高等数学C2复习
高等数学c2是哪本教材

高等数学c2是哪本教材高等数学是大学阶段的重要课程之一,而高等数学C2是其中的一本教材。
本文将介绍高等数学C2教材的相关内容和特点。
在大学高等数学课程中,教材的选择是非常重要的。
高等数学C2是国内常用的一种教材,它主要覆盖了微分方程、多元函数微分学和多重积分等内容。
这本教材是为大学理工科专业的学生所编写的,主要用于帮助学生理解和掌握高等数学中的相关知识和技巧。
高等数学C2教材以清晰的结构和规范的讲解著称。
它分为多个章节,每个章节都涵盖了一个特定的主题。
例如,第一章介绍了微分方程的基本概念和解法,第二章则着重讲解了多元函数微分学的相关内容,第三章则介绍了多重积分的概念和运算等等。
每个章节都有详细的解析和例题,帮助学生理解和应用所学的知识。
高等数学C2教材采用了丰富的图表和图像辅助教学。
在解释概念和定理时,教材往往会附上相关的图表,以帮助学生更直观地理解。
此外,教材还包含了大量的例题和习题,供学生练习和巩固所学知识。
这些例题和习题覆盖了不同难度级别,学生可以根据自己的掌握程度进行选择和练习。
高等数学C2教材在内容的安排上注重了理论与实际应用的结合。
教材不仅介绍了数学理论,还引入了实际应用背景和实例。
例如,在介绍多重积分时,教材会引用实际问题,如求解物体质量、质心和转动惯量等。
这种结合理论和实践的方法有助于学生理解数学的应用场景,提高他们的学习兴趣和动力。
综上所述,高等数学C2是一本重要的教材,它通过清晰的结构、规范的讲解、丰富的图表和图像以及理论与实际应用的结合,帮助学生深入理解和掌握高等数学的相关知识和技巧。
它的使用不仅可以提高学生的数学水平,还可以培养他们的分析和解决问题的能力。
因此,高等数学C2教材在大学高等数学课程中具有重要的地位和影响力。
通过学习高等数学C2教材,学生能够在数学领域取得更好的成绩,并且为日后的学习和研究打下坚实的基础。
因此,我们鼓励大学理工科专业的学生认真学习高等数学C2教材,积极参与课堂讨论和习题练习,提升数学能力。
高等数学2-习题集(含答案)

《高等数学2》课程习题集【说明】:本课程《高等数学2》(编号为01011)共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。
一、计算题11. 计算 行列式6142302151032121----=D 的值。
2. 计算行列式5241421318320521------=D 的值。
3.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D 的值。
4. 已知2333231232221131211=a a a a a a a a a , 计算:333231232221131211101010a a a a a a a a a 的值。
5.计算行列式 0111101111011110=D 的值。
6. 计算行列式199819981997199619951994199319921991 的值.7. 计算行列式50007061102948023---=D 的值. 8. 计算行列式3214214314324321=D 的值。
9. 已知10333222111=c b a c b a c b a ,求222111333c b a c b a c b a 的值. 10. 计算行列式x a a a xa a ax D n=的值。
11.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2100430000350023A ,求1-A 。
12.求⎪⎪⎪⎭⎫ ⎝⎛=311121111A 的逆.13.设n 阶方阵A 可逆,试证明A 的伴随矩阵A *可逆,并求1*)(-A 。
14. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A 的逆。
15. 求⎪⎪⎪⎭⎫⎝⎛-----=461351341A 的逆矩阵。
16. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2300120000230014A 的逆。
17. 求⎪⎪⎪⎭⎫⎝⎛--=232311111A 的逆矩阵。
18.求矩阵⎪⎪⎪⎭⎫⎝⎛-=101012211A 的逆.19. 求矩阵112235324-⎛⎫⎪=- ⎪ ⎪-⎝⎭A 的逆。
《高等数学》C2教学大纲

《高等数学》C2教学大纲开课单位:数学与统计学院高等数学教研室学分:3.5 总学时:56H课程类别:必修考核方式:考试课程负责人:苏翃课程编码:241_1基本面向:经济与贸易学院(21、23-26专业),汽车学院(49专业),会计学院(61、64),工商管理学院(81、83、86、87),生物工程学院(102专业)的本科生一、本课程的目的、性质和任务数学是研究客观世界数量关系和空间形式的科学。
随着现代科学技术和数学科学的发展,“数量关系”和“空间形式”具备了更丰富的内涵和更广泛的外延。
现代数学内容更加丰富,方法更加综合,应用更加广泛。
数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一种科学,而且是一种文化,能否运用数学观念定量思维是衡量民族科学文化素质的一个重要标志。
数学教育在培养高素质科学技术人才中具有其独特的、不可替代的重要作用。
本课程是全院非理工学门类本科各专业学生的一门必修的重要基础理论课,同时也是一门工具课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。
通过本课程的学习,要使学生获得:(1)一元函数微积分学;(2)向量代数与空间解析几何;(3)多元函数微积分学;(4)常微分方程;(5)无穷级数等方面的基本概念、基本理论和基本运算技能,目的是为学习后续课程和进一步获得数学知识奠定必要的数学基础。
本课程是针对数学基础较差的文科同学而设置的。
其目的是在重应用轻技巧的前提下,使学生掌握基本的数学思想和方法。
在传授知识的同时,要通过各教学环节逐步培养学生具有抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。
二、本课程的基本要求通过本课程的学习,要求学生系统地获得一元函数微积分学、向量代数与空间解析几何、多元函数微积分学、常微分方程、无穷级数的基本知识、必要的基本理论和常用的基本方法,这是重点内容。
高数下复习

′ 例1. 已知 z = ln(cos(x- 2y)), 求z′ , z′yx x 1 解: z′ = (− sin(x − 2 y)) = −tg ( x − 2 y) x cos(x − 2 y) 1 z′y = (− sin(x − 2 y))(−2) = 2tg ( x − 2 y) cos(x − 2 y) ′yx = (2tg ( x − 2 y))′x = 2 sec2 ( x − 2 y) z′
3.利用极坐标计算二重积分
.例 3. 计算I = sin x2 + y2 dσ , D: π 2 ≤ x2 + y2 ≤ 4π 2 ∫∫
D
x = r cD π ≤ r ≤ 2π y = r sinθ I = ∫ dθ ∫ sinr ⋅ rdr = −2π ∫ rd cosr
0 ≤ y ≤ 1 ∴ D: , y ≤ x ≤ 2 − y 原式 = ∫ dy ∫
0 1 2− y y
f(x,y)dx
2.利用直角坐标计算二重积分
. 例2.
( x 2 + y 2 )dσ ∫∫
D
D由y = x,y = x + a, = a和y = 3a (a > 0)围成 y
a ≤ y ≤ 3a 解: D : y − a ≤ x ≤ y 原式 =
4.全微分的求法 全微分的求法
1 (1)直接法:直接利用微分法则求出全微分。
2 (2)公式法:先求出偏导数,然后利用公式: = z ′ dx + z ′ dy dz x y 写出全微分。
例4. 已知cos2 x + cos2 y + cos2 z = 1, 求dz. 解法一: d(cos x + cos y + cos z) = d1
成人高考专升本《高等数学二》复习教程

成人高考专升本《高等数学二》复习教程高等数学是成人高考专升本考试的重要科目之一,也是考生们普遍觉得较为困难的科目之一、本文将为大家提供一个《高等数学二》的复习教程,帮助考生们更好地备考。
1.复习大纲首先,要明确复习的大纲和重点。
成人高考专升本的《高等数学二》主要涉及到三大部分内容:常微分方程、级数和多元函数。
要仔细研读考纲,明确重点、难点和考点。
2.备考资料准备一本《高等数学二》的教材和相关的辅导资料是必不可少的。
教材是主要的学习材料,逐章进行系统地学习。
辅导资料可以帮助补充和巩固知识,同时提供一些例题和习题等训练。
3.知识概念梳理在学习的过程中,要将每个知识点的概念和公式整理出来,形成一份详细的笔记。
可以将概念和公式写在纸上,然后做一些例题,巩固记忆和理解。
同时,还要注意一些常见的特殊情况和性质,以及一些经典的解题方法。
4.题目分类在备考过程中,要将各个知识点的题目进行分类整理。
可以按照章节进行划分,也可以按照题目类型进行分类。
这样有助于系统地学习和复习,同时也可以发现一些重点和难点。
5.练习题做题是检验学习和理解程度的重要途径。
通过做题可以帮助巩固知识,发现知识点的不足和问题。
可以从教材和辅导资料中选择一些典型的例题和习题进行练习。
同时,还要注重对错题的整理和分析,找出错误的原因和解题方法。
6.重点难点攻克在复习的过程中,可能会遇到一些重点和难点。
可以选择一些典型的例题和习题进行重点攻克和深入理解。
可以寻求老师和同学的帮助,进行讨论和交流。
也可以在网上查找一些相关的讲解视频和资料进行学习。
7.模拟考试在复习结束之前,可以进行一些模拟考试。
可以选择一些真题进行练习,模拟考试的形式和流程,帮助考生们适应考试环境和时间。
模拟考试还可以检验自己的复习情况和考试策略,找出问题和不足。
8.多做题、多总结在复习过程中,要多做题、多总结。
通过做题可以巩固知识和提高解题能力,通过总结可以梳理知识点和理清思路。
高等数学c2教材答案

高等数学c2教材答案1. 导数与微分1.1 单变量函数的导数对于单变量函数f(x),导数可以通过求取极限来定义。
导数表示了函数在某一点上的变化率或者斜率。
计算导数需要使用导数的基本运算法则,如常数规则、幂函数规则、指数函数规则、对数函数规则、三角函数规则等等。
1.2 导数的应用导数在实际问题中有着广泛的应用,如极值问题、曲线的切线与法线、函数的凸凹性判断等等。
通过求取导数,我们可以找到函数的最大值和最小值,并确定函数在不同区间的增减性。
1.3 隐函数与参数方程的导数对于隐函数或者参数方程,我们也可以通过对变量进行求导来计算其导数。
在求取隐函数的导数时,需要使用隐函数求导法则。
在求取参数方程的导数时,需要使用参数方程求导法则。
2. 定积分2.1 定积分的概念与性质定积分用于求解曲线下的面积或者求解某个区间内的加权平均值。
定积分的计算需要使用定积分的性质和基本的计算方法,如分部积分法、换元积分法等。
2.2 定积分的应用定积分在实际问题中有着广泛的应用,如求解空间曲线的长度、质量、重心等问题。
通过求取定积分,我们可以计算出函数曲线下的面积或者求解某个区间内的平均值。
2.3 定积分的计算定积分的计算需要掌握各种不同类型的定积分计算方法,如分部积分、换元积分、三角换元、特殊公式等。
同时还需要了解定积分的一些常见技巧,如利用几何意义、利用对称性等。
3. 常微分方程3.1 常微分方程的基本概念常微分方程是描述自变量和它的导数之间关系的方程。
常微分方程的阶数、线性与非线性、齐次与非齐次等概念需要了解。
常微分方程可以分为一阶和二阶两种情况,需要使用初值条件或边界条件来求解。
3.2 一阶常微分方程的解法一阶常微分方程的解法包括可分离变量法、齐次方程法、一阶线性方程法等。
通过将方程进行变形,可以得到一阶常微分方程的标准形式,使得求解变得更加简洁明了。
3.3 二阶常微分方程的解法二阶常微分方程的解法需要使用特征方程法、常数变易法、欧拉方程法等。
专升本高等数学二笔记公式大全

第一章极限和连续第一节极限[复习考试要求] 1.了解极限的概念(对极限定义 3. 理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。
4. 理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。
1,0,1,0,… 有界:0, 12.数列极限的存在准则定理 1.3(两面夹准则)若数列{x n },{y n },{z n }满 等形式的描述不作要求)。
5.会求事件的条件概率;掌握概率的乘法公式及足以下条件:会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2. 了解极限的有关性质,掌握极限的四则运算法则。
3. 理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4. 熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。
2.会求函数的间断点。
3. 掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4. 理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分 事件的独立性。
6. 了解随机变量的概念及其分布函数。
7. 理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。
8. 会求离散性随机变量的数学期望、方差和标准差。
第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义(1) ,(2) , 则定理 1.4 若数列{x n }单调有界,则它必有极限。
3.数列极限的四则运算定理。
定理 1.5(三)函数极限的概念 1. 当 x→x 0 时函数f (x )的极限 (1)当 x→x 0 时f (x )的极限 定义对于函数 y=f (x ),如果当 x 无限地趋于 x 0时,函数 f (x )无限地趋于一个常数A ,则称当x→x 0 时,函数 f (x )的极限是A ,记作或f (x )→A(当 x→x 0 时) 例 y=f (x )=2x+12. 当x→∞时,函数 f (x )的极限 (1) 当x→∞时,函数 f (x )的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+ →1定义对于函数y=f (x ),如果当 x→∞时,f (x )无限地趋于一个常数A ,则称当x→∞时,函数 f (x )的极限是A ,记作或 f (x )→A(当x→∞时)(2) 当x→+∞时,函数 f (x )的极限定义对于函数y=f (x ),如果当 x→+∞时,f (x )无限地趋于一个常数A ,则称当 x→+∞时,函数f (x )的极限是A ,记作这个定义与数列极限的定义基本上一样,数列极限的定义中n→+∞的 n 是正整数;而在这个定义[复习考试要求] 等形式的描述不作要求)。
专升本高等数学复习资料

专升本高等数学复习资料引言高等数学是专升本考试中的重要科目之一,也是很多考生普遍认为较为困难的科目。
为了帮助考生更好地复习高等数学,本文整理了一些复习资料,并提供了一些复习建议和学习方法,以便考生有效提高复习的效果。
知识点梳理1.集合与函数2.极限与连续3.导数与微分4.积分与不定积分5.一元函数微分学应用6.函数积分学应用7.无穷级数8.空间解析几何与向量代数9.多元函数微分学10.重积分11.曲线与曲面积分12.常微分方程复习建议1.制定合理的学习计划:根据自己的实际情况和时间安排,合理分配每天的学习时间,将高等数学的复习安排在日程中。
2.理解概念,掌握基础知识:高等数学是建立在基础知识上的,要牢固掌握集合与函数、极限与连续、导数与微分等基本概念。
3.多进行例题训练:通过做大量的例题,不仅可以巩固基本知识,还能提高解题能力和应对考试的信心。
4.多与他人讨论、交流:在学习过程中,可以与同学或老师进行讨论,互相交流,共同进步。
5.制作思维导图或总结笔记:通过制作思维导图和总结笔记,可以将知识点整理归纳,增强记忆效果。
学习方法制作复习大纲在开始高等数学的复习前,可以先制作一个复习大纲,列出每个章节的主要内容和重点,有助于将知识点整理清楚并有条理地复习。
划分优先级根据复习进度和自己的掌握情况,将知识点划分为重点、难点和易点,并根据优先级合理安排时间。
对于重点和难点的内容,可以多花时间和精力进行深入学习和理解。
多做例题做例题是巩固知识和提高解题能力的有效方法。
可以选择一些习题集进行练习,挑选出一些典型的例题进行反复训练,掌握解题方法和思路。
参考教辅资料在复习过程中,可以选择一些高等数学的教辅资料作为参考,学习其中的例题和解题技巧。
同时,可以寻找一些经典的教材和参考书籍进行参考阅读,扩充知识面。
讨论交流在学习过程中,可以与同学或老师进行讨论和交流。
通过讨论和交流,可以互相答疑解惑,发现自己的不足之处,相互学习和进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.变上限函数的求导,牛顿—莱布尼茨公式,定积分的换元法(利用被积函数奇偶性简便
计算)和分部积分法,,简单的广义积分计算(瑕积分)。
2.会用定积分表示平面图形面积,会求旋转体体积,会求平面曲线的弧长(曲线弧由直角
坐标方程给出)。
3.会求可分离变量的微分方程的特解、齐次方程的解法,一阶线性微分方程解的公式。
掌
握可降阶的高阶微分方程的解法(三种都考)。
4.掌握空间中两点间的距离的计算;
5.会求二元函数的定义域、极限,偏导数和在某一点处全微分,复合函数的偏导数,隐函
数的偏导数,了解可微、偏导、连续的关系;会求二元函数的极值及多元函数的条件极值的拉格朗日乘数法
6.二重积分性质3的应用,交换积分次序,二重积分(直角坐标、极坐标)的计算方法。
1。