真空技术及真空计量基本知识

合集下载

真空泵基础知识及选型指导

真空泵基础知识及选型指导

真空泵基础知识及选型指导一、基础知识1、真空的概念“真空”一词来自拉丁语“vacuum”,原意为“虚无”、“空的”。

真空是指在给定空间内低于环境大气压力的气体状态,即该空间内的气体分子密度低于该地区大气压力的气体分子密度,并不是没有物质的空间。

水环真空泵应用于低真空(105—103 Pa)领域2、真空的测量单位在真空技术中,表示处于真空状态下气体稀薄程度的量称为真空度,可用压力、分子数密度、平均自由程和形成一个单分子层的时间常数等来表征,但通常用气体的压力(剩余压力)值来表示。

气体压力越低,表示真空度越高;反之,压力越高,真空度越低。

法定的压力计量单位为帕[帕斯卡],符号为Pa1Pa=1N.m-2 此外,还可用真空度的百分数作测量单位。

δ——真空度百分数(%)P——绝对压力(Pa)Pb-P 表示真空压力表读数,表压力(用Pe表示)真空度百分数δ(%)与压力P对照表3、单位换算1atm(标准大气压)=1013.25hPa(百帕)1mmHg(毫米汞柱)=1Torr(托)=1.333 hPa(百帕)1bar(巴)=1000 hPa(百帕)1mbar(毫巴)=1 hPa(百帕)1inHg(英寸汞柱)=25.4mmHg(毫米汞柱)=33.8 hPa(百帕)4、相关术语◇气量——水环真空泵的气量是指入口在给定真空度下,出口为大气压1013.25hPa时,单位时间通过泵人口的吸入状态下的气体容积,m3/min或m3/h 。

◇最大气量——水环真空泵的最大气量是指气量曲线上的气量最大值,m3/min或m3/h。

◇真空度(或称作压力)——水环真空泵的真空泵是指入口处在真空状态下气体的稀薄程度,以绝对压力表示,Pa、hPa、kPa。

◇极限真空度(或称作极限压力)——水环真空泵的极限真空度是指入口处气量为零时的真空度,Pa、hPa、kPa。

◇压缩比——吸入压力下气体容积与压缩后气体容积之比◇饱和蒸汽压——在给定温度下,某种物质的蒸汽与其凝聚相处于相平衡状态下的该种物质的蒸汽压力。

7~0真空技术基础知识

7~0真空技术基础知识

第七单元 真空技术7-0 真空技术基础知识“真空”是指气体分子密度低于一个大气压的分子密度稀薄气体状态。

真空的发现始于1643,那年托利拆利(E.Torricelli )做了有名的大气压力实验,将一端密封的长管注满水银倒放在盛有水银的槽里时,发现了水银柱顶端产生了真空,确认了真空的存在。

此后,人们不断致力于提高真空度,随着科学技术的发展,现在已经能够获得低于10-10Pa 的极高真空。

在真空状态下,由于气体稀薄,分子之间或分子与其它质点之间的碰撞次数减小,分子在一定时间内碰撞于表面上的次数亦相对减小,这导致其有一系列新的物化特性,诸如热传导与对流减小,氧化作用小,气体污染小,气化点降低,高真空的绝缘性能好等等,这些特征使得真空特别是高真空技术已发展成为先进技术之一,目前,在高能粒子加速器、大规模集成电路、表面科学、薄膜技术、材料工艺和空间技术等科学研究的领域中占有重要地位,被广泛应用于工业生产,尤其是在电子工业的生产中起着关键的作用。

一、真空物理基础 1. 真空的表征表征真空状态下气体稀薄程度的物理量称为真空度。

单位体积内的分子数越少,气体压强越低,真空度越高,习惯上采用气体压强高低来表征真空度。

在SI 单位制中,压强单位为 牛顿/米2(N/m 2):1牛顿/米2=1帕斯卡(Pascal ), (7-0-1)帕斯卡简称为帕(Pa ),由于历史原因,物理实验中常用单位还有托(Torr )。

1标准大气压(atm )=1.0135×105(Pa),1托=1/760标准大气压 (7-0-2) 1托=133.3帕斯卡习惯采用的毫米汞柱(mmHg )压强单位与托近似相等(1mmHg=1.00000014)托。

各种单位之间的换算关系见附表7-1 2. 真空的划分真空度的划分(不同程度的低气压空间的划分)与真空技术的发展历史密不可分。

通常可分为:低真空(Pa 10~1013-)、高真空(Pa 10~1061--)、超高真空(Pa 10~10-10-6)和极高真空(低于Pa 1010-)。

计量基本知识

计量基本知识

3.容积式流量计:主要利用流体连续通过一定容积之后 进行流量累积的原理。属于这类流量计的有椭圆齿轮流 量计和腰轮流量计。适用于高粘度介质流量的测量,如 齿轮、腰轮流量计。 4.其它类型流量计:如基于电磁感应原理的电磁流量计、 涡街流量计等。
二、差压式流量计
差压式流量测量方法,是根据伯努利方程提供
当热电偶热端和冷端 的温度不同时,回路 就会产生一定大小的 热电势,这种物理现 象称为热电效应。热 电势的值与热电偶的 金属材料性质和冷热 端之间的温度差有关, 而与热电极的长度和 直径无关。如图所示。

热电偶正在大量地被铠装热电偶所替代,这是因为铠装热 电偶有以下特点: (1)测量反应速度快。 (2)可弯曲性能好,方便安装和测量 (3)使用寿命长。 (4)抗振性能好。
b 仪表误差 仪表的准确度是用仪表误差的大小来说明其指示值与被 测量真值之间的符合程度,误差越小,准确度越高。 仪表的准确度用仪表的最大引用误差 (即仪表的最 大允许误差 )来表示,即
仪表误差是对仪表在其测量范围内测量好坏的整体评价。
C 仪表精度等级a(去掉仪表误差的正负号和”%“)仪表精度等 级是按国家统一规定的允许误差大小来划分成若干等级的。 仪表的精度等级越小,仪表的测量准确度越高。目前中国生 产的仪表的精度等级有

校验压力表应注意哪些事项? 应在5~30℃室温下进行; 被检表的指针轴应位于刻度盘孔中心,当轻敲表壳指 针位置不变动的情况下,再往校验器上安装被检表。 标准表与被检表安装后,两个表的指针轴应高度相等, 以免由于液位不同造成指示误差,否则哪一表指针轴 的位置底,哪个表的指示值就会偏大。 校验中观察被检表指针动态,校对读数时,先对准标 准表刻度,再从被检表上看误差数值。

(整理)真空技术基础知识

(整理)真空技术基础知识

(整理)真空技术基础知识真空技术基础知识前⾔1. 真空“真空”来源于拉丁语“Vacuum ”,原意为“虚⽆”,但绝对真空不可达到,也不存在。

只能⽆限的逼近。

即使达到10-14—10-16托的极⾼真空,单位体积内还有330—33个分⼦。

在真空技术中,“真空”泛指低于该地区⼤⽓压的状态,也就是同正常的⼤⽓⽐,是较为稀薄的⽓体状态。

真空是相对概念,在“真空”下,由于⽓体稀薄,即单位体积内的分⼦数⽬较少,故分⼦之间或分⼦与其它质点(如电⼦、离⼦)之间的碰撞就不那么频繁,分⼦在⼀定时间内碰撞表⾯(例如器壁)的次数亦相对减少。

这就是“真空”最主要的特点。

利⽤这种特点可以研究常压不能研究的物质性质。

如热电⼦发射、基本粒⼦作⽤等。

2. 真空的测量单位⼀、⽤压强做测量单位真空度是对⽓体稀薄程度的⼀种客观量度,作为这种量度,最直接的物理量应该是单位体积中的分⼦数。

但是由于分⼦数很难直接测量,因⽽历来真空度的⾼低通常都⽤⽓体的压强来表⽰。

⽓体的压强越低,就表⽰真空度越⾼,反之亦然。

根据⽓体对表⾯的碰撞⽽定义的⽓体的压强是表⾯单位⾯积上碰撞⽓体分⼦动量的垂直分量的时间变化率。

因此,⽓体作⽤在真空容器表⾯上的压强定义为单位⾯积上的作⽤⼒。

压强的单位有相关单位制和⾮相关单位制。

相关单位制的各种压强单位均根据压强的定义确定。

⾮相关单位制的压强单位是⽤液注的⾼度来量度。

下⾯介绍⼏种常⽤的压强单位。

【标准⼤⽓压】(atm )1标准⼤⽓压=101325帕【托】(Torr )1托=1/760标准⼤⽓压【微巴】(µba )1µba=1达因/厘⽶2【帕斯卡】(Pa )国际单位制1帕斯卡=1⽜顿/m2【⼯程⼤⽓压】(at )1⼯程⼤⽓压=1公⽄⼒/厘⽶2⼆、⽤真空度百分数来测量%100760760%?-=P δ式中P 的单位为托,δ为真空度百分数。

此式适⽤于压强⾼于⼀托时。

3. 真空区域划分有了度量真空的单位,就可以对真空度的⾼低程度作出定量表述。

真空知识

真空知识

基础知识1、真空的概念“真空”一词来自拉丁语“vacuum”,原意为“虚无”、“空的”。

真空是指在给定空间内低于环境大气压力的气体状态,即该空间内的气体分子密度低于该地区大气压力的气体分子密度,并不是没有物质的空间。

水环真空泵应用于低真空(105—103 Pa)领域2、真空的测量单位在真空技术中,表示处于真空状态下气体稀薄程度的量称为真空度,可用压力、分子数密度、平均自由程和形成一个单分子层的时间常数等来表征,但通常用气体的压力(剩余压力)值来表示。

气体压力越低,表示真空度越高;反之,压力越高,真空度越低。

法定的压力计量单位为帕[帕斯卡],符号为Pa1Pa=1N.m-2 此外,还可用真空度的百分数作测量单位。

δ——真空度百分数(%)P——绝对压力(Pa)Pb-P 表示真空压力表读数,表压力(用Pe表示)真空度百分数δ(%)与压力P对照表3、单位换算1atm(标准大气压)=1013.25hPa(百帕)1mmHg(毫米汞柱)=1Torr(托)=1.333 hPa(百帕)1bar(巴)=1000 hPa(百帕)1mbar(毫巴)=1 hPa(百帕)1inHg(英寸汞柱)=25.4mmHg(毫米汞柱)=33.8 hPa (百帕)4、相关术语◇气量——水环真空泵的气量是指入口在给定真空度下,出口为大气压1013.25hPa时,单位时间通过泵人口的吸入状态下的气体容积,m3/min或m3/h 。

◇最大气量——水环真空泵的最大气量是指气量曲线上的气量最大值,m3/min或m3/h。

◇真空度(或称作压力)——水环真空泵的真空泵是指入口处在真空状态下气体的稀薄程度,以绝对压力表示,Pa、hPa、kPa。

◇极限真空度(或称作极限压力)——水环真空泵的极限真空度是指入口处气量为零时的真空度,Pa、hPa、kPa。

◇压缩比——吸入压力下气体容积与压缩后气体容积之比◇饱和蒸汽压——在给定温度下,某种物质的蒸汽与其凝聚相处于相平衡状态下的该种物质的蒸汽压力。

真空技术基础

真空技术基础

不需要油作为介质,又称为无油泵
1.3 真空的获得-抽真空
极限真空(极限压强Pu)和抽气速率
——是表示真空泵性能的两个重要参数。极限压强是该系 统所能达到的最低压强;抽气速率是在规定压强下单位时间 抽出气体的体积,它决定抽真空所需要的时间。
理论上,一个系统所能达到的真空度:
Q V dP P Pu i S S dt
旋片式机械泵结构示意图和工作原理图
1.3 真空的获得-抽真空
玻-马洛特定律
V P P0 1 V V n次循环后
V Pn P0 V V
n
P0 V lg mt lg 1 Pi V Kt
lgP0/Pi
Pn达到极限值?
体分子的扩散系数;v油蒸气在喷口处的速度 扩散泵的实际抽速:
S (3 ~ 4)d
2
d是进气口直径
泵油要求:
化学稳定性好(无毒、无腐蚀) 热稳定性好(高温不分解) 抗氧化 较低的饱和蒸气压(小于等于10-4Pa)
工作时应有尽可能高的蒸气压
无任何阻挡的话,返油率高达10-3mg/cm2· s
1.3 真空的获得-抽真空
赫兹-克努曾公式
va 8k T 8 RT m M

P 2mk T
温度一定时, P
稀薄气体的基本性质
示例
气体分子密度
P n 7.2 10 (m-3 ) T
22
标准状态: P = 105Pa,n = 2.461019分子/cm3
P = 1.3 10-8Pa,n = 3.24105分子/cm3
1 1 nva 3.24 10 5 8.5 10 4 6.9 10 9 分子 / cm2 s 4 4

真空机械设计手册

真空机械设计手册

真空机械设计手册真空技术是一种重要的工程技术,在各个领域都有着广泛的应用。

真空机械设计手册作为工程技术人员的必备参考资料,对于真空技术的学习和应用具有重要意义。

本手册旨在系统地介绍真空技术的基本原理、真空系统的设计与构建、真空泵的选型和应用等内容,旨在为工程技术人员提供一份全面而实用的参考资料。

第一部分:真空技术基础1.1 真空的基本概念1.2 真空度的计量1.3 真空技术的应用领域1.4 真空技术的发展历史第二部分:真空系统设计与构建2.1 真空系统的组成和结构2.2 真空管道与密封2.3 真空室的设计和制造2.4 真空阀门与控制系统第三部分:真空泵的选型与应用3.1 真空泵的工作原理3.2 真空泵的分类与特点3.3 真空泵的选型原则3.4 真空泵在真空系统中的应用第四部分:常见真空设备的设计与应用4.1 真空冷凝器的设计与应用4.2 真空干燥器的设计与应用4.3 真空蒸馏设备的设计与应用4.4 真空测量仪器的选用与校准第五部分:真空系统的安全与维护5.1 真空系统的安全操作规程5.2 真空设备的常见故障与排除5.3 真空系统的日常维护与保养5.4 真空系统的紧急故障处理与应急措施第六部分:真空技术应用案例6.1 真空技术在航空航天领域的应用6.2 真空技术在光电子器件制造中的应用6.3 真空技术在新能源开发中的应用6.4 真空技术在生物医药领域的应用通过以上内容的系统讲解,本手册旨在为读者提供一份全面而实用的真空技术参考资料,帮助工程技术人员更好地掌握真空技术的基本原理、设计与应用。

结合实际应用案例,使读者能够更加深入地理解真空技术在不同领域的应用和发展趋势。

希望本手册能够成为广大工程技术人员在真空技术领域学习和工作中的得力助手。

真空概念

真空概念

真空概念真空是指定空间内低于大气压力的气体状态,也就是该空间内气体分子密度低于该地区的大气压的气体分子密度,不同的真空状态,就意味着该空间具有不同的分子密度。

标准大压(101325Pa),标准大气压是指在海平面测量的压力,海拨越高,真空越低。

完全没有气体的空状称为绝对真空,绝对真空实际上是不存在的。

常见真空测量单位和单位的换算1、用压力作测量单位(Pa)帕斯卡( Pa)是国际单位制中的压力的单位。

1个大气压等到于101325Pa,1Pa的压力就是1牛顿的力压在1m 2 面积上。

(1Pa=1N/1m 2 )2、真空表上的单位(MPa)真空表是用来在一个指定范围内所抽空气的测量工具。

真空表上的数字是从 0到-0.1Mpa,0代表一个大气压,表示一个指定的范围内与外界压力相等,达到-0.1时表示指定范围内的压力只有100Pa,这种真空表只能测量压力高于100Pa的真空度。

(1Mpa=10 6 ;1Kpa=1000pa;hpa=100pa)3、毫米水银柱(mmHg)和乇(Torr)乇的定义1个大气压等于760乇,mmHg和Torr相差不大,严格来说mmHg和Torr只差700万分之一,所以1mmHg=1Torr。

101325Pa等于760Torr(1Pa=133.322Torr)真空区域的划分为实用便利起见,人们常把真空度粗划为几个区域。

•低真空 10 5 ~100Pa 通常用液环式真空泵或往复式真空泵•中真空 100~10 -1 Pa 通常用罗茨真空泵+水环真空泵机组、旋片式。

•高真空 10 -1 ~10 -5 Pa 通常用旋片泵和滑阀泵以及机组•超高真空大于10 -5 Pa 通常用扩散泵和分子泵常用真空泵的分类•往复式真空泵往复式真空泵又称活塞式真空泵,极限真空为 2600Pa~1300Pa抽气量范围为200~800m 3/h,用于从密封的容器中抽除气体,被抽气体温度不得超过35°,应用于真空浸渍、钢水真空处理、真空蒸馏、等方面抽吸气体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章真空计量基本知识一、真空1.1 真空、理想气体状态方程、气体分子的热运动地球的周围有一层厚厚的空气,称为大气,人类就生活在这些大气中。

空气有一定的质量,在通常状况下,大约为1.29g/l,可以说是很轻的。

但地球周围的空气非常密,在几十公里以上的高空还有空气存在,这么厚的一层空气受地球引力作用,就会对地面上的一切物体产生压力,这就是大气压。

早在17世纪,托里拆利就通过实验证实了大气压强的大小。

通常一个标准大气压约等于0.1MPa,相当于760mm左右的汞柱所产生的压强。

真空是指低于一个大气压的气体空间,但不可理解为什么都没有。

真空是同正常的大气相比,是比较23个分子,占据22.4L的6.022×10稀薄的气体状态。

按照阿佛加德罗定律1mol任何气体在标准状况下,有193cm10个/3?体积。

由此我们得到标准状态下气体分子的密度为。

在非标准状况下,当气体处于平衡时,满足描述理想气体的状态方程。

N??p?kT??V??-23。

因=1.38热力学温度,为压力(式中的N为气体的摩尔数,PPa),Tκ为波尔兹曼常数,κ×10J/K 此在非标准状况下,气体分子数密度与压力和温度有关。

每立方厘米中的气体分子数可以表示为:P610?7n?.24T11?-3Pa103P?1.?T=293K这样很高的真空度时,cmn式中为气体分子数密度(),由此可见,即便在时,每立方厘米的空间中仍有数百个气体分子。

因此所谓真空是相对的,绝对的真空是不存在的。

同时我们也可知,气体分子数密度在温度不变时,与压力成正比。

因此,真空度可用压力来表示也是以此为理论依据。

在真空抽气过程中,一般可认为是等温的,我们说容器中的压力降低了或气体分子数密度减少了都是正确的。

气体分子的热运动1.2从微观的角度看,气体是由分子组成的,所有分子都处在不断的、无规则的运动状态。

分子的这种运1 / 191 / 19动与温度有关,因此我们称之为热运动。

做无规则运动的气体速度不都具有相同的值,而是形成一个各种速度的速度分布,具有最大速度和最小速度的分子数都比较少,而具有“中等”速度的分子数比较多,速度的分布是有规律的。

容器中的气体,施于器壁或测量元件的压力,是大量气体分子不断对他们进行碰撞的结果。

我们知道,所有气体分子都在以各种可能的速度和方向无规则的运动着,随时都有一部分分子碰撞到器壁或测量元件上,并把它们的动量传递给被碰撞的物体,对于一个分子来讲,它每次碰撞在什么地方,有多大的动量都是偶然的,不确定的。

但对于容器中的大量分子而言,每时每刻都有许多分子碰撞到器壁和测量元件上,按照统计规律,这种碰撞是恒定的、持续的、确定的,从宏观上表现出来的,就是压力。

因此从分子运动的观点看,气体压力是由于大量气体分子做无规则的热运动,对物体表面施加碰撞的统计平均结果。

1.3 真空的特点在低于大气压力的稀薄气体中,气体所显示的第一个特点是气体分子数目的减少,即单位体积内所具有的分子数目的减小.低压气态空间所显示的第二个特点是随着分子数目的减少,分子间、分子与器壁之间相互的碰撞次数也逐渐的减少下来。

随大气压力降低,每秒种内碰撞到每平方厘米表面积上去的分子数是在不断减少的。

低气压状态中,气体的第三个特点是气体分子热运动自由程的增大。

所谓自由程,是指一个气体分子在其热运动过程中,彼此之间不断发生碰撞,一个分子与其它分子每连续两次碰撞之间所走的路程。

由于分子运动速度不同,运动情况不同,单独讨论某一个分子的自由程是无意义的,因此通常采用平均自由程的概念,它定义为相当多的不同自由程的平均值。

平均自由程也只有统计的概念。

理论和实验表明,气体分子的平均自由程可以用下式表示kT??2??p2为压强,分子直径,其中为σpTk为气体温度,为玻耳兹曼常数。

二、真空的度量根据上面的讨论,我们可以看出,在真空中气体分子数目、气体分子间相互碰撞次数及气体分子碰撞到空间任何物体表面上去的次数都有着明显的减少。

随着气态空间分子数的减少,即出现了真空度不断提2 / 192 / 19高的过程。

所谓真空度,就是空间中气态物质的稀薄程度。

气体的压力越低,其稀薄程度越大,也就是真空度越高。

因此,低压力与高真空或高压力与低真空,在含义上是完全相同的。

在真空技术中由于真空度和压强有关,所以真空度的度量单位是用压强来表示。

,简称帕,是目前国际上推荐使用的国际单位制。

我国Pascal)压强所采用的法定计量单位是帕斯卡()(Torr年,第一届国际技术会议曾建议采用“托”(Torr)作为测量真空度的单位。

托采用国际单位制。

1958柱所产生的压强。

两者的关系为是最初获得真空时被采用的真空技术中的独特单位,实际上也是1mmHg5,(mbar) Pa ,它的常用单位是毫巴1Torr=133.322Pa=1mmHg。

还有一种压强的计量单位是巴(bar),1 bar =10-3 bar=100Pa,这也是我们镀膜线控制界面所用的压强单位。

1mbar=10三、真空的划分有了度量真空度的单位,就可以定量表示真空度的高低了。

但在习惯上,人们只需要指出真空状态的大致情况时,采用划分真空区域的方法是比较方便的。

根据我国制定的国标,真空区域大致划分如下:25托)(760-1Pa 低真空区域10 -10-32-1托)10(-101-10Pa 中真空区域-7-3-1-5-10 (10 高真空区域10-10托)Pa-7-5 10托)(<10<Pa 超高真空区域3.1 低真空区域-4,分子数密度还很高,在容器壁上经常保留着一在低真空情况下,气体分子的平均自由程小于10cm个被吸附的气体层,容器内部气体分子由于不断与其它分子发生碰撞,所以运动轨迹是一个平均自由程远示。

小于容器尺寸的空间折线。

如图13 / 193 / 19低真空下蒸汽分子的运动轨迹图2 λ<<d 1 图低真空下气体分子的运动轨迹此时如果容器内部存在一个蒸发源,例如用电热杯加热一小杯水,由于气体分子数密度高,在水蒸气分子不断离开水面又会不断被碰撞返回水面,所以蒸发速度慢。

另一方面,离开水面的蒸汽分子由于与其示。

如图2他气体分子碰撞,完全破坏了刚离开水面时的方向,而是通过杂乱无章的空间折线做随机运动,。

“分子阴影”任何蒸汽分子都可能凝结在容器壁或屏的任何一面,不会由于屏的存在而在容器上部壁上出现因此真空镀膜不能工作在粗真空范围,否则,就会在真空镀膜机腔内及被镀件的所有表面上出现膜层。

在低真空情况下,气体传导热量的能力与压力无关。

低真空情况下气体传导热的过程主要是靠气体分子间的相互碰撞,动能高的气体分子通过碰撞把热能传递给动能低的分子以完成热量的传递。

若压力高,分子数密度大,分子平均自由程小,反之,压力低,分子数密度小,平均自由程增加,二者相互关联,使得在粗真空范围内气体的热传导能力并不随着压力的降低而提高。

在低真空条件下,分子自由程小,气体可视为连续介质,气流通过管道时,流层间存在摩擦阻力,因此流速沿半径方向会均匀减小,中间最大,而贴近管壁处由于壁对气体的粘着作用,使流速为零。

从分子运动的观点看,出现这种现象的原因是气体分子具有传递动量的能力。

气体随气流做定向运动时具有一定的动量,由于分子数密度很高,这些分子同时还要在各个方向上做无规则热运动,碰撞与之相邻的气体分子,把它们的一部分动量传递给这些分子,这样互相碰撞传递动量的结果,形成如上所述的速度分布。

气体的这种传递动量或内部各层之间交换动量的现象称为气体的粘滞性和内摩擦。

上述气体分子的平均自由程小于管道最小截面尺寸的流动状态就称为粘滞流。

低真空下气体的流动主要表现为粘滞流。

3.2 中真空区域4 / 194 / 19-4cm到10cm分子的平均自由程从10,变得可与容器尺寸相比拟。

在中真空区域内,随真空度由低到高,所以中真空情况下,容器壁上吸附的气体层比低真空容易脱离器壁。

中真空环境中液体的蒸发也要比低真空快很多。

在中真空状态下,随着气压的降低,平均自由程的增加就开始不足以补偿分子数减少造成的影响,出现了热传导能力与压力有关的现象,在一定范围内,热传导能力与气体压力成正比。

根据这一特点,制成了热传导式真空计。

在中真空下,分子的平均自由程可以与容器的尺寸相比拟,但分子之间还存在较多碰撞,气体的流动既不是粘滞流,也不是分子流,而是介于粘滞流和分子之间的一种中间流状态。

3.3 高真空区域在高真空情况下,气体分子的平均自由程一般在10cm以上,这就是说,在一个容器内部,做热运动的气体分子之间已几乎不发生碰撞。

它们只与容器壁发生碰撞,在容器壁间作折线运动。

如图3示。

>>d高真空时蒸汽分子的直线轨迹λ4 图高真空时气体分子的热运动路径图3在高真空情况下,由于离开器壁的分子不能与其它分子碰撞返回器壁表面,所以器壁上,至少是大部分器壁上已不能保留布满气体分子的吸附层。

在高真空情况下,如果真空容器的内部存在一个蒸发源,例如真空镀膜的蒸镀物质,由于蒸发的原子不可能因与其它分子碰撞而返回蒸发源,所以蒸发速度可以达到该温度下的最大值。

另外,从蒸发源飞离的蒸发原子,将不改变方向,一直碰到器壁或屏上,并凝结在那里。

冷凝的蒸镀层只在屏朝向蒸发源的那所示。

如同蒸发源是一个点光源一样。

这就是真空镀膜的基础。

一面和器壁不被遮挡的部分出现,如图4在高真空情况下,气体的热传导能力与压力有关,压力越低,热传导能力越差。

绝热性能越高。

这是5 / 195 / 19因为压力越低,载热分子数越少的缘故。

像杜瓦斯、保温瓶等都是利用了这一原理。

四、蒸汽所谓蒸汽(又称可凝性气体),是相对于永久气体(或称非可凝性气体)而言的。

对于任何一种气体,都存在着一个临界温度,在临界温度以上的气体,不能通过等温压缩发生液化,称为永久气体;而在临界温度以下的气体,靠单纯增加压力即能使其液化,便是蒸汽。

空间中的蒸汽分子返回到液体内去的过程叫凝结。

凝结的逆过程,即液体分子飞到空间变成蒸汽的现2·s)。

在汽、液共存的条件下,kg/(m象,叫蒸发。

单位时间通过单位面积液面蒸发的质量叫蒸发率,单位是蒸发和凝结现象同时存在,若蒸发率大于凝结率,则宏观上表现为液体的蒸发;若蒸发率小于凝结率,则宏观上表现为蒸汽的凝结;二者相等时,则处于饱和状态,此时空间蒸汽的压力称为对应温度下的饱和蒸汽压P。

物质的饱和蒸汽压P随着温度升高而增大。

SS在真空工程中,在蒸汽没有达到饱和之前可以使用理想气体定律和公式来描述蒸汽的性质;而蒸汽一旦达到饱和,理想气体定律不再适用,气体的饱和蒸汽压P只与温度有关,在特定温度下是一个定值。

只S要保持温度恒定,饱和蒸汽压就不会改变,容积减小,将有一部分蒸汽分子凝结成液体;反之增大容积,又会有一部分液体变为气体。

相关文档
最新文档