化工原理实验资料
化工原理实验(10个).

实验一 流体流动阻力的测定一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法;2. 测定直管摩擦系数λ~R e 的关系,验证在一般湍流区内λ、R e 与ε/d 的函数关系;3. 测定流体流经阀门及突然扩大管时的局部阻力系数ζ;4.测定层流管的摩擦阻力。
二、实验原理流体流经直管时所造成机械能损失为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
(1) 直管阻力摩擦系数λ的测定:流体在水平等径直管中稳定流动时,阻力损失为:2122f p p l u h d λρ-== 即 1222()d p p luλρ-= 层流时:λ=64/Re; 湍流时:λ是Re 和ε/d 的函数,须由实验测定。
(2)局部阻力系数的测定: 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法进行测定。
22f u h ζ=三、实验装置与流程实验装置部分是由水箱,离心泵,不同管径、材质的水管,各种阀门、管件,涡轮流量计和倒U 形压差计等所组成。
管路部分由五段并联的长直管,自上而下分别为用于测定层流阻力、局部阻力、光滑管直管阻力、粗糙管直管阻力和扩径管阻力。
测定阻力部分使用不锈钢管,其上装有待测管件(球阀或截止阀);光滑管直管阻力的测定同样使用内壁光滑的1、水箱2、离心泵3、涡轮流量计4、层流水槽5、层流管6、截止阀7、球阀8、光滑管9、粗糙管 10、突扩管 11、孔板流量计 12、流量调节阀不锈钢管,而粗糙管直管阻力的测定对象为管道内壁较粗糙的镀锌管。
本装置的流量使用涡轮流量计测量。
管路和管件的阻力采用各自的倒U形压差计测量,同时差压变送器将差压信号传递给差压显示仪。
四、实验步骤1. 首先对水泵进行灌水,然后关闭出口阀门,启动水泵电机,待电机转动平稳后,把泵的出口阀缓缓开到最大;2. 同时打开被测管线上的开关阀及面板上与其相应的切换阀,关闭其他的开关阀和切换阀,保证测压点一一对应;3. 改变流量测量流体通过被测管的压降,每次改变流量(变化10L/min左右),待流动达到稳定后,分别仪表控制箱上的压降数值;4. 实验结束,关闭出口阀,停止水泵电机,清理装置。
化工原理含实验报告(3篇)

第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。
2. 通过实验验证理论知识,提高实验技能。
3. 熟悉化工原理实验装置的操作方法,培养动手能力。
4. 学会运用实验数据进行分析,提高数据处理能力。
二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。
1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。
实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。
阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。
实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。
实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。
2. 将水从高位水槽引入粗糙管,调节流量,记录压差。
3. 改变流量,重复步骤1和2,得到一系列数据。
4. 根据数据计算摩擦系数和局部阻力系数。
实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。
2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。
2. 了解板式塔的结构,观察塔板上汽-液接触状况。
3. 测定全回流时的全塔效率及单板效率。
4. 测定部分回流时的全塔效率。
5. 测定全塔的浓度分布。
6. 测定塔釜再沸器的沸腾给热系数。
实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。
精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。
实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。
2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。
3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。
4. 绘制浓度分布曲线。
实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。
化工原理实验

1.为什么流量越大,入口处真空表读数越大,出口处压力表读数越小?正空度=大气压强-绝对压强,表压强=绝对压强-大气压强当储槽液面上方压强大于泵吸收入口压强时,液体才能被吸入轮中心,泵吸附近压强越低,则吸上高度越高,按照离心泵泵性能曲线,流量越大,扬程越小,入口流速增大,动能增大,入口压强减小,真空度增加,由泵压头公式,相应的流体静压能减小,所以出口压强增大。
2.离心泵的操作为什么要,先充液,封闭启动,选择高效区操作?离心泵在启动前向泵内充满待输送的液体,是为了保证泵内和吸入管路内无空气积存,否则会发生气傅现象,使离心泵无法正常工作。
在出口阀关闭的条件下启动,启动量最小,防止电机烧坏。
选在高效区操作可使泵的效率尽可能达到最高效率,即轴功率损耗减小,使离心泵在最佳工况下运行。
3.为什么每次试验都要把滤液和滤饼倒回虑浆槽内?实验的变量为真空度,应尽量保持其他变量不变,如过滤液的组成,滤板的过滤介质阻力等,将滤板上的滤液洗去,使滤板的过滤介质不变,将滤液倒回是使组成与体积不变。
4.压强差对过滤常数的影响。
压强越大,过滤常数K越大,过滤相同体积的原料液所需时间越短。
在蒸汽冷凝时,若存在不冷凝气体,会有什么影响,应采取什么措施?若存在不冷凝气体,套管尾部会有气体出来,并带走部分热量,降低传热效率;应加大压强使不冷凝气体凝结。
5.试验中的内管壁面温度是接近蒸汽温度还是空气温度?接近蒸汽温度,应为蒸汽及导热管的传热热阻较空气的热阻小了近三个数量级,说明蒸汽与带热管传热效果很好,故内管内壁面温度接近空气温度。
若要提高总传热系数,可采取哪些措施?升高蒸汽温度;改变空气和蒸汽的流动状态,使在湍流状态下流动;使用导热系数较高的导热管。
6.全回流在精馏操作塔中有何实际意义?去回流是回流比的上限,由于在这种情况下得不到精馏产品,即生产能力为零,因此对正常生产无实际意义,但在精馏开工阶段或实验研究时,多采用全回流操作,以便过程的稳定或控制。
化工原理实验

实验一 雷诺试验一、实验目的与要求1、观察流体流动轨迹随流速的变化情况,通过转子流量计改变流量观察流体的流动型态,并对层流和湍流的现象进行比较;2、计算雷诺数并比较雷诺数值与流动型态的关系,确定临界雷诺准数。
二、实验原理雷诺实验揭示了重要的流体流动机理,当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动,这种流动形态称层流或滞流。
流体流速增大至一定程度后,流体质点除流动方向(沿管轴方向)上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则的脉动,流体质点彼此混合并有旋涡生成,这种流动形态称湍流或紊流。
层流与湍流是两种完全不同的流动型态。
除流速u 外,管径d ,流体粘度μ和密度ρ,对流动形态也有影响,雷诺将这些影响流体流动形态的因素用雷诺准数(或雷诺数) Re 表示。
即:μρdu =Re一般情况下: Re<2000 层流区 2000<Re<4000 过渡区 Re>4000 湍流区三、实验装置1.示踪剂瓶;2.稳压溢流水槽;3.试验导管;4.转子流量计;5.示踪剂调节阀;6.水流量调节阀;7.上水调节阀;8.放风阀图1 雷诺实验装置四、实验方法实验前准备工作:1.实验前,先用自来水充满稳压溢流水槽。
将适量示踪剂(红墨水)加入贮瓶内备用,并排尽贮瓶与针头之间管路内的空气。
2.实验前,先对转子流量计进行标定,作好流量标定曲线。
3.用温度计测定水温。
实验操作步骤:(一)、先做演示实验,观察滞流与湍流时流速分布曲线形态。
1、在玻璃管中流体为静止状态下迅速加入墨水,让墨水将指针附近2-3厘米的水层染上颜色,然后停止加入墨水。
2、慢慢打开水流量阀,并逐渐加大流量至一定的值后,观察墨水随流体流动形成的流速分布曲线形态。
(二)、确定不同流动形态下的临界雷诺准数。
1、打开水源上水阀使高位槽保持少量的溢流,维持高位槽液面稳定,以保证实验具有稳定的压头。
化工原理实验讲义.doc

实验一 雷诺演示实验一、 实验目的1. 了解流体圆管内的流动形态及其与雷诺数Re 的关系;2. 观察流体在圆管内作稳定层流及湍流两种情况下的速度分布及湍流时壁面处的层流内层;3. 观察并测定流动形态发生临界变化时流量、流速与雷诺数。
二、 实验原理雷诺数μρdu =Re ,一般情况下Re <(2000~3000)时,流动形态为层流,Re >4000时,流动形态为湍流。
μπρμπρπμρd q d du d du 44141Re =∙∙==测定流体1升水所需时间,计算出q ,然后可计算出对应的Re 。
三、 实验装置在1700⨯500⨯500mm 的玻璃水箱内安装有一根内径为28mm 、长为1450mm 的长玻璃管,玻璃管进口做成喇叭形以保证水能平稳的流入管内,在进口端中心处插入注射针头,通过小橡皮管注入显色剂——红墨水。
水由水箱底部进入,并从上部溢流口排出,管内水流速可由管路下游的阀门控制。
本装置玻璃水箱主体由15mm的钢化玻璃粘接而成,所连接上下水管道均有不锈钢材质,下边的轮为能承重的加强轮,在做实验时,需要将轮刹车。
本实验其他设施:水、红墨水、秒表:1块、量筒:1000ml 1个四、实验步骤与现象观察1.开启上下阀门至溢流槽出现溢流。
2.缓和开启实验玻璃管出口阀门,为保证水面稳定,应维持少量溢流。
3.徐徐打开显示剂橡皮管上夹管,调整显示剂流速与管内水流速一致,观察显示剂流线,并记录一定时间内通过的水量和水温。
4.自小到大再自大到小调节流量,计算流型转变的临界雷诺数。
5.观察层流和湍流时速度分布侧形的差别。
6.观察湍流时壁面处的层流内层。
五、注意事项1.由于红墨水的密度大于水的密度,因此为使从给针头出来的红墨水线不发生沉降,需要红墨水用水稀释50%左右。
2.在观察层流流动时,当把水量调得足够小的情况下(在层流范围),禁止碰撞设备,甚至周围环境的震动、以及水面风的吹动均会对线型造成影响。
为防止上水时造成的液面波动,上水量不能太大,维持少量溢流即可。
化工原理实验讲义(doc 55页)

化工原理实验讲义(doc 55页)化工原理实验讲义化工与环境学院化学工程与控制系化工原理实验室目录第 1 章........................化工基础实验技术41.1温度的测量41.2压力的测量91.3流量的测量13第 2 章.............. 实验数据分布及基本数据处理212.1实验数据的分布212.2实验数据的基本处理222.3实验报告的基本要求23第 3 章........................化工原理基本实验273.1流体流动阻力的测定273.2离心泵特性曲线的测定343.3对流传热系数的测定403.4填料塔压降曲线和吸收系数的测定453.5精馏塔效率的测定543.6干燥速率曲线的测定613.7扩散系数的测定663.8液—液萃取塔的操作72第 4 章............................... 演示实验784.1雷诺实验784.2机械能守恒与转换824.3边界层形成与分离85第 5 章.................... 化工流动过程综合实验87第 1 章化工基础实验技术1.1 温度的测量1.常用的温度计形式(1)膨胀式温度计实用的膨胀式温度计有玻璃管液体温度计,双金属片温度计和压力表式温度计。
(2)玻璃管液体温度计玻璃管液体温度计利用液体的体积与温度之间的关系,用毛细管内液体上升的高度来指示被测温度。
一般测量范围在−100℃~ +600℃。
这种温度计结构简单,使用方便,测量精度较高(0.1~2.5级)。
工作液体多使用汞和酒精,封装时充入惰性气体,以防止液柱断开。
(3)双金属片温度计双金属片温度计制作成表盘指针形式。
双金属片结合成一体,一端固定,另一端自由。
由于不同金属的热膨胀系数的差异而产生弯曲变形,带动指针的位移。
一般测量范围在−80℃~ +600℃。
这种温度计结构简单,使用方便,但测量精度不高(1~2.5级)。
(4)压力表式温度计压力表式温度计的工作原理与机械式压力表相同。
化工原理实验讲义(应化)

化⼯原理实验讲义(应化)实验⼀雷诺实验⼀、⽬的与要求1、通过实验了解圆管内流体流动情况,建⽴流型概念。
2、通过流量的测定、雷诺数的计算和圆管内流线的特征,判断流体的流动型态,并测定临界雷诺数。
3、测定流体在圆形直管中层流、湍流的速度分布图。
⼆、实验原理流体作稳态流动时,其流动型态基本分为滞流(层流)、湍流两种,这两种流型的过渡状态称为过渡流。
流体流动的型态与流体的密度、粘度及流道的直径有关。
这可⽤雷诺准数来判断,⼀般为:Re≤2000为滞流Re≥4000为湍流2000三、实验主要仪器及主要技术数据实验主要仪器:雷诺仪、秒表、量筒实验主要数据:实验管道有效长度L=600mm外径d =30mm内径d i=26mm四、实验⽅法1、准备⼯作(1)向墨⽔储瓶中加⼊适量的⽤⽔稀释过的墨⽔。
(2)调整墨⽔细管出⼝的位置,使它位于实验管道的中⼼线上。
(3)轻轻打开墨⽔流量调节夹,使墨⽔从墨⽔咀流出,排出墨⽔管内空⽓,关闭调节夹。
2、雷诺实验过程(1)关闭流量出⼝调节阀,打开储⽔槽进⽔阀,使⾃来⽔充满⽔槽,并使槽内溢流堰具有⼀定的溢流量。
(2)轻轻打开管道出⽔阀门,使流体缓慢流过实验管道,排出管内⽓体。
(3)调节储⽔槽下部的出⽔阀开度,调节储⽔槽液位,使其保持恒定。
(4)缓慢地适当打开墨⽔流量调节夹,墨⽔⾃墨⽔咀流出,待墨线稳定后,即可看出当前⽔流量下实验管道中墨⽔的流线。
根据流线判断流型,并⽤秒表、量筒测定流体流量。
(5)适当的增⼤管道出⽔阀开度,通过调节储⽔槽下部的出⽔阀和进⽔阀控制储⽔槽液位,并维持⼀定的⽔槽溢流板溢流量。
适当调整墨⽔流量,使墨线清晰,稳定后,测定较⼤流量下实验管内的流动状况。
如此反复,可测得⼀系列不同流量下的流型,并判断临界流型。
3、速度分布图的测定与上述雷诺数测定相似,通过流量调节及墨线线形的判断,分别判定流型为层流、湍流时对应的管道出⽔阀的开度范围。
⾸先使储⽔槽液位恒定(此时,可通过调节储⽔槽的进⼝阀和出⼝阀使液位稳定),瞬时开关墨⽔流量调节夹,在墨⽔咀出⼝处形成⼀个墨团,观察墨团端⾯特征,打开管道出⽔阀(使出⽔阀开度在所测定流型的开度范围),观察墨团端⾯随流体流动时的变化,记下管道末端墨团端⾯的形态后,通过调节储⽔槽的进⼝阀和出⼝阀调节储槽液位,使其恒定。
化工原理实验

化⼯原理实验⼀、填空1.化⼯实验过程中使⽤的弹簧式压⼒表有弹簧管压⼒表、膜式压⼒计,其测压量程选择应为最⼤量程的1/2~_2/3_。
2.单管型压差计要求Amax/Amin 200,其读数误差⽐U型管压差计减少⼀半。
3.数字化管路流体阻⼒实验中,排⽓时应将流体出⼝阀关闭,其作⽤是防⽌压⼒过⼤使流体冲出,计算机在线操作时流量的调节⽅式是计算机—交流电频率—电机转速—流量。
4.传质系数测定实验中利⽤⽓相⾊谱仪仪器进⾏CO2含量测定,实验的关键是__严格控制吸收剂进⼝条件。
5.传质系数测定实验中,利⽤流量计、压⼒表、温度计仪器进⾏丙酮含量的测定,实验的关键是吸收传质平衡,性能取样,不掩塔_。
6.⽓-⽓换热实验过程中,利⽤蒸汽对空⽓进⾏加热,实验测定的物理量是传热膜系数,蒸汽⾛管间,空⽓⾛管内_,两流体在换热器中属于间壁式换热。
7.再进⾏湿样品和⼲样品称量时必须盖紧盖⼦_以防⽌失⽔或吸⽔。
8.⽓相⾊谱是对已知物质进⾏定量分析的仪器,仪器开启前必须先通载⽓,等仪器设定的柱温、热导池温度、进样器温度达到要求时再进样分析。
9.流量计校正实验中平衡阀作⽤是:防⽌泵剧烈波动⽽使液体溅出;实验测量读数时该阀处于关闭状态。
10.⽬前测流量仪表⼤致分三类:速度法、体积法、质量流量法,涡轮流量计属于⼀种速度流量仪表.11.倒U型管压差计指⽰剂为空⽓,⼀般⽤于测量压强较⼩的场合。
12.流量计标定和校验的⽅法⼀般为体积法、称重法、基准流量计法,流量计的校验实验我们要得出的参数是流量系数。
13.在萃取实验中,调节两界⾯的⽅法是⽤π型阀,当⽔-煤油的界⾯较低时应_关闭π型阀当⽔-煤油的界⾯较⾼时应_打开π型阀。
14.流化⼲燥实验中⼲燥曲线是指C—I T—I N A—x 随着⼲燥温度的升⾼,⼲燥速率降低_。
15.离⼼泵的特性曲线是指_Q—He Q—Ne Q—η_其作⽤为选择离⼼泵的型号提供依据实验过程中,随着⽔流量由⼩变⼤,泵⼊⼝处的真空度增⼤,泵出⼝处的压强减⼩,根据实验结果,离⼼泵串联是为了增⼤压头,并联是为了增⼤流量_。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一干燥实验一、实验目的1.了解洞道式循环干燥器的基本流程、工作原理和操作技术。
2.掌握恒定条件下物料干燥速率曲线的测定方法。
3.测定湿物料的临界含水量X C,加深对其概念及影响因素的理解。
4.熟悉恒速阶段传质系数K H、物料与空气之间的对流传热系数的测定方法。
二、实验内容1.在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其影响因素。
2.测定恒速阶段物料与空气之间的对流传热系数「和传质系数K H。
三、基本原理干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。
干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。
由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。
概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。
目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。
干燥实验的目的是用来测定干燥曲线和干燥速率曲线。
为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。
本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。
测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。
物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用•来表示。
但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X表示更为方便。
••与X的关系为:COX(8—1)1 - ■式中:X —干基含水量kg水/kg绝干料;■—湿基含水量kg水/kg湿物料。
物料的绝干质量G C是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。
干燥曲线即物料的干基含水量X与干燥时间•的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。
物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB段;随后为持续时间长、斜率较大的直线BC;段以后的一段为曲线图(8—2)干燥速率曲线CD 段。
直线与曲线的交接点 C 为临界点,临界点时物料的含水量为临界含水量 X c 。
干燥速率是指单位时间内被干燥物料的单位汽化面积上所汽化的水分量。
干燥速率曲线是指干燥速率 U 对物料干基含水量 X 的关系曲线。
如图(8—2)所示。
干燥速率的大 小不仅与空气的性质和操作条件有关, 而且还与物料的结构及所含水分的性质有关,因此干燥曲线只能通过实验测得。
从图( 8— 2 )的干燥速率曲线可以明显看出,干燥过程可分 为三个阶段:物料的预热阶段(AB 段)、恒速干燥阶段(BC 段)和降速干燥阶段(CD段)。
每一阶段都有不同的特点。
湿物料因其有液态水的存在, 将其置于恒定干燥条件下,则其表面温度逐步上升直到近似等于热空气的湿球温度 t w,到达此温度之前的阶段称为预热阶段。
预热阶段持续的时间最短。
在随后的第二阶段中,由于表面存有液态水,且内部 的水分迅速的到达物料表面,物料的温度约均等于空气的湿球温度t w 。
这时,热空气传给湿物料的热量全部用于水分的气化,蒸发的水量随时间成比例增加,干燥速率恒定不变。
此阶段也称为表面气化控制阶段。
在降速阶段中,物料表面已无液态水的存在,物料内部 水分的传递速率低于物料表面水分的气化速率,物料表面变干,温度开始上升,传入的热 量因此而减少,且传入的热量部分消耗于加热物料,因此干燥速率很快降低,最后达到平 衡含水量为止。
在此阶段中,干燥速率为水分在物料内部的传递速率所控制,又称之为内 部迁移控制阶段。
其中恒速阶段和降速阶段的交点为临界点C ,此时的对应含水量为临界含水量X c 。
影响恒速阶段的干燥速率 U c 和临界含水量 X C 的因素很多。
测定干燥速率曲 线的目的是掌握恒速阶段干燥速率和临界含水量的测定方法及其影响因素。
1.干燥速率U根据干燥速率的定义:dw" 也 w U= sd s :(8 — 2)式中U —干燥速率kg 水 /(m 2• h);s —干燥面积2m ;时间间隔s ;■w' — V 时间间隔内汽化水分的质量kg 。
图(8 — 1 )干燥曲线 X* X C X(kg 水/ kg 绝干料)X 平=(X i + X i+1)/2(8— 4)式中X 平一口.时间间隔内的平均含水量kg 水/kg 绝干料; X i —丄时间间隔开始时刻湿物料的含水量kg 水/kg 绝干料;X i+1 — ■:.时间间隔终了时刻湿物料的含水量kg 水/kg 绝干料。
3•恒速阶段传质系数K H 的求取传热速率 dQ(t -t w )sd (8— 5) 传质速率 dw,八K H (H S,tw H)sd (8— 6)上两式中 :Q —热空气传给湿物料的热量kJ ; —干燥时间s ;S —干燥面积2m ;w —由湿物料汽化至空气中的水分质量kg ;:—空气与物料表面间的对流传热系数 kw/m • c ;t —空气温度C ;K H —以温度差为推动力的传质系数kg/(m 2• s • ¥ {);t w —湿物料的表面温度(即空气的湿球温度) K ;H —空气的湿度kg/kg 绝干空气;H S,tw — t w 下的空气饱和湿度kg/kg 绝干空气;恒速阶段,传质速率等于干燥速率,即 UcK H =H s,tw -H式中:U c —临界干燥速率,亦为恒速阶段干燥速率,kg/ (m 2• s)。
4.恒速阶段物料表面与空气之间的对流传热系数:-恒速阶段由传热速率与传质速率之间的关系得:(8— 8)式中:r tw — t w 下水的汽化潜热,kJ/kg 。
用式(8—8)求出的:•为实验测量值,:的计算值可用对流传热系数关联式估算:G'-GcX=-Gc式中X —物料的干基含水量 kg 水/kg 绝干料; G C —绝干物料的质量kg ; G —固体湿物料的质量kg 。
(8 — 3)(8— 7)t 一 t w2 .物料的干基含水量 X从式(8 — 3)可以看出,干燥速率U 为二.时间内的平均干燥速率,故其对应的物料含水量也为时间内的平均含水量 X平,0 8:=0.0143 ( L) . ( 8 —9)式中:L —空气的质量流速,kg/m 2• s 。
应用条件:物料静止,空气流动方向平行于物料的表面。
空气温度为 45 C 〜150 C 。
质量流速L 可通过孔板与单管压差计来测量,空气的体积流量 L 的范围为 0.7~8.5kg/m 2 • s , p P V S =C 0 • k 1 • k 2 • A 0 2g R/103 ; A 1(8—10)\式中: V S —流径孔板的空气体积流量, m 3 /s ; C 0—管内径 D i =106mm , 6=0.6805;管内径 D i =100mm , C 0=0.6655; k 1—粘度校正系数,取 k 1=1.014 ; k 2—管壁粗糙度校正系数, k 2=1.009; A 0—孔截面积,A 0=3.681 X 103m 2;V S 由下式计算: R —单管压差计的垂直指示值,mm ;:)—压差计指示液密度,kg/m 3;20C, 695mmH g 时,水的密度为“一压差计指示液上部的空气密度,时,998.5kg/m 3;3kg/m'=1293 -Pa- 760273=1.1kg/m 3;T::—流经孔板的空气密度,kg/m 3;通常以风机的出口状态计。
风机的出口状态为 4mmH g (表压)20 C, 695mmH g 时,空气的密度,风机的出口温度为 T 。
当大气压等于 695mmH 式中::■= 1293 695 4760 T —风机的出口温度, K 。
空气的质量流速 式中: 273=325 (kg/m 3) (8 —11)当 6=0.6805 时,V s =0.000638 RT 当 C 0=0.6655 时,V s =0.000616 . RTV S 汉P L= —— A (8— 12)L —空气的质量流速, A —干燥室流通截面积,2 kg/(m •s);2 m 。
当 A=0.15 X 0.2=0.03m 2, C °=0.6805 时, L=6.91 .. \T R;当 A=0.15 X 0.2=0.03m 2, C'0=0.6655 时, 四、实验装置与流程 1 •实验流程 本实验采用洞道式循环干燥器,流程示意图如图 8 — 3所示。
空气由风机输送,经孔 板流量计、电加热室流入干燥室,然后返回风机循环使用。
由风机的电机与管路进口管的洞道式干燥器流程图1.加热室2•压差计 3•铜电阻 4.干燥室前温度计 5 •湿球温度计 6 •干燥室 7 •电子天平 8 •物料架 9•干燥室后温度计 10.仪表箱 11.控温仪 12.蝶阀 13.风机 14.放气阀 15风机出口温度计 16.孔板流量计缝隙补充一部分新鲜空气,由风机出口管上的放气阀3放空一部分循环空气以保持系统湿度恒定。
电加热室由铜电阻及智能程序控温仪来控制温度,使进入干燥室的空气的温度恒定。
干燥室前方装有干、湿球温度计,风机出口及干燥室后也装有温度计,用以确定干燥室内的空气状态。
空气流速由蝶阀来调节。
注意任何时候该阀都不能全关,避免空气不流通而烧坏电加热器。
2 •主要设备尺寸该装置共四套:(1)孔板1#~3#:管内径D=106mm,孔径d°=68.46mm,孔流系数C o=O.68O5 ;4#:管内径D=100mm,孔径d°=68.46mm,孔流系数C o=0.6805 ;(2)干燥室尺寸:0.15m 0.20m(3)电加热室共有三组电加热器,每一组功率为1000w。
其中一组与热电阻、数显控温仪相连来控制温度。
另两组通过开关手动控制,此两组并配有5A的电流表,以监检测电加热器是否正常工作。
(4)电子天平:型号为JY600 —1,量程为0〜600g,感量为0.19g。
五、实验步骤1.按通电源,开启电子天平。
预热30分钟,调零备用。
2.将烘箱烘干的试样置于电子天平上称量,记下该绝干物的质量G C。
3.用钢尺量取物料的长度、宽度和厚度。
4.将物料加水均匀润湿,使用水量约为 2.5倍绝干物质量G C。
5.开启风机,调节蝶阀至预定风速值,调节程序控温仪约为85C,而后打开加热棒开关(三组全开)。
待温度接近于设定温度,视情况加减工作电热棒数目。