最新离散数学期末考试题(附答案和含解析3)

合集下载

离散数学期末考试试题配答案

离散数学期末考试试题配答案

一.填空题(每小题2分,共10分)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____,=A _____,=B A __ _____3. 设{}{}b a B c b a A ,,,,==,则=-)()(B A ρρ__ __________,=-)()(A B ρρ_____ ______。

二.选择题(每小题2分,共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。

(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ,求)(),(),(R t R s R r 的关系矩阵,并画出R ,)(),(),(R t R s R r 的关系图。

(10分)5. 试判断),(≤z 是否为格?说明理由。

(5分)(注:什么是格?Z 是整数,格:任两个元素,有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。

(10分)2. 设R 是实数集,b a b a f R R R f +=→⨯),(,:,ab b a g R R R g =→⨯),(,:。

求证:gf 和都是满射,但不是单射。

(10分)一,1, _∃x∃y¬P(x)∨Q(y)2, {2} {4,5} {1,3,4,5}3, {{c},{a,c},{b,c},{a,b,c}} Φ_二,B D三,解:主合取方式:p∧q∨r⇔(p∨q∨r)∧(p∨¬q∨r)∧(¬p∨q∨r)= ∏0.2.4 主析取范式:p∧q∨r⇔(p∧q∧r) ∨(p∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r) ∨(p∧¬q ∧r)=∑1.3.5.6.7四,1,证明:编号公式依据(1)(¬B∨C)∧¬C前提(2)¬B∨C,¬C(1)(3)¬B(2)(4)A→B (3)(5)¬A(3)(4)(6)¬(¬A∧D)前提(7)A∨¬D(6)(8)¬D(5)(6)2,证明:要证f是满射,即∀y∈R,都存在(x1,x2)∈R×R,使f(x1,x2)=y,而f(x1,x2)=x1+x2,可取x1=0,x2=y,即证得;再证g是满射,即∀y∈R,,都存在(x1,x2)∈R×R,使g(x1,x2)=y,而g(x1,x2)=x1x2,可取x1=1,x2=y,即证得;最后证f不是单射,f(x1,x2)=f(x2,x1)取x1≠x2,即证得,同理:g(x1,x2)=g(x2,x1),取x1≠x2,即证得。

离散数学期末试卷(4套附答案)

离散数学期末试卷(4套附答案)

一、单项选择题(每小题3分,共30分)1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ pB .⎤ p∨qC .⎤ p∧qD .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的D .太好了!3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )A .自反的B .对称的C .传递的、对称的D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)B. A (1)→A (2)C.A (1)D. A (2)→A (1)6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0010101017. 下列运算不满足...交换律的是( ) A .a *b =a+2bB .a *b =min(a ,b )C .a *b =|a -b |D .a *b =2ab8..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷> 9. 右图的最大入度是( ) A .0 B .1 C .2D .3第9题图拟题学院(系): 高密校区 适用专业: 学年 2学期 离散数学 (B卷) 试题标准答案10. 设有向图D 的节点数大于1,D=(V ,E )是强连通图,当且仅当( ) A. D 中至少有一条通路 B. D 中至少有一条回路C. D 中有通过每个结点至少一次的通路D. D 中有通过每个结点至少一次的回路 二、填空题(每空3分,共30分)1.设A ={1,2,3,4},B ={2,4,6},则A -B =________,A ⊕B =________。

离散数学期末考试题(附答案和含解析3)

离散数学期末考试题(附答案和含解析3)

A一、单项选择题2.设集合A={1,2,3},下列关系R 中不是等价关系的是( D )A.R={<1,1>,<2,2>,<3,3>}; B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>};C. R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};D. R={<1,1>,<2,2>,<3,3>,<1,2 >}.3.在公式()F (x ,y )→( y )G (x ,y )中变元x 是( B )x ∀∃A .自由变元;(前面无∀或∃量词) B .既是自由变元,又是约束变元;C .约束变元;(前面有∀或∃量词) D .既不是自由变元,又不是约束变元.4.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是( C )A .1∈A ;B .{1,2,3}A ;C .{{4,5}}A ;D .∅∈A.⊆⊆5.设论域为{l ,2},与公式等价的是( A ))()(x A x ∃A.A (1)A (2); B. A (1)A (2); C.A (1)∧A (2);D. A (2)A (1).∨→→6.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是( B )A.13;B.14 ;C.16 ;D.17 .//设一度结点数为n,则有:5×3+2×2+n=2[(5+2+n)-1]解得:n=7, 所以这棵树的结点数为:m=5+2+7=14.7.设A 是偶数集合,下列说法正确的是( A )A .<A ,+>是群;B .<A ,×>是群;C .<A ,÷>是群;D .<A ,+>, <A ,×>,<A ,÷>都不是群。

离散数学试题带答案(三)

离散数学试题带答案(三)

离散数学试题带答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)} , R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

离散数学期末考试题(附答案和含解析)

离散数学期末考试题(附答案和含解析)

一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。

6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。

//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。

//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。

//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。

//备注:二元运算为x*y=max{x,y},x,y ∈A 。

10.下图所示的偏序集中,是格的为 c 。

//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。

2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学> 2022-2023期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本息共16分)1, 若集合A = <1,2,3},则下列表述正确的是〈 )•A. {1,2,3}€AB. AC(1,2}C. U,2,3}gAD. {1,2}£A2. 设 A = {1,2,3},B = (1,2,3,4},人到 B 的关系 R = {O ,>> |工 £ A ,了 £ B },则 R =().A. {<1,2>,V2,3>}B. {V1,1>,V1,2>,V1,3>,V1,4>,V1,5>}C. «1,1>,<2,1>)D. {<2,】>,V3,】>,V3,2>}3. 无向图G 的边数是10,则图G 的结点度数之和为(A. 10B. 20C. 30D. 54. 如图一所示,以下说法正确的是〈 )•A. e 是割点B. {a,e}是点割集C. (b.e}是点割集D. {d}是点割集5-设个体域为整数集,则公式Vx3y (x+y = 2)的解释可为().A. 任意整数工,对任意整数y 满足工+了 = 2B. 对任意整数工,存在整数y 满足工+了 = 2C. 存在一整数z,对任意整数y 满足工+了 = 2D. 存在一整数工,有整数了满足x+jr = 2则人 CHBUC )等于 _____ .7. 设 A = {1,2},B = <2,3},C=(3,4},从 A 到 B 的函数/= (VI,2>,V2,3>},从 B到 C 的函数 g = (V2,3>,V3,4>},则 Ran (g 0/)等于 ______ .8. 设G 是汉密尔顿图,S 是其结点集的一个子集,若S 的元素个数为6,则在G-S 中的连通分支数不超过 ________ .二、填空霆(每小题3分,本题共15分)9.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去 ________ 条边后使之变成树.10.设个体域D = {1,2, 3, 4},则谓词公式(VQ A S)消去量词后的等值式为H.将语句“昨夭下雨,今天仍然下雨.”翻译成命题公式.12. 将i 吾句“我们下午2点或者去礼堂看电彩或者去教室看书.”翻译成命飓公式. 得分评卷人13. 不存在集合A 与B,使得AEB 与AQB 同时成立.14. 如图二所示的图G 存在一条欧拉回路.15. 设 A = {l,2,3},R = (<x,y>l=£A<yCA 且 1+»=4}击={〈工,3>0£人,36人且 工=)},试求 R,S,R" ,r (S ).16. 设图 G = <VtE>»V=(v! 试(1) 画出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4)画出图G 的补图的图形•17. 求-I (PVQ )VR 的析取范式与主合取范式•18. 试证明门 PVQ»P -*(i (n PVn Q)〉.(仅 一、单项选择题(每小题3分,本题共15分)1.C2. D3. B二、填空题(每小题3分,本题共15分)6. {b t c)7. {3,4)(或 C ) 8.6 9.5评卷人三、逻辑公式翻译(每小题6分,本题共12分)四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14 分)评卷人五、计算题(每小题12分,本题共36分)评卷人六、证明题(本题共8分)10.A(1)AA(2) AA(3) AA(4)三、逻辑公式翻译(每小题6分,本题共12分)11.设P:昨天下雨,Q:今天下雨. (2分)则命题公式为:PAQ. (6分)12.设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书. (2分)则命题公式为门(P-Q). (6分)注:或者(1 PAQ)V(PAi Q)四、判断说明题(每小题7分,本题共14分)13.错误•(3分)例:设A = {a},B^{a,{a}}(5 分)则有AEB且AWB. (7分)说明:举出符合条件的反例均给分.14.正确. (3分)因为图G为连通的,且其中每个顶点的度数均为偶数. (7分)如果具体指出一条欧拉回路也同样给分.五、计算题(每小题12分,本题共36分)15.解:R = {V1,3>,V2,2>,V3,1>} (3分)S = {<1,1>,<2,2>,<3,3>} (6分)7?~* = (<3,1>,<2,2>,<1,3>} (9分)r(S) = (<l,l>,<2,2>,<3,3>} (12分)说明:对于每一个求解项,如果部分正确,可以给对应1分・16.解:(1)(2)邻接矩阵10 0.(3)deg(pi) = 2deg(v2)=2deg(v3)=Odcg(vj = 2 (9 分)(4)补图(12 分)17.解门(PVQ)VR«=>(-, PA-i Q)VR 析取范式(5分)PVR)A(n QVR) (7分)«((n PVK)V(QA-i Q))A(-| QVR) (9分) E((I P VK) V(QA-i Q))A((n QV^>V(P An P)) (10分)«(-i PVR VQ) A(" VR Vi Q) A(i QVk VP)A(i QVRV") ⑴分) «(PV-i QVR)A(i PVQVR)A(rPVi QVR) 主合取范式(12 分)六、证明题(本题共8分)18.证明:(Di PVQ P(1 分)<2)P P(附加前提) (3分)(3)Q T(l)(2)/ (5 分)(4)PAQ T(2)(3)/ (6 分)(5)n(i PV-i Q) T(4)E (7 分)(6)P^n (n PV-i Q) CP 规则(8 分)说明:(D因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得出有效结论得1或2分,最后得出结论得2或1分.(2)可以用真值表验证.采用反证法可参照给分.。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是图的边数与顶点数的关系?A. 边数小于顶点数B. 边数等于顶点数C. 边数大于顶点数D. 边数与顶点数无固定关系答案:D2. 有限自动机的英文缩写是什么?A. FAB. PDAC. TMAD. NFA答案:A3. 布尔代数中,德摩根定律是指什么?A. ¬(A ∧ B) 等于¬ A ∨ ¬ BB. ¬(A ∨ B) 等于¬ A ∧ ¬ BC. A ∧ B 等于¬(A ∨ B)D. A ∨ B 等于¬(¬ A ∧ ¬B)答案:B4. 在命题逻辑中,以下哪个符号表示蕴含?A. ∧B. ∨C. →D. ↔答案:C5. 集合A = {1, 2, 3},B = {2, 3, 4},则A ∪ B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}答案:A6. 以下哪个选项是正确的递归定义?A. 一个数是偶数当且仅当它是2的倍数B. 一个数是偶数当且仅当它不是2的倍数C. 一个数是偶数当且仅当它是另一个偶数加1D. 以上都是正确的递归定义答案:A7. 有向图和无向图的主要区别是什么?A. 有向图的边有方向,无向图的边没有方向B. 有向图的顶点有方向,无向图的顶点没有方向C. 有向图的边可以相交,无向图的边不可以相交D. 有向图可以有环,无向图不可以有环答案:A8. 在命题逻辑中,以下哪个公式是矛盾的?A. A ∧ ¬ AB. A ∨ ¬ AC. A → BD. A ∧ B ∧ ¬ A答案:A9. 以下哪个是图的同义术语?A. 网络B. 矩阵C. 树D. 以上全部答案:A10. 以下哪个命题逻辑公式是有效的?A. (A → B) ∧ (B → A)B. (A ∧ B) → AC. (A ∨ B) → AD. (A ∧ B) → B答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,_________ 表示一个命题是真的,而 _________ 表示一个命题是假的。

离散数学期末试卷(3套附答案)

离散数学期末试卷(3套附答案)

2 离散数学(A 卷) 王军东(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分)1.设A , B 是集合,若A B A =-,则(A) B = ∅ (B) A = ∅ (C) =⋂B A ∅ (D) A B A =⋂2.在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.3.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R4.设p :我们划船,q :我们跑步, 则有命题“我们不能既划船又跑步”符号化为( )(A) ⌝ p ∧⌝ q (B) ⌝ p ∨⌝ q (C) ⌝ (p ↔ q ) (D) ⌝ (⌝ p ∨⌝ q ).5.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是单射B .仅是满射C .是双射D .不是函数6. 设集合A = {1, 2, 3, 4, 5}上的关系R = {(x , y )|x , y ∈ A 且x + y = 6},则R 的性质是( ).(A) 自反的. (B) 对称的. (C) 对称的、传递的. (D) 反自反的、传递的.7. 下列联结词中,不满足交换律的是( ).(A)∧. (B)∨. (C)⊕. (D) →.8..设G 是n 阶简单无向图,则其最大度)(G ∆( ).(A) > n (B) ≤ n . (C) < n . (D) ≥ n .9. 下列所示的哈斯图所对应的偏序集中能构成格的是( )A .B .C .D .课程考试试题学期 学年 拟题人:校对人:拟题学院(系): 适 用 专 业:10. 设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 二、填空题(每空3分,共30分)1.设A={1,2},B={2,3},则A-B=_______, A ⊕B=________,2.设A={2,3 },R ⊆A ×A ,R={(2,3), (2,2)},则R 的自反闭包r(R)=__________,对称闭包s(R)=__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新离散数学期末考试题(附答案和含解析3)2.设集合A={1,2,3},下列关系R 中不.是等价关系的是( D ) A.R={<1,1>,<2,2>,<3,3>}; B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>};C. R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};D. R={<1,1>,<2,2>,<3,3>,<1,2 >}.3.在公式(x ∀)F (x ,y )→(∃ y )G (x ,y )中变元x 是( B )A .自由变元;(前面无∀或∃量词)B .既是自由变元,又是约束变元;C .约束变元;(前面有∀或∃量词)D .既不是自由变元,又不是约束变元.4.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是( C )A .1∈A ;B .{1,2,3}⊆A ;C .{{4,5}}⊆A ;D .∅∈A.5.设论域为{l ,2},与公式)()(x A x ∃等价的是( A )A.A (1)∨A (2);B. A (1)→A (2);C.A (1)∧A (2);D. A (2)→A (1).6.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是( B )A.13 ;B.14 ;C.16 ;D.17 .//设一度结点数为n ,则有:5×3+2×2+n=2[(5+2+n)-1]解得:n=7, 所以这棵树的结点数为:m=5+2+7=14.7.设A 是偶数集合,下列说法正确的是( A )A .<A ,+>是群;B .<A ,×>是群;C .<A ,÷>是群;D .<A ,+>, <A ,×>,<A ,÷>都不是群.8.下列图是欧拉图的是( D )10.下面不满足...结合律的运算是( C ) A.),min(b a b a = ; B.),max(b a b a = ; C.)(2b a b a +=;D.ab b a 2= 二、填空题12.设f ∶R →R ,f(x)=x+3,g ∶R →R ,g(x)=2x+1,则复合函数=))(g (f x 42+x , =)x )(f (g 72+x//=))(g (f x f(g(x))=f(2x+1)=(2x+1)+3=2x+4//=))(f (g x =g(f(x))=g(x+3)=2(x+3)+1=2x+7//备注:f g=f g(x)=g(f(x))13.设S 是非空有限集,代数系统<P (S ),∪>中,其中P (S )为集合S 的幂集,则P (S )对∪运算的单位元是 φ,零元是 S .14.设<A ,≤>是格,其中A={1,2,3,4,6,8,12,24},≤为整除关系,则3的补元是 8 . //(注:什么是格? 即任意两个元素有最小上界和最大下界的偏序)15.命题公式)(Q P P ∧→的成真指派为 00,01,11 ,成假指派为 10 .16.设A={<2,2>,<3,4>,<3,5>},B={<1,3>,<2,5>,<3,4>},那么dom (A ∩B)= {3} , ran (A ∪B)= {2,3,4,5}//关系R 的定义域:domR={∃x|y(<x ,y>∈R)},即R 中所有有序对的第一元素构成的集合. 关系R 的值域:ranR={∃y|x(<x ,y>∈R)},即R 中所有有序对的第二元素构成的集合. 关系R 的域:fldR=domR ∪ranR17. 在根树中,若每一个结点的出度 最多为(或≤)m ,则称这棵树为m 叉树.如果每一个结点的出度 都或0,则称这棵树为完全m 叉树.如果这棵树的叶 都在同一层 ,那么称为正则m 叉树.>是一个群,其中Zn={0,1,2,……,n-1},n y x y x mod )(+=⊕,则在 <Z6, ⊕>中,1的阶是 6 ,4的阶是 3 . //单位元是e =019. n 点完全图记为K n ,那么当 n ≤ 4 时,K n 是平面图,当 n ≥ 5 时,K n 是非平面图.20. 若图中存在 回路 ,它经过图中所有的结点恰好 一次 ,则称该图为汉密尔顿图(哈密顿图) . // 欧拉图三、计算题21. 求命题公式)()(P Q Q P ∨⌝→→⌝的主析取范式.解: )()(P Q Q P ∨⌝→→⌝⇔)()(P Q Q P ∨⌝→∨⇔)()(P Q Q P ∨⌝∨∨⌝⇔)()(P Q Q P ∨⌝∨⌝∧⌝⇔))(())(()(Q Q P Q P P Q P ⌝∨∧∨⌝∧⌝∨∨⌝∧⌝⇔))()()()()(Q P Q P Q P Q P Q P ⌝∧∨∧∨⌝∧⌝∨⌝∧∨⌝∧⌝⇔))()()(Q P Q P Q P ∧∨⌝∧∨⌝∧⌝=111000m m m ∨∨=∑)3,2,0(22. 设A ={1,2,3,4},给A 上的二元关系R ={<1,2>,<2,1>,<2,3>,<3,4>},求R的传递闭包.解:由R ={<1,2>,<2,1>,<2,3>,<3,4>},得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000100001010010R M , 从而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000101001012MR ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010110103MR , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000101001014MR ,于是 2R ={<1,1>,<1,3>,<2,2>,<2,4>},3R ={<1,2>,<1,4>,<2,1>,<2,3>},4R ={<1,1>,<1,3>,<2,2>,<2,4>}=2R ,故432)(R R R R R t =={<1,1>,<1,2>,<1,3>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<3,4>}23.设A={1,2,3,4,6,8,12,24},R 为A 上的整除关系,试画<A ,R>的哈斯图,并求A 中的最大元、最小元、极大元、极小元.解:<A ,R>的哈斯图如右图所示:A 中的最大元为24、最小元为1、极大元为24、极小元为1.24.求下图所示格的所有5元子格.解:所有5元子格如下:26.用矩阵的方法求右图中结点v 1,v 3之间长度为2的路径的数目.//教材P289、290所以,图中结点v 1,v 3之间长度为2的路径的数目有3条.//备注:邻接矩阵中所有元素之和等于边数.通路(v1->v1,v2,v3,v4…)与回路(v1->v1,v2->v2,v->v3…)四、证明题27. 在整数集Z 上定义:Z ,,1∈∀++=b a b a b a ,证明:<Z , >是一个群.证明:(1)对于Z b a ∈∀,,有Z 1∈++=b a ba ,所以运算 是封闭的.(2)对于Z c b a ∈∀,,,有 2c b a 1c 1b a c )1()(+++=++++=++= b a c b a ,2c b a 11c b a )1()(+++=+++++=++=c b a c b a ,即)()(c b a c b a =,故运算 是可结合的.(3)1-是单位元,因为Z a ∈∀,a a a=+-=-11)1( ,a a a =++-=-11)1( . (4)Z a ∈∀,由112)2(-=+--=--a a a a ,112)2(-=++--=--a a a a ,可知 a --2是a 的逆元.综上所述,<Z , >是一个群.28. 设R 为N ×N 上的二元关系,N N d c b a ⨯>∈<><∀,,,,d b d c R b a =>⇔<><,,,证明R 为等价关系.证明:因为N N b a ⨯>∈<∀,,b b =,所以><><b a R b a ,,,故R 具有自反性. N N d c b a ⨯>∈<><∀,,,,若><><d c R b a ,,,则d b =,即b d =,故><><b a R d c ,,,所以R 具有对称性.N N f e d c b a ⨯>∈<><><∀,,,,,,若><><d c R b a ,,,><><f e R d c ,,, 则d b =,f d =从而f b =,故><><f e R b a ,,,所以R 具有对称性.综上所述,R 为等价关系.五、综合应用题29.在谓词逻辑中构造下面推理的证明:每个在学校读书的人都获得知识.所以如果没有人获得知识就没有人在学校读书.(个体域:所有人的集合)证明:设S (x ):x 是 在学校读书的人, G (x ):x 是获得知识的人.前提:(x ∀)))()((x G x S →;结论:→∃⌝)()(x G x )()(x S x ∃⌝推理过程如下:(1)(x ∀)))()((x G x S → P(2))()(c G c S → US (1)(3))()(x G x ∃⌝ P (附加前提)(4))()(x G x ⌝∀ T(3)E(5))(c G ⌝ US(4) (6))(c S ⌝ T(2)(5)I (7) )()(x S x ⌝∀ UG(6)(8) )()(x S x ∃⌝ T(7)E。

相关文档
最新文档