8.4《气体热现象的微观意义》教案(新人教版选修3-3).pdf
(选修3-3)8.4《气体热现象的微观解释》导学案3

学案4
3.对一定质量的气体,若用 N 表示单位时间内与器壁单位 面积碰撞的分子数,则 A.当体积减小时,N 必定增加 B.当温度升高时,N 必定增加 C.当压强不变而体积和温度变化时,N 必定变化 D.当压强不变而体积和温度变化时,N 可能不变
解析 一定质量的气体,在单位时间内与器壁单位面积 的碰撞次数,取决于分子密度和分子运动的剧烈程度, 即与体积和温度有关,故 A、B 错;
本 课 栏 目 开 关
学习探究区
学案4
解析
气体分子在单位时间内对单位面积器壁的碰撞次
数,是由单位体积内的分子数和分子的平均速率共同决 定. 选项 A 和 D 都是单位体积内的分子数增大, 但分子的 平均速率如何变化不知道;
选项 C 由温度升高可知分子的平均速率增大,但单位体积 的分子数如何变化未知,所以选项 A、D、C 都不能选.
解析 气体的质量不变则分子总数不变,故 D 项错.
温度不变则分子的平均动能不变,平均速率不变,故 A、 C 均错. 等温变化中体积变化而分子总数不变, 故单位体积内的分 子数变化,B 项正确.
( B )
本 课 栏 目 开 关
本 课 栏 目 开 关
学习探究区
学案4
三、微观解释气体实验定律 [问题设计] 如何从微观角度来解释气体实验三定律呢?
答案 从决定气体压强的微观因素上来解释, 即气体分子 的密集程度和气体分子的平均动能.
本 课 栏 目 开 关
学习探究区
学案4
例3
对一定质量的理想气体,下列说法正确的是
(
)
A.体积不变,压强增大时,气体分子的平均动能一定增大 B.温度不变,压强减小时,气体的密度一定减小 C.压强不变,温度降低时,气体的密度一定减小 D.温度升高,压强和体积都可能不变
8.4气体热现象的微观意义 优秀教案优秀教学设计 高中物理选修3-3 (1)

4气体热现象的微观意义一、教学目标1、知识与技能:(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。
(2)能用气体分子动理论解释三个气体实验定律。
2、过程与方法通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。
3、情感态度价值观:通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。
二、重点、难点分析1.用气体分子动理论来解释气体实验定律是本节课的重点,它是本节课的核心内容。
2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想象力。
三、导学流程(一)体验统计规律1.阅读教材,知道个别事物的出现具有偶然的因素,但大量事物出现的机会,却遵从一定的统计规律。
(二)气体分子运动的特点1.阅读教材:你能找到气体分子运动有哪些特点?同学之间相互交流,然后总结。
2.点拨:气体分子运动特点是:(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。
(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。
气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。
(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。
(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。
(三)气体压强的微观解释1、提出问题:讨论分析反映气体宏观物理状态的温度(T )、体积(V )与反映气体分子运动的哪些微观状态物理量间存在联系?【点拨】温度..是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率越大。
人教版高中物理选修3-3《8-4气体热现象的微观意义》(50页)

第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
学习目标定位
第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
※ ※ ※
知道气体分子运动的特点 了解气体压强的微观意义 了解气体实验定律的微观解释
第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
课堂情景切入
第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
答案:D
第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
解析:各速率区间的分子数占总分子数的百分比不能为 负值,A、B错;气体分子速率的分布规律呈现“中间多, 两头少”的趋势,速率为0的分子几乎不存在,故C错、D 对。
第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
2.如何正确理解气体分子运动的特点 (1)气体分子距离大(约为分子直径的10倍),分子力小(可 忽略),可以自由运动,所以气体没有一定的体积和形状。 (2)分子间的碰撞十分频繁,频繁的碰撞使每个分子速度 的大小和方向频繁地发生改变,造成气体分子做杂乱无章的 热运动,因此气体分子沿各个方向运动的机会(几率)相等。
2.气体分子的热运动与温度的关系 (1)温度 越高 ,分子的热运动越剧烈。 (2)理想气体的热力学温度T与分子的平均动能 E
k成正
比,即:T=a E k(式中a是比例常数),因此可以说, 温度 是 分子平均动能的标志。
第八章
第四节
成才之路 ·物理 ·人教版 · 选修3-3
新课标最新高中物理 8.4 气体热现象的微观意义学案 新人教版选修3-3

8.4 气体热现象的微观意义[学习目标定位]1.理解气体分子运动的特点及气体分子运动速率的统计分布规律。
2。
能用气体分子动理论解释气体压强的微观意义;知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。
3。
能用气体分子动理论解释三个气体实验定律.1.分子动理论:物体是由大量分子组成的,分子永不停息地做无规则运动,分子间存在着相互作用的引力和斥力.2.气体三大实验定律:玻意耳定律、查理定律、盖—吕萨克定律.一、统计规律在一定条件下可能出现,也可能不出现的事件叫随机事件;大量随机事件整体表现出的规律叫统计规律.二、气体分子运动的三性1.理想性:气体分子间的距离比较大,分子间的作用力很弱,除相互碰撞或跟器壁碰撞外,可以认为分子不受力而做匀速直线运动,因而气体会充满它能达到的整个空间.2.现实性:分子之间频繁地碰撞,每个分子的速度大小和方向频繁地改变,分子的运动杂乱无章.3.规律性(1)分子的运动杂乱无章,在某一时刻,向着任何一个方向运动的分子都有,而且向各个方向运动的气体分子数目都相等.(2)气体分子的速率各不相同,但遵守速率分布规律,即出现“中间多、两头少”的分布规律.三、气体分子的热运动与温度的关系1.温度越高,分子的热运动越激烈.2.理想气体的热力学温度T与分子的平均动能E k成正比,即T=a错误!k(式中a是比例常数),因此可以说,温度是分子平均动能的标志.四、影响气体压强的两个因素1.气体分子的平均动能.2.分子的密集程度。
一、气体分子运动的特点和气体温度的微观意义[问题设计]1.把4枚硬币投掷10次并记录正面朝上的个数.比较个人、小组、大组、全班的数据,你能发现什么规律吗?答案随着投掷次数增多,2枚硬币正面朝上的次数比例最多,占总数的错误!;1枚和3枚正面朝上的次数各占总数的错误!,全朝上或全朝下次数最少,各占总数的错误!.说明大量随机事件的整体会表现出一定的规律性.2.气体分子间的作用力很小,若没有分子力作用,气体分子将处于怎样的自由状态?答案无碰撞时气体分子将做直线运动,但由于分子之间的频繁碰撞,使得气体分子的速度大小和方向频繁改变,运动变得杂乱无章.3.温度不变时,每个分子的速率都相同吗?答案分子在做无规则运动,造成其速率有大有小.[要点提炼]1.气体分子运动的特点(1)气体分子之间的距离很大,大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动.(2)分子的运动杂乱无章,在某一时刻,向着任何一个方向运动的分子都有,而且向各个方向运动的气体分子数目都相等.(3)每个气体分子都在做永不停息的无规则运动.(4)大量气体分子的速率分布呈“中间多、两头少”的规律.2.气体温度的微观意义(1)温度越高,分子的热运动越激烈.当温度升高时,“中间多”的这一“高峰”向速率大的方向移动,即速率大的分子数目增多,速率小的分子数目减少,分子的平均速率增大,分子的热运动更剧烈.(2)温度是分子平均动能的标志.理想气体的热力学温度T与分子的平均动能E k成正比,即T=a错误!k.二、气体压强的微观意义[问题设计]图1如图1所示,把一颗豆粒拿到台秤上方约10 cm的位置,放手后使它落在秤盘上,观察秤的指针的摆动情况.再从相同高度把100粒或更多的豆粒连续地倒在秤盘上,观察指针的摆动情况.使这些豆粒从更高的位置落在秤盘上,观察指针的摆动情况.用豆粒做气体分子的模型,试说明气体压强产生的机理.答案说明气体压强的产生跟两个因素有关:一个是分子的平均动能,一个是分子的密集程度.[要点提炼]1.气体压强的大小等于气体作用在器壁单位面积上的压力.2.产生原因:是由于大量气体分子无规则运动碰撞器壁,形成对器壁各处均匀的持续的压力而产生的.3.决定因素:气体压强的大小,微观上决定于分子的平均动能和分子的密集程度,宏观上决定于气体的温度T和体积V.三、对气体实验定律的微观解释[问题设计]如何从微观角度来解释气体实验三定律呢?答案从决定气体压强的微观因素上来解释,即气体分子的平均动能和气体分子的密集程度.[要点提炼]1.玻意耳定律的微观解释一定质量的某种理想气体,温度不变,分子的平均动能不变.体积减小,分子的密集程度增大(填“增大”或“减小"),单位时间内撞击单位面积器壁的分子数就增多,气体的压强就增大(填“增大”或“减小”).2.查理定律的微观解释一定质量的某种理想气体,体积不变,则分子的密集程度不变,温度升高,分子的平均动能增大(填“增大”或“减小"),分子撞击器壁的作用力变大,所以气体的压强增大(填“增大"或“减小”).3.盖-吕萨克定律一定质量的某种理想气体,温度升高,分子的平均动能增大(填“增大"或“减小"),分子撞击器壁的作用力变大,而要使压强不变,则需使影响压强的另一个因素分子的密集程度减小,所以气体的体积增大(填“增大”或“减小”).一、气体分子运动的特点和气体温度的微观意义例1在一定温度下,某种理想气体的分子速率分布应该是( )A.每个气体分子速率都相等B.每个气体分子速率一般都不相等,速率很大和速率很小的分子数目很少C.每个气体分子速率一般都不相等,但在不同速率范围内,分子数目的分布是均匀的D.每个气体分子速率一般都不相等,速率很大和速率很小的分子数目很多解析气体分子做无规则运动,速率大小各不相同,但分子的速率遵循一定的分布规律.气体的大多数分子速率在某个数值附近,离这个数值越近,分子数目越多,离这个数值越远,分子数目越少,总体表现出“中间多、两头少"的分布规律.答案B二、气体压强的微观意义和对气体实验定律的微观解释例2有关气体压强,下列说法正确的是( )A.气体分子的平均速率增大,则气体的压强一定增大B.气体分子的密集程度增大,则气体的压强一定增大C.气体分子的平均动能增大,则气体的压强一定增大D.气体分子的平均动能增大,气体的压强有可能减小解析气体的压强在微观上与两个因素有关:一是气体分子的平均动能,二是气体分子的密集程度,密集程度或平均动能增大,都只强调问题的一方面,也就是说,平均动能增大的同时,分子的密集程度可能减小,使得压强可能减小;同理,当分子的密集程度增大时,分子的平均动能也可能减小,气体的压强变化不能确定,故正确答案为D。
8.4气体热现象的微观意义 优秀教案优秀教学设计 高中物理选修3-3 (6)

4气体热现象的微观意义一、教学目标1.知道气体分子运动的特点. 知道气体分子间的距离较大,以及气体分子间碰撞频繁。
2.知道分子沿各方向运动的机会均等,分子速率按一定规律分布,这种规律是一种统计规律。
3.理解气体压强的微观解释。
4.知道气体实验定律的微观解释。
5.通过气体分子速率按统计规律分布的教学,使学生认识研究气体的物理方法,受到科学方法训练。
6.通过用气体分子动理论对气体压强解释,培养学生分析问题的能力和推理能力。
7.通过教学,使学生体验气体宏观性质、规律是由气体分子运动和相互作用的微观本质决定的,引起从宏观现象深入到微观本质的兴趣。
培养学生热爱科学的志趣。
二、课题引入1.前面是通过实验来研究气体的性质,从实验中归纳得到气体实验定律,进一步概括得到理想气体状态方程,引进摩尔气体常量R 的概念后又进一步得到克拉珀龙方程pV = nRT .为了更深入认识气体的性质,我们提出问题:为什么气体状态变化遵从实验定律、克拉珀龙方程?这就要求我们从微观角度即从气体分子动理论的角度来认识气体实验定律.2.我们知道:等温下压缩气体压强会增大,等容下升高气体温度压强也会增大,气体温度升高,同时体积增大压强可以不变,产生这些现象的原因是什么?我们这节课就要从气体分子动理论来揭露这些现象的微观本质。
三、扩展与提高1.课本阅读材料“统计规律”,做伽耳顿板实验,说明在自然现象和社会现象中统计规律的意义。
2.课本阅读材料“气体压强的公式”,用统计规律、动量定理等导出压强公式。
用压强公式定量解释气体实验定律,如玻意耳定律是T 一定即E 一定,,即p ∝T ,也就是p ∝.3.对气体做功为什么气体温度升高的解释可用活塞压缩气体说明,当活塞向下运动时,气体分子撞击活塞的速度为v 而弹回的速度v ′> v ,分子运动速度增大,无规则运动更剧烈,所以温度升高。
E n mv n p 0203231==V N n =0V N V1四、重点难点分析1.用气体分子动理论来解释气体实验定律是本节的重点,它是本节课的核心内容。
高中物理 8.4 气体热现象的微观意义 4 新人教版选修3-3

(1)气体间的距离较大,分子间的相互作用力十分微弱, 可以认为气体分子除相互碰撞及与器壁碰撞外不受力作 用,每个分子都可以在空间自由移动,一定质量的气体 的分子可以充满整个容器空间。
(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的 碰撞都可看成是完全弹性碰撞。气体通过这种碰撞可传 递能量,其中任何一个分子运动方向和速率大小都是不 断变化的,这就是杂乱无章的气体分子热运动。
(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头 少”的分布规律,且这个分布状态与温度有关,温度升高时,平均 速率会增大。
ppt课件
气体压强的微观意义
ppt课件
气体压强的微观意义
ppt课件
对气体实验定律的微观解释
范例:用气体分子动理论解释玻意耳定律。
一定质量(m)的理想气体,其分子总数(N)是一 个定值,当温度(T)保持不变时,则分子的平均速 率(v)也保持不变,当其体积(V)增大几倍时, 则单位体积内的分子数(n)变为原来的几分之一, 因此气体的压强也减为原来的几分之一;反之若体 积减小为原来的几分之一,则压强增大几倍,即压 强与体积成反比。这就是玻意耳定律。
(3)从总体上看气体分子沿各个方向运动的机会均等, 因此对大量分子而言,在任一时刻向容器各个方向运动 的分子数是均等的。
ppt课件
气体分子运动Biblioteka 特点ppt课件气体分子运动的特点
(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认 为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可 以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。
(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可 看成是完全弹性碰撞。气体通过这种碰撞可传递能量,其中任何一 个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气 体分子热运动。
物理:8.4气体热现象的微观意义课件新人教版选修3-3

思路: 思路 单个气体分子的运动 是无规则的
类比 (微观 宏观 微观 宏观)
8.4 气体热现象的微观意义
思路: 思路 单个分子的运动是无 (微观 微观 规则的
类比 宏观) 宏观
四枚硬币,每投掷一次 四枚硬币 每投掷一次, 每投掷一次 正面朝上的硬币数是不 一定的
大量气体分子的运动 是否存在一定的规律
类比 (微观 宏观 微观 宏观)
若投掷很多次后,正面 若投掷很多次后 正面 朝上的硬币数是否会 存在某种规律性呢? 存在某种规律性呢
一.气体分子运动的特点
(1)气体间的距离较大,分子间的相互作用力十分微弱, 气体间的距离较大,分子间的相互作用力十分微弱, 可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用, 可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用, 每个分子都可以在空间自由移动, 每个分子都可以在空间自由移动,一定质量的气体的分子可 以充满整个容器空间,无一定的形状和体积。 以充满整个容器空间,无一定的形状和体积。 (2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰 分子间的碰撞频繁, 撞都可看成是完全弹性碰撞。 撞都可看成是完全弹性碰撞。气体通过这种碰撞可传递能 量,其中任何一个分子运动方向和速率大小都是不断变化 这就是杂乱无章的气体分子热运动。 的,这就是杂乱无章的气体分子热运动。
四枚硬币,每投掷一次 四枚硬币 每投掷一次, 每投掷一次 正面朝上的硬币数是不 确定的
大量气体分子的运动 也应该存在一定的统 计规律
8.4气体热现象的微观意义 优秀教案优秀教学设计 高中物理选修3-3

8.4 气体热现象的微观意义一、教学目标1、知道气体分子运动的特点. 知道气体分子间的距离较大,以及气体分子间碰撞频繁。
2、知道分子沿各方向运动的机会均等,分子速率按一定规律分布,这种规律是一种统计规律。
3、理解气体压强的微观解释。
4、知道气体实验定律的微观解释。
5、通过教学,使学生体验气体宏观性质、规律是由气体分子运动和相互作用的微观本质决定的,引起从宏观现象深入到微观本质的兴趣。
培养学生热爱科学的志趣。
二、教学重点与难点用气体分子动理论来解释气体实验定律是本节课的重点,它是本节课的核心内容。
气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。
三、教学方法与建议实验法、分析讨论法、flash课件演示四、学情分析本节开始先通过掷硬币的实验让学生体会“个别事物出现具有偶然性,但大量事物的出现遵从统计规律”。
再用生活中的一些常见事例来帮助学生理解。
气体分子运动的特点,可能学生不是能够完全一步到位地接受,教师需要结合课本上的那个曲线图,逐步引导学生得到相关结论。
对于气体压强的微观原因,结合flash课件的演示,学生的接受也应该没有什么大的问题,故对气体实验定律的微观解释也不会有太大的困难。
五、教学过程(一)引入新课前面是通过实验来研究气体的性质,从实验中归纳得到气体实验定律,进一步概括得到理想气体状态方程,这节课我们从微观角度即从气体分子动理论的角度来认识气体实验定律.(二)进行新课1、体验统计规律请学生每人准备4枚硬币,完成课本P26的实验,并相互交流实验结果,完成数据统计,教师引导学生通过对实验结果的统计,得出以下结论:单次实验中硬币正面朝上的枚数是偶然的,但多次实验的结果却具有一定的规律性。
进一步概括可得到:个别事物的出现具有偶然的因素,但大量事物出现的机会,却遵从一定的统计规律。
用生活中的一些实例来帮助学生理解统计规律。
2、气体分子运动的特点热现象与大量分子热运动的统计规律有关,因而研究气体的热现象,就要了解气体分子运动的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. 4、气体实验定律的微观解释
教学目标
1.在物理知识方面的要求:
(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。
(2)能用气体分子动理论解释三个气体实验定律。
2.通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。
3.通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。
重点、难点分析
1.用气体分子动理论来解释气体实验定律是重点,它是本节课的核心内容。
2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。
教学过程
引入新课
先设问:气体分子运动的特点有哪些?
答案:特点是:
(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。
(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。
气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。
(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。
(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。
今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律。
教学过程
一.关于气体压强微观解释的教学
首先通过设问和讨论建立反映气体宏观物理状态的温度(T)、体积(V)与反映气体分子运动的微观状态物理量间的联系:
温度是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率
体积影响到分子密度(即单位体积内的分子数),对确定的一定质量的理想气体而言,分子总数N是一定的,当体积为V时,单位体积内
n越小。
然后再设问:气体压强大小反映了气体分子运动的哪些特征呢?
这应从气体对容器器壁压强产生的机制来分析。
看用计算机模拟气体分子运动撞击器壁产生压强的机制:
显示出如图1所示的图形:
介绍:如图所示是一个一端用活塞(此时表示活塞部分的线条闪烁3~5次)封闭的气缸,活塞用一弹簧与一固定物相连,活塞与气缸壁摩擦不计,当气缸内为真空时,弹簧长为原长。
如果在气缸内密封了一定质量的理想气体。
由于在任一时刻气体分子向各方向上运动的分子数相等,为简化问题,我们仅讨论向活塞方向运动的分子。
大屏幕上显示图2,即图中显示的仅为总分子数的合,(图中显示的“分子”暂呈静态)先看其中一个(图2中涂黑的“分子”闪烁2~3次)分子与活塞碰撞情况,(图2中涂黑的“分子”与活塞碰撞且以原速率反弹回来,活塞也随之颤抖一下,这样反复演示3~5次)再看大量分子运动时与活塞的碰撞情况:
大屏幕显示“分子”都向活塞方向运动,对活塞连续不断地碰撞,碰后的“分子”反弹回来,有的返回途中与别的“分子”相撞后改变方向,有的与活塞对面器壁相碰改变方向,但都只显示垂直于活塞表面的运动状态,而活塞被挤后有一个小的位移,且相对稳定,如图3所示的一个动态画面。
时间上要显示15~30秒定格一次,再动态显示15~30秒,再定格。
结论:由此可见气体对容器壁的压强是大量分子对器壁连续不断地碰撞所产生的。
进一步分析:若每个分子的质量为m,平均速率为v,分子与活塞的碰撞是完全弹性碰撞,则在这一分子与活塞碰撞中,该分子的动量变化为2mv,即受的冲量为2mv,根据牛顿第三定律,该分子对活塞的冲量也是2mv,那么在一段时间内大量分子与活塞碰撞多少次,活塞受到的总冲量就是2mv的多少倍,单位时间内受到的总冲量就是压力,而单位面积上受到的压力就是压强。
由此可推出:气体压强一方面与每次碰撞的平均冲量2mv有关,另一方面与单位时间内单位面积受到的碰撞次数有关。
对确定的一定质量的理想气体而言,每次碰撞的平均冲量,2mv由平均速率v有关,v越大则平均冲量就越大,而单位时间内单位面积上碰撞的次数既与分子密度n有关,又与分子的平均速率有关,分子密度n越大,v也越大,则碰撞次数就越多,因此从气体分子动理论的观点看,气体压强的大小由分子的平均速率v和分子密度n共同决定,n越大,v也越大,则压强就越大。
二.用气体分子动理论解释实验三定律
(1)引导、示范,以解释玻意耳定律为例教会学生用气体分子动理论解释实验定律的基本思维方法和简易符号表述形式。
范例:用气体分子动理论解释玻意耳定律。
一定质量(m)的理想气体,其分子总数(N)是一个定值,当温度(T)保持不变时,则分子的平均速率(v)也保持不变,当其体积(V)增大几倍时,则单位体积内的分子数(n)变为原来的几分之一,因此气体的压强也减为原来的几分之一;反之若体积减小为原来的几分之一,则压强增大几倍,即压强与体积成反比。
这就是玻意耳定律。
书面符号简易表述方式:
小结:基本思维方法(详细文字表
述格式)是:依据描述气体状态的宏观
物理量(m、p、V、T)与表示气体分子
运动状态的微观物理量(N、n、v)间
的相关关系,从气体实验定律成立的条件所述的宏观物理量(如m一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出有关的微观量(如n)的变化,再依据推出的有关微观量(如v和n)的变与不变的
情况推出宏观因变量(如p)的变化情况,结论是否与实验定律的结论相吻合。
若吻合则实验定律得到了微观解释。
(2)叙述:一定质量(m)的气体的总分子数(N)是一定的,体积(V)保持不变时,其单位体积内的分子数(n)也保持不变,当温度(T)升高时,其分子运动的平均速率(v)也增大,则气体压强(p)也增大;反之当温度(T)降低时,气体压强(p)也减小。
这与查理定律的结论一致。
用符号简易表示为:
(3)再次练习,用气体分子动理论解释盖·吕萨克定律。
再用更短的时间让学生练习详细表述和符号表示,然后让物理成绩为中等的或较差的学生口述自己的练习,与下面标准答案核对。
一定质量(m)的理想气体的总分子数(N)是一定的,要保持压强(p)不变,当温度(T)升高时,全体分子运动的平均速率v会增加,那么单位体积内的分子数(n)一定要减小(否则压强不可能不变),因此气体体积(V)一定增大;反之当温度降低时,同理可推出气体体积一定减小。
这与盖·吕萨克定律的结论是一致的。
用符号简易表示为:。