图,△ABC 是等腰直角三角形,∠ACB =90°,AB 边上高为3.动点P 从点A 开始出发,以每秒3个单位长度的速度在射线AB 上运动.连接CP ,以CP 为直角边向右作等腰Rt △CDP ,使∠DCP =90°,连接BD ,设点P 的运动时间为t 秒. (1)AB 长度为 6 .(2)当BP :BD =1:2,且t >2时,则t 的值为 4 .【分析】(1)根据等腰直角三角形的性质解答即可;(2)根据SAS 证明△ACP 与△CBD 全等,利用全等三角形的性质解得即可. 【解答】解:(1)∵△ABC 是等腰直角三角形,∠ACB =90°,AB 边上高为3,∴AB =3×2=6, 故答案为:6;(2)∵△ABC 是等腰直角三角形,∠ACB =90°, ∴AC =BC ,∵∠PCD =90°,△DCP 为等腰直角三角形, ∴CP =CD ,∴∠ACP +∠PCB =90°,∠PCB +∠BCD =90°, ∴∠ACP =∠BCD , 在△ACP 与△CBD 中, {AC =BC∠ACP =∠BCD CP =CD,∴△ACP ≌△CBD (SAS ), ∴AP =BD ,当BP :BD =1:2时,当t >2时,3t−63t=12,解得:t =4, 故答案为:4.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解不等式:2−5x+13≤0. 【分析】根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集. 【解答】解:去分母,得6﹣(5x +1)≤0, 去括号,得6﹣5x ﹣1≤0, 移项,得﹣5x ≤1﹣6, 合并同类项,得﹣5x ≤﹣5, 系数化为1,得x ≥1.16.(8分)如图,△ABC 在平面坐标内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)先将△ABC 向下平移5个单位长度,再向左平移3个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1.(2)把△A 1B 1C 1绕点B 1顺时针方向旋转90°后得到△A 2B 1C 2,请画出△A 2B 1C 2并直接写出点C2的坐标.【分析】(1)根据平移的性质即可画出△A1B1C1;(2)根据旋转的性质即可画出△A2B1C2,进而可以写出点C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B1C2即为所求;点C2的坐标为(﹣2,0).四、(本大题共2小题,每小题8分,,满分16分)17.(8分)为了丰富学生社会实践活动,学校组织学生到红色文化基地A和人工智能科技馆C参观学习.如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向的(2+2√3)km处.求学校B和红色文化基地A之间的距离.【分析】过点B 作BD ⊥AC 于D ,在Rt △BCD 中证得BD =CD ,设BD =xkm ,则CD =xkm ,在Rt △ABD 中,∠BAC =30°,利用三角函数定义表示出AD 的长,在Rt △BDC 中,利用三角函数表示出CD 的长,由AD +CD =AC 列出方程问题得解. 【解答】解:作BD ⊥AC 于D . 依题意得,∠BAE =45°,∠ABC =105°,∠CAE =15°, ∴∠BAC =30°, ∴∠ACB =45°.在Rt △BCD 中,∠BDC =90°,∠ACB =45°, ∴∠CBD =45°, ∴∠CBD =∠DCB , ∴BD =CD ,设BD =xkm ,则CD =xkm , 在Rt △ABD 中,∠BAC =30°, ∴AB =2BD =2xkm ,tan30°=BDAD , ∴√33=x AD, ∴AD =√3x ,在Rt △BDC 中,∠BDC =90°,∠DCB =45°, ∴sin ∠DCB =BDBC =√22, ∴BC =√2x , ∵CD +AD =2+2√3, ∴x +√3x =2+2√3,∴x =2,∴AB =2x =4(km ),答:学校B 和红色文化基地A 之间的距离为4km .18.(8分)观察下列等式: 第1个等式:a 1=22×4=12−14; 第2个等式:a 2=24×6=14−16; 第3个等式:a 3=26×8=16−18; 第4个等式:a 4=28×10=18−110. .....请解答下列问题:(1)按以上规律列出第5个等式: a 5=210×12=110−112; . (2)用含有n 的代数式表示第n 个等式: a n =22n×(2n+2)=12n −12n+2 (n 为正整数).(3)试比较代数式a 1+a 2+a 3+a 4+…+a 2022的值与12的大小关系.【分析】(1)(2)由题意可知:分子为2,分母从2开始,连续偶数的乘积,可以拆成,分子是1,分母是以这两个偶数为分母的差,由此可得出答案; (3)运用以上规律,采用拆项相消法即可解决问题. 【解答】解:(1)由题意可得:a 5=210×12=110−112; 故答案为:a 5=210×12=110−112;(2)a n =22n×(2n+2)=12n −12n+2(n 为正整数);故答案为:a n=22n×(2n+2)=12n−12n+2;(3)原式=12−14+14−16+16−18+⋯⋯+14044−14046=12−14046<1 2.∴a1+a2+a3+a4+…+a2022<1 2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,一次函数y=x+b的图象交反比例函数y=mx(x>0)的图象于点A(2,﹣4)和点B.(1)求m,b的值.(2)根据图象,写出一次函数y=x+b的值不小于反比例函数y=mx(x>0)的值时x取值范围.【分析】(1)利用待定系数法求得即可;(2)解析式联立成方程组,解方程组求得两函数图象的交点,根据图形可得出结论.【解答】解:(1)∵一次函数y=x+b的图象交反比例函数y=mx(x>0)的图象于点A(2,﹣4),∴﹣4=2+b,﹣4=m 2,∴m=﹣8,b=﹣6;(2)解{y=−8xy=x−6得{x=2y=−4或{x=4y=−2,∴B(4,﹣2),由图象知,一次函数y=x+b的值不小于反比例函数y=mx(x>0)的值时x取值范围是0<x≤2或x≥4.20.(10分)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD于点M,CD=24,⊙O的半径长为4√10,求OM的长.(2)点G在BD上,且AG⊥BD交CD于点F,求证:CE=EF.【分析】(1)连接OD,由垂径定理和勾股定理可得答案;(2)连接AC,由垂直的定义及等腰三角形的性质可得结论.【解答】(1)解:如图,连接OD,∵OM⊥CD,OM过圆心,CD=24,∴DM=CM=12CD=12,∠OMD=90°,由勾股定理得,OM=√OD2−DM2=√(4√10)2−122=4,即OM的长为4;(2)证明:如图,连接AC,∵AG⊥BD,∴∠DGF=90°,∴∠DFG+∠D=90°,∵AB⊥CD,∴∠CEA=90°,∴∠C+∠EAC=90°,∵∠EAC=∠D,∠DFG=∠AFC,∴∠C=∠AFC,∴AF=AC,∵AB⊥CD,∴CE=EF.六、(本题满分12分)21.(12分)2021年12月4日是第八个国家宪法日,11月29日至12月5日是第四个“宪法宣传周“,合肥某校主办了以“学习法理,弘扬法治“为主题的大赛,全校10000名学生都参加了此次大赛,赛后发现所有参赛学生的成绩均不低于50分且没有满分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩进行分组,分别为A组:50≤x<60;B组:60≤x<70;C组:70≤x<80;D组:80≤x<90;E组:90≤x<100,并绘制了频数分布直方图.(1)求出频数分布直方图中m的值.(2)判断这200名学生的成绩的中位数落在哪一组(直接写出结果).(3)根据上述信息,估计全校10000名学生中成绩不低于70分的约有多少人.【分析】(1)根据各组的频数之和等于总人数即可求出m的值;(2)根据中位数的定义求解即可;(3)用总人数乘以样本中成绩不低于70分的人数所占比例即可.【解答】解:(1)m=200﹣(15+25+80+32)=48;(2)∵这200名学生的成绩的中位数是第100、101个数的平均数,而这两个数据均落在D组,∴这200名学生的成绩的中位数落在D组;(3)48+80+32200×10000=8000(人),答:估计全校10000名学生中成绩不低于70分的约有8000人.七、(本题满分12分)22.(12分)已知二次函数y =x 2+bx ﹣c 的图象经过点(3,0),且对称轴为直线x =1.(1)求b +c 的值.(2)当﹣4≤x ≤3时,求y 的最大值.(3)平移抛物线y =x 2+bx ﹣c ,使其顶点始终在二次函数y =2x 2﹣x ﹣1上,求平移后所得抛物线与y 轴交点纵坐标的最小值.【分析】(1)由对称轴−b 2=1,求出b 的值,再将点(3,0)代入y =x ²+bx ﹣c ,即可求解析式;(2)由题意可得抛物线的对称轴为直线x =1,结合函数图像可知当x =﹣4时,y 有最大值21;(3)设顶点坐标为(h ,2h 2﹣h ﹣1),可求平移后的解析式为y =(x ﹣h )2+2h 2﹣h ﹣1,设平移后所得抛物线与y 轴交点的纵坐标为w ,则w =3h 2﹣h ﹣1=3(h −16)2−1312,即可求解.【解答】解:(1)∵二次函数y =x ²+bx ﹣c 的对称轴为直线x =1,∴−b 2=1,∴b =﹣2,∵二次函数y =x ²+bx ﹣c 的图象经过点(3,0),∴9﹣6﹣c =0,∴c =3,∴b +c =1;(2)由(1)可得y =x ²﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,∵﹣4≤x ≤3,∴当x =﹣4时,y 有最大值21;(3)平移抛物线y =x 2﹣2x ﹣3,其顶点始终在二次函数y =2x 2﹣x ﹣1上,∴.设顶点坐标为(h ,2h 2﹣h ﹣1),故平移后的解析式为y =(x ﹣h )2+2h 2﹣h ﹣1,∴y=x2﹣2hx+h2+2h2﹣h﹣1=x2﹣2hx+3h2﹣h﹣1,设平移后所得抛物线与y轴交点的纵坐标为w,则w=3h2﹣h﹣1=3(h−16)2−1312,∴当h=16时,平移后所得抛物线与y轴交点纵坐标的最小值为−1312.八、(本题满分14分)23.(14分)感知:数学课上,老师给出了一个模型:如图1,点A在直线DE上,且∠BDA =∠BAC=∠AEC=90°,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角“模型.应用:(1)如图2,Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证;△BEC≌△CDA.(2)如图3,在△ABC中,D是BC上一点,∠CAD=90°,AC=AD,∠DBA=∠DAB,AB=2√3,求点C到AB边的距离.(3)如图4,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若∠DEF=∠B,AB=10,BE=6,求EFDE的值.【分析】(1)由直角三角形的性质得出∠ACD=∠EBC,可证明△BEC≌△CDA(AAS);(2)过点D作DF⊥AB于点F,过点C作CE⊥AB于,交BA的延长线于点E,证明△CAE≌△ADF(AAS),由全等三角形的性质可得出CE=AF=√3,则可得出答案;(3)过点D作DM=DC交BC的延长线于点M,证明△BFE∽△MED,由相似三角形的性质可得出答案.【解答】(1)证明:∵∠ACB=90°,∠BCE+∠ACB+∠ACD=180°,∴∠BCE+∠ACD=180°,∵AD⊥ED,BE⊥ED,∴∠BEC=∠CDA=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△BEC 和△CDA 中,{∠CDA =∠BEC =90°∠ACD =∠EBC CB =CA ,∴△BEC ≌△CDA (AAS );(2)解:过点D 作DF ⊥AB 于点F ,过点C 作CE ⊥AB 于,交BA 的延长线于点E ,∵∠DBA =∠DAB ,∴AD =BD ,∴AF =BF =12AB =√3,∵∠CAD =90°,∴∠DAF +∠CAE =90°,∵∠DAF +∠ADF =90°,∴∠CAE =∠ADF ,在△CAE 和△ADF 中,{∠CEA =∠AFD =90°∠CAE =∠ADF AC =AD ,∴△CAE ≌△ADF (AAS ),∴CE =AF =√3,即点C 到AB 的距离为√3;(3)解:过点D 作DM =DC 交BC 的延长线于点M ,∴∠DCM =∠M ,∵四边形ABCD 是平行四边形,∴DM =CD =AB =10,AB ∥CD ,∴∠B=∠DCM=∠M,∵∠FEC=∠DEF+∠DEC=∠B+∠BFE,∠B=∠DEF,∴∠DEC=∠BFE,∴△BFE∽△MED,∴EFDE =BEDM=610=35.。
2019届新人教版九年级数学下册安徽中考模拟试卷及参考答案解析

2019届新人教版九年级数学下册安徽中考模拟试卷及答案一、选择题1、-5的绝对值是( )A .-5B .5C .±5D .-2、计算2a 2+a 2,结果正确的是( )A .2a 4B .2a 2C .3a 4D .3a 23、如图所示的工件,其俯视图是( )A .B .C .D .4、C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .0.1×1085、不等式组的解集在数轴上表示为( )A .B .C .D .6、将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°7、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )………订……※线※※内※※答※………订……A.样本中位数是200元 B.样本容量是20C.该企业员工捐款金额的平均数是180元 D.该企业员工最大捐款金额是500元8、中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2015年年收入为200美元,预计2017年年收入将达到1000美元,设2015年到2017年该地区居民年人均收入平均增长率为x,可列方程为( )A.200(1+2x)=1000 B.200(1+x)2=1000C.200(1+x2)=1000 D.200+2x=10009、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一坐标系内的图象大致为( )A.B.C.D.10、如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,DE=3BE,点P,Q分别在BD,AD上,则AP+PQ的最小值为( )A.B.C.D.二、填空题11、16的算术平方根是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省中考数学模拟试卷9一、精心地选一选:1.在Rt △ABC 中,∠C =90O,BC =5,AC =12,则sinA 的值是( ) A.125 B. 1312 C. 135 D. 513 2.一个斜坡的坡角为45O,则这个斜坡的坡度为( )A. 1:2B. 2:1C. 1:1D. 2:2 3.tan α=3,且α为锐角,则cos α等于( )A.21 B. 22 C. 33 D 23 4.下列四个式子错误的是( )A. tan20O∙cos20O=sin20OB. sin 240O+sin 250O=1 C. sin40O+cos40O>tan40OD. sin40O=2sin20O5.已知cos α=32,则锐角α的取值范围是( ) A. 0O<α<30OB. 45O<α<60OC. 30O<α<45OD. 60O<α<90O6.甲、乙、丙三人放风筝,各人放出的风筝线长分别为60m 、50m 、40m ,线与地平面所成的角分别为30O、45O、60O,假设风筝线近似看作是拉直的,则所放风筝最高的是( ) A. 甲 B. 乙 C. 丙 D. 不能确定7.如图,△ABC 与△ADE 都是直角三角形,∠C 与∠AED 都是直角,且∠B =30O,且E 在AB 上,如果△ABC 经过旋转后与△ADE 重合,那么旋转中心和旋转角分别为( ) A.点A 、60OB. 点E 、60OC. 点A 、120OD. 点E 、90O8.在矩形ABCD 中,AB =8,BC =35,,点P 在边AB 上,且BP =3AP ,如果⊙P 是以点A 为圆心,PD 为半径的圆,那么判断正确的是( )A. 点B 、C 均在⊙P 外B. 点B 在⊙P 外,点C 在⊙P 内C. 点B 在⊙P 内,点C 在⊙P 外D. 点B 、C 均在⊙P 内9.如图,已知⊙O 的直径为10,P 是⊙O 内一点,且OP =3,则过点P 且长度小于8的弦有( )A. 无数条B. 2条C. 1条D. 0条10.已知锐角A 满足关系式4sin 2A -5sinA +2cos 2A =0,则sinA 的值为( ) A. 2 B.21 C. 21或2 D. 以上都不对 二、耐心地填一填:(本题共4小题,每小题5分,满分20分)11.亲爱的同学们,我们已经学习了①等边三角形;②平行四边形;③正方形;④菱形;⑤等腰梯形;⑥矩形;⑦圆。
在以上七种几何图形中,既是轴对称图形,又是旋转对称图形的是__________(填序号) 12. 如图,在第一象限内,点P (2,3)、M (a ,2)是双曲线y =xk(k ≠0)上的两点,PA ⊥x 轴于点A ,MB ⊥x 轴于点B ,PA 与OM 交于点C ,则△OAC 的面积为__________.13.点P 到⊙O 上点的最近距离是2cm ,最远距离是10cm ,则这个圆的半径是_______cm.14.已知sin α和cos α(α为锐角)是一元二次方程x 2-kx +k -1=0的两实数根,则k 的值=______________.三、细心地算一算:(本题共2小题,每小题8分,满分16分) 15.已知α为锐角,且sin(α-15O)=22,计算:Cos α+tan(α-15O ) +(π-1)O-(21)-1的值.16.已知Rt △ABC 中,∠C =90O,用下列条件解直角三角形:(1) 已知∠A =60O,c =4,求b.(2) 已知a =10,c =102,求∠B四、用所学知识解决实际问题(本大题共2小题,每小题8分,满分16分)17.为创建文明城市,美化烈山工人村环境,烈山区政府决定今年将3000m 长的龙岱河大堤迎水坡面铺石加固,如图所示,堤高DF =4m ,堤面加宽2m ,坡度由原来的1:1改成1:2,求完成这一工程需要的石方数.18. 为维护国家南海权益,保护我国渔民在南海正常捕鱼,我海军南海舰队奉命前往该海域执行定期巡航任务,某天我巡航舰正在某小岛A 北偏西45O并距该岛20海里的B 处待命,位于该岛正西方C 处的我国一捕鱼船遭到了不明国籍人员的袭击,船长发现在其北偏东60O的方向有我军巡航舰,(如图所示)便发出紧急求救信号,我巡航舰接警后立即沿BC 航线以每小时60海里的速度前去救援,问我巡航舰需要多少分钟到达该渔船所在位置C 处?(结果精确到个位,参考数据2≈1.4,3≈1.7)五、证明:(本题共2小题,每小题10分,满分20分)19.善于动脑的小聪发现直线y =kx +b(k >0),k 越大,这条直线与x 轴正方向所夹的锐角α越大,学了锐角三角函数后,小聪发现了k 与α之间的关系. (1)写出k 与α之间的等量关系; (2)证明这个关系.20.如图,AB 是⊙O 的直径,(1)若OD ∥AC ,则︵CD 与︵BD 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,命题还成立吗?请说明成立或不成立的理由.600450六、操作探究:(本题满分12分)21.△ABC 是一块等边三角形的废铁片,善于动脑的小智和小慧同学,想利用其剪裁一个正方形DEFG ,使正方形的一条边DE 落在BC 上,顶点F 、G 分别落在AC 、AB 上. (1)求证:BD =CE ;(2)探究:怎样在铁片上准确地画出正方形.小智和小慧各自给出一种想法,请你根据小智和小慧的对话,完成问题解答:a:小智说:要画出正方形DEFG ,只要能计算出正方形的边长,就能求出BD 和CE 的长,从而确定D 点和E 点,再画出正方形DEFG 就容易了,小慧说:你的办法可行,只是计算麻烦.设△ABC 的边长为2,请你帮小智求出正方形的边长.(保留根号,不要求分母有理化) b :小慧说:我有更好的办法,不求正方形的边长也能画出正方形,方法是: ① 在AB 边上任取一点G /,如图,作正方形G /D /E /F /;连接BF /,并延长交AC 于F ,这时聪明的小智说:你的方法太棒了!请你根据小慧的想法,帮她作出正方形DEFG ,并证明DEFG 是正方形.七、阅读材料,并解决后面的问题:(本题满分12分)22.在△ABC 中,若∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则有结论:a 2=b 2+c 2-2bccosA b 2=a 2+c 2-2accosB c 2=a 2+b 2-2abcosC(1)上面的结论即为著名的余弦定理,试用文字语言表述余弦定理:______________________________________________________________________(2)如图,过边长为1的正三角形的中心O (O 为三边垂直平分线的交点)引两条夹角为120O的射线,分别与正三角形的边交于M 、N 两点,设AM 为x ,MN 2为y ,试求y 与x 的函数关系式,并写出自变量的取值范围;(3)求线段MN 长的取值范围.G / D /E /F / 1200八、数学活动:(本题满分14分)23.学习了相似形和解直角三角形两章内容后,青山中小学的王老师在一个阳光灿烂的上午,组织同学们开展一次数学实践活动:测量位于学校操场中间的旗杆高度。
第一组的同学设计了一种测量方案,并根据测量结果填写如下的《数学活动报告》中的一部分。
活动小组:第一组活动地点:学校操场活动时间:×××年×××月×××日活动小组组长:×××(1)请你根据方案一提供的示意图及相关数据,填写表中的计算过程、测量结果;(2)请你分别运用相似形和解直角三角形的知识设计不同于方案一的方案二和方案三,并完成表格中方案二、方案三的所有栏目的填写。
(要求:在示意图中所需的测量数据,长度用字母a、b、c……表示,角度用字母α、β、γ……表示)参考答案及评分标准一、C C D D B B A C D B 二、11. ①③④⑥⑦ 12. 3413. 4或6 14. 1 三、15.∵α为锐角,sin(α-15O)=22 ∴α=60O………2分 ∴cos α+tan(α-15O) +(π-1)O-(21)-1=21+1+1-2 ………6分 =21………8分 16. ①∵cosA =cb∴b =ccosA =4×cos60O=4×21=2 ………4分②∵cosB =c a =21010=22 ∴∠B =45O………8分四、17.解:在Rt △BDF 中,BF DF =11, DF =4, ∴BF =DF =4 ∴BE =BF -EF =BF -DN=4-2=2 ………2分 在Rt △AEN 中,AE NE =21∴AE =2NE =8∴AB =AE -BE =8-2=6 ………4分 ∴S 梯形ABDN =21(DN +AB)∙DF =21(2+6)∙4=16 ………6分 ∴完成这一工程需要土方数=3000×16=48000(m 3) ………7分 答:完成这一工程需要土方48000m 3. ………8分18、解:由题意可知:∠ACB =30O,∠BAC =45O过点B 作BD ⊥AC 于点D , 在Rt △ADB 中,AB =20, ∴BD =ABsin45O=102……3分在Rt △BDC 中, ∠ACB =30O∴BC =2×102=202≈28……6分 ∴6028×60=28(分钟) ……7分 答:我巡航舰约需28分钟到达该渔船所在位置C 处. ……8分 五、19、(1)k =tan ………4分 (2)证明略 ………10分 20、(1)︵CD = ︵BD ………1分 证明:连接OC ,∵OA =OC, ∴∠A =∠C ………2分 ∵OD ∥AC, ∴∠BOD =∠A, ∠COD =∠C ………3分 ∴∠BOD =∠COD ………4分∴︵CD=︵BD ………5分(2)命题成立。
………6分 ∵︵CD = ︵BD ∴∠BOD =∠COD ………7分 ∵OA =OC, ∴∠A =∠C ………8分∵∠COD +∠BOD =∠BOC =∠A +∠C, ∴∠A =∠BOD ………9分 ∴OD ∥AC ………10分六、21、(1)证明:∵DEFG 为正方形,∴GD =FE, ∠GDB =∠FEC =90O, ………1分 ∵△ABC 是等边三角形,∴∠B =∠C =60O, ∴△BDG ≌△CEF(AAS) ∴BD =CE ………3分 (2)探究:a :设正方形边长为x ,作△ABC 的高AH ,则AH =ABsinB =2×sin60O=3 ………4分∵△AGF ~△ABC, ∴BC GF =AHAM, 即2x =33x - ………6分 解得x =3232+ ………7分b :③过点F 作FE ∥F /E /交BC 于点E ,FG ∥F /G /交AB 于点G, 过点G 作GD ∥G /D /交BC 于点D,则四边形DEFG 即为所求. ………9分 证明略 ………12分 七、22、(1)三角形任何一边的平方等于其它两边的平方和减去这两边与它们夹角余弦的积的2倍。