Linking Jet Emission, X-ray States and Hard X-ray Tails in the Neutron Star X-ray Binary GX
X-ray基础知识

可由Cooling Curve表现出来,单位是H.U./min.
X-Ray Generator 简介
X-Ray Generator功能
提供电力给X-Ray Tube和其他系统组件控制影
响影像品质之技术条件,如mA,kVp,sec.等
电力供应之要点
种类
直流(DC)--电池 交流(AC)--单相(Single Phase)/ 三相(Three Phase) 范围 一般X-Ray Generator使用208 - 408伏特(Volts) 频率 50 Hz / 60 Hz
Ionization Chamber
Solid State
滤线栅的类型
平行式 辐射式 交叉式
网格的参数
铅栅比(Grid Ratio) 铅栅焦距(Grid Focus)
X光机组成要件
X光高压产生器(Generator) X光球管(X-Ray Tube) X光球管支架装置(Support Device) X光摄影台(Table)
回转式阳极
具有承轴回转系统 (bearing system), 旋转速度一般为3,400rpm-10,000rpm 可使 X-ray Power Output提高
跟效应(Heel Effect)
Target Angle角度愈小、将会有愈多之XRay被Anode本身吸收,造成愈接近阳极 靶之X-Ray能量愈低,而愈接近阴极灯丝 之X-Ray能量愈高,此即为跟效应,且会
X-Ray波长与Film上contrast之关系
在X-ray穿透过病人,其穿透率主要和病人组织结构及X-Ray波长有关
短波长X-ray
(high kV) :能量较高,穿透性好,造成在
X-Ray基础

• X光球管阳极能夠包容的热量,可由Rating Chart 上表现出來,单位是H.U.。
管套散热率 (Heat Dissipation Rate) • X光球管管套在一段时间內可将热能散发出去的 量,可由Cooling Curve表现出來,单位是 H.U./min。
X-Ray Generator 简介
X光机组成要件 • X光高压发生器(Generator) • X光球管(X-Ray Tube) • X光球管支架装置(Support Device) • X光摄影床(Table)
Grid: 滤线栅
• 削减散射线 • 栅影 • 活动滤线栅
Type of Grid • 平行式 • 辐射式
• 交叉式
成像基本原理:
影像增强器:
将入射的X线信号转换为可见光,
并将其放大成高亮度的影像。
成像基本原理: 影像增强器的基本结构:
成像基本原理: 影像增强器成像的步骤: 输入屏上的荧光物(CsI)将入射的 X射线能量转换成可见光 。
光阴极被可见光撞击释放出电子。
光电倍增效应给电子增加能量。
输出屏将电子的能量还原成可
递归降噪:消除背景噪声,使图像更 平滑,更清晰。 边缘增强:使图像中物体的边缘更加 锐利,易于区分器官边界。对于血管造 影中观察血管边缘尤其有效。但是引入 更多噪声。 锐化:与平滑的作用相反,引入噪声。
图像放大,游走:将图像以确定的比例放大, 利于观察微小细节。放大之后的图像已经超 过了监视器的范围。可以利用鼠标或轨迹球 的移动观察超出监视器范围的区域,称之为 游走。 自动电子准直:利用计算机的图像功能执行 类似于准直仪的功能。遮盖医生不关心的图 像区域或过亮过暗而影响视觉效果的区域。 数字图像灰阶翻转:即通常所说的黑白翻转。 正片、反片依据医生的习惯而定。更利于医 生观察图像。 数字图像旋转:利用数字图像的处理方法使 图像在监视器上连续性地顺时针或逆时针旋 转,从而达到更利于医生观察的位置。
7. Emission and Absorption

X射线

对K谱线的频率,莫塞莱 (H.G.J.Moseley)总结出经 验公式
n
5
4
M M L L L
O N M
3 2
K
1 1 Rc( Z 1) (中R是里德伯常量,Z是原子序 数。这一规律称为莫塞莱定律。
1
K K K K
K
莫塞莱定律提供了精确测量Z的方法。
电子被高压加速所获得的动能为
K = eU
U是阳极与阴极之间的电势差。
轫致辐射的X射线中包含各种波长成分,即连续谱。 短波长(短波极限) 0 与电子全部动能转变为光子能量 Kβ 相对应,即
K h 0
hc
0
或
hc
0
eU
相 对 10 强 度
6
Kα
50 kV
40 kV
0 是与0 相对应的轫致辐射频率。
4
*二、俄歇电子和同步辐射 (Auger electron and synchrotron radiation ) 外层电子向空位跃迁时,可以不发射X射线,将能 量传给同层的其他电子或更外层的电子,这个电子获 得能量而脱离原子,称为俄歇(P.V.Auger)电子。 任何带电粒子作加速运动都要辐射电磁波。若电子 和质子沿相同半径圆形轨道以相同的能量作圆周运动, 则电子产生的辐射能量比质子大1013 倍。 通常是在电子同步加速器上获得这种辐射,故称 同步辐射。作为产生 X 射线的新方法,一种新型光源 其优异特性: (1)强度大 (4)偏振性好 (2)能谱宽 (3)方向性好 (5)时间结构好。 5
图中点线画出了在35 kV加速 电压下 ,钼靶发出的两条标识 谱线K和 K叠加在连续谱上的 情形。
标识X 射线是由于靶原子的内 壳层电子受到高速电子的激发而 引起的。
211050371_正负压一体式无空气X_射线光电子能谱原位转移仓的开发及研制

第 29 卷第 1 期分析测试技术与仪器Volume 29 Number 1 2023年3月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Mar. 2023大型仪器功能开发(30 ~ 36)正负压一体式无空气X射线光电子能谱原位转移仓的开发及研制章小余,赵志娟,袁 震,刘 芬(中国科学院化学研究所,北京 100190)摘要:针对空气敏感材料的表面分析,为了获得更加真实的表面组成与结构信息,需要提供一个可以保护样品从制备完成到分析表征过程中不接触大气环境的装置. 通过使用O圈密封和单向密封柱,提出一种简便且有效的设计概念,自主研制了正负压一体式无空气X射线光电子能谱(XPS)原位转移仓,用于空气敏感材料的XPS测试,利用单向密封柱实现不同工作需求下正负压两种模式的任意切换. 通过对空气敏感的金属Li片和CuCl粉末进行XPS分析表明,采用XPS原位转移仓正压和负压模式均可有效避免样品表面接触空气,保证测试结果准确可靠,而且采用正压密封方式转移样品可以提供更长的密封时效性. 研制的原位转移仓具有设计小巧、操作简便、成本低、密封效果好的特点,适合给有需求的用户开放使用.关键词:空气敏感;X射线光电子能谱;原位转移;正负压一体式中图分类号:O657; O641; TH842 文献标志码:B 文章编号:1006-3757(2023)01-0030-07 DOI:10.16495/j.1006-3757.2023.01.005Development and Research of Inert-Gas/Vacuum Sealing Air-Free In-Situ Transfer Module of X-Ray Photoelectron SpectroscopyZHANG Xiaoyu, ZHAO Zhijuan, YUAN Zhen, LIU Fen(Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China)Abstract:For the surface analysis of air sensitive materials, and from the sample preparation to characterization, it is necessary to provide a device that can protect samples from exposing to the atmosphere environment so as to obtain accurate and impactful data of the surface chemistry. Through the use of O-ring and one-way sealing, a simple and effective design concept has been demonstrated, and an inert-gas/vacuum sealing air-free X-ray photoelectron spectroscopic (XPS) in-situ transfer module has been developed to realize the XPS analysis of air sensitive materials. The design of one-way sealing was achieved conveniently by switching between inert-gas and vacuum sealing modes in face of different working requirements. The XPS analysis of air-sensitive metal Li sheets and CuCl powders showed that both the sealing modes (an inert-gas/vacuum sealing) of the XPS in-situ transfer module can effectively avoid air contact on the sample surface, and consequently, can ensure the accuracy and reliability of XPS data. Furthmore, the inert gas sealing mode can keep the sample air-free for a longer time. The homemade XPS in-situ transfer module in this work is characterized by a compact design, convenient operation, low cost and effective sealing, which is suitable for the open access to the users who need it.收稿日期:2022−12−07; 修订日期:2023−01−17.基金项目:中国科学院化学研究所仪器孵化项目[Instrument and Device Functional Developing Project of Institute of Chemistry Chinese Academy of Sciences]作者简介:章小余(1986−),女,硕士,工程师,主要研究方向为电子能谱技术及材料表面分析,E-mail:xyiuzhang@ .Key words:air-sensitive;X-ray photoelectron spectroscopy;in-situ transfer;inert-gas/vacuum sealingX射线光电子能谱(XPS)是一种表面灵敏的分析技术,通常用于固体材料表面元素组成和化学态分析[1]. 作为表面分析领域中最有效的方法之一,XPS广泛应用于纳米科学、微电子学、吸附与催化、环境科学、半导体、冶金和材料科学、能源电池及生物医学等诸多领域[2-3]. 其中在催化和能源电池材料分析中,有一些样品比较特殊,比如碱金属电池[4-6]、负载型纳米金属催化剂[7-8]和钙钛矿材料[9]对空气非常敏感,其表面形态和化学组成接触空气后会迅速发生改变,直接影响采集数据的准确性和有效性,因此这类样品的表面分析测试具有一定难度. 目前,常规的光电子能谱仪制样转移过程通常是在大气环境中,将样品固定在标准样品台上,随后放入仪器进样室内抽真空至1×10−6 Pa,再转入分析室内进行测试. 这种制备和进样方式无法避免样品接触大气环境,对于空气敏感材料,其表面很容易与水、氧发生化学反应,导致无法获得材料表面真实的结构信息.为了保证样品表面状态在转移至能谱仪内的过程中不受大气环境影响,研究人员采用了各种技术来保持样品转移过程中隔绝空气. 比如前处理及反应装置与电子能谱仪腔室间真空传输[10-12]、外接手套箱 [13-14]、商用转移仓[15-16]、真空蒸镀惰性金属比如Al层(1.5~6 nm)[17]等. 尽管上述技术手段有效,但也存在一些缺点,例如配套装置体积巨大、试验过程不易操作、投入成本高等,这都不利于在普通实验室内广泛应用. 而一些电子能谱仪器制造商根据自身仪器的特点也研发出了相应配套的商用真空传递仓,例如Thermofisher公司研发的一种XPS 真空转移仓,转移过程中样品处于微正压密封状态,但其价格昂贵,体积较大,转移过程必须通过手套箱大过渡舱辅助,导致传递效率低,单次需消耗至少10 L高纯氩气,因此购置使用者较少,利用率低.另外有一些国内公司也研发了类似的商品化气体保护原位传递仓,采用微正压方式密封转移样品,但需要在能谱仪器进样室舱门的法兰上外接磁耦合机械旋转推拉杆,其操作复杂且放置样品的有效区域小,单次仅可放置尺寸为3 mm×3 mm的样品3~4个,进样和测试效率较低. 因此,从2016年起本实验团队开始自主研制XPS原位样品转移装置[18],经过结构与性能的迭代优化[19],最终研制出一种正负压一体式无空气XPS原位转移仓[20](本文简称XPS原位转移仓),具有结构小巧、操作便捷、成本低、密封效果好、正压和负压密封两种模式转移样品的特点. 为验证装置的密封时效性能,本工作选取两种典型的空气敏感材料进行测试,一种是金属Li材料,其化学性质非常活泼,遇空气后表面迅速与空气中的O2、N2、S等反应导致表面化学状态改变. 另一种是无水CuCl粉末,其在空气中放置短时间内易发生水解和氧化. 试验结果表明,该XPS 原位转移仓对不同类型的空气敏感样品的无空气转移均可以提供更便捷有效的密封保护. 目前,XPS原位转移仓已在多个科研单位的实验室推广使用,支撑应用涉及吸附与催化、能源环境等研究领域.1 试验部分1.1 XPS原位转移仓的研制基于本实验室ESCALAB 250Xi型多功能光电子能谱仪器(Thermofisher 公司)的特点,研究人员设计了XPS原位转移仓. 为兼顾各个部件强度、精度与轻量化的要求,所有部件均采用钛合金材料.该装置从整体结构上分为样品台、密封罩和紧固挡板三个部件,如图1(a)~(c)所示. 在密封罩内部通过单向密封设计[图1(e)]使得XPS原位转移仓实现正负压一体,实际操作中可通过调节密封罩上的螺帽完成两种模式任意切换. 同时,从图1(e)中可以直观看到,密封罩与样品台之间通过O圈密封,利用带有螺钉的紧固挡板将二者紧密固定. 此外,为确保样品台与密封罩对接方位正确,本设计使用定向槽定位样品台与密封罩位置,保证XPS原位转移仓顺利传接到仪器进样室.XPS原位转移仓使用的具体流程:在手套箱中将空气敏感样品粘贴至样品台上,利用紧固挡板使样品台和密封罩固定在一起,通过调节密封罩上的螺帽将样品所在区域密封为正压惰性气氛(压强为300 Pa、环境气氛与手套箱内相同)或者负压真空状态,其整体装配实物图如图1(d)所示. 该转移仓结构小巧,整体尺寸仅52 mm×58 mm×60 mm,可直接放入手套箱小过渡舱传递. 由于转移仓尺寸小,其第 1 期章小余,等:正负压一体式无空气X射线光电子能谱原位转移仓的开发及研制31原料成本大大缩减,整体造价不高. 转移仓送至能谱仪进样室后,配合样品停放台与进样杆的同时双向对接,将转移仓整体固定在进样室内,如图1(f )所示. 此时关闭进样室舱门开始抽真空,当样品台与密封罩内外压强平衡后密封罩自动解除真空密封,但仍然处于O 圈密闭状态. 等待进样室真空抽至1×10−4Pa 后,使用能谱仪进样室的样品停放台摘除脱离的密封罩[如图1(g )所示],待真空抽至1×10−6Pa ,即可将样品送入分析室进行XPS 测试.整个试验过程操作便捷,实现了样品从手套箱转移至能谱仪内不接触大气环境.1.2 试验过程1.2.1 样品准备及转移试验所用手套箱是布劳恩惰性气体系统(上海)有限公司生产,型号为MB200MOD (1500/780)NAC ;金属Li 片购自中能锂业,纯度99.9%;CuCl 购自ALFA 公司,纯度99.999%.金属Li 片的制备及转移:将XPS 原位转移仓整体通过手套箱过渡舱送入手套箱中,剪取金属Li 片用双面胶带固定于样品台上,分别采用正压、负压两种密封模式将XPS 原位转移仓整体从手套箱中取出,分别在空气中放置0、2、4、8、18、24、48、72 h 后送入能谱仪内,进行XPS 测试.CuCl 粉末的制备及转移:在手套箱中将CuCl 粉末压片[21],使用上述同样的制备方法,将XPS 原位转移仓整体在空气中分别放置0、7、24、72 h 后送入能谱仪内,进行XPS 测试.1.2.2 样品转移方式介绍样品在手套箱中粘贴完成后,分别采用三种方式将其送入能谱仪. 第一种方式是在手套箱内使用标准样品台粘贴样品,将其装入自封袋密封,待能谱仪进样室舱门打开后,即刻打开封口袋送入仪器中开始抽真空等待测试,整个转移过程中样品暴露空气约15 s. 第二种方式是使用XPS 原位转移仓负压密封模式转移样品,具体操作步骤:利用紧固挡板将样品台和密封罩固定在一起,逆时针(OPEN )旋动螺帽至顶部,放入手套箱过渡舱并将其抽为真空,此过程中样品所在区域也抽至负压. 取出整体装置后再顺时针(CLOSE )旋动螺帽至底部,将样品所在区域进一步锁死密封. 样品在负压环境中转移至XPS 实验室,拆卸掉紧固挡板,随即送入能谱仪进样室内. 第三种方式是使用XPS 原位转移仓正压密封模式转移样品,具体操作步骤:利用紧固挡板将样品台和密封罩固定在一起,顺时针(CLOSE )旋螺帽抽气管限位板单向密封柱密封罩主体O 圈样品台紧固挡板(e) 密封罩对接停放台机械手样品台对接进样杆(a)(b)(c)(d)(g)图1 正负压一体式无空气XPS 原位转移仓系统装置(a )样品台,(b )密封罩,(c )紧固挡板,(d )整体装配实物图,(e )整体装置分解示意图,(f )样品台与密封罩在进样室内对接完成,(g )样品台与密封罩在进样室内分离Fig. 1 System device of inert-gas/vacuum sealing air-free XPS in-situ transfer module32分析测试技术与仪器第 29 卷动螺帽至底部,此时样品所在区域密封为正压惰性气氛. 直至样品转移至XPS 实验室,再使用配套真空抽气系统(如图2所示),通过抽气管将样品所在区域迅速抽为负压,拆卸掉紧固挡板,随即送入能谱仪进样室内.图2 能谱仪实验室内配套真空抽气系统Fig. 2 Vacuum pumping system in XPSlaboratory1.2.3 XPS 分析测试试验所用仪器为Thermo Fisher Scientific 公司的ESCALAB 250Xi 型多功能X 射线光电子能谱仪,仪器分析室基础真空为1×10−7Pa ,X 射线激发源为单色化Al 靶(Alk α,1 486.6 eV ),功率150 W ,高分辨谱图在30 eV 的通能及0.05 eV 的步长等测试条件下获得,并以烃类碳C 1s 为284.8 eV 的结合能为能量标准进行荷电校正.2 结果与讨论2.1 测试结果分析为了验证XPS 原位转移仓的密封性能,本文做了一系列的对照试验,选取空气敏感的金属Li 片和CuCl 粉末样品进行XPS 测试,分别采用上述三种方式转移样品,并考察了XPS 原位转移仓密封状态下在空气中放置不同时间后对样品测试结果的影响.2.1.1 负压密封模式下XPS 原位转移仓对金属Li片的密封时效性验证将金属Li 片通过两种(标准和负压密封)方式转移并在空气中放置不同时间,对这一系列样品进行XPS 测试,Li 1s 和C 1s 高分辨谱图结果如图3(a )(b )所示,试验所测得的Li 1s 半峰宽值如表1所列. 根据XPS 结果分析,金属Li 片采用标准样品台进样(封口袋密封),短暂暴露空气约15 s ,此时Li 1s 的半峰宽为1.62 eV. 而采用XPS 原位转移仓负压密封模式转移样品时,装置整体放置空气18 h 内,Li 1s 的半峰宽基本保持为(1.35±0.03) eV. 放置空气24 h 后,Li 1s 的半峰宽增加到与暴露空气15 s 的金属Li 片一样,说明此时原位转移仓的密封性能衰减,金属Li 片与渗入内部的空气发生反应生成新物质导致Li 1s 半峰宽变宽. 由图3(b )中C 1s 高分辨谱图分析,结合能位于284.82 eV 的峰归属为C-C/污染C ,位于286.23 eV 的峰归属为C-OH/C-O-CBinding energy/eVI n t e n s i t y /a .u .Li 1s半峰宽增大暴露 15 s密封放置 24 h 密封放置 18 h 密封放置 8 h 密封放置 4 h 密封放置 0 h6058565452Binding energy/eVI n t e n s i t y /a .u .C 1s(a)(b)暴露 1 min 暴露 15 s 密封放置 24 h 密封放置 18 h 密封放置 0 h292290288284282286280图3 金属Li 片通过两种(标准和负压密封)方式转移并在空气中放置不同时间的(a )Li 1s 和(b )C 1s 高分辨谱图Fig. 3 High-resolution spectra of (a) Li 1s and (b) C 1s of Li sheet samples transferred by two methods (standard andvacuum sealings) and placed in air for different times第 1 期章小余,等:正负压一体式无空气X 射线光电子能谱原位转移仓的开发及研制33键,位于288.61~289.72 eV的峰归属为HCO3−/CO32−中的C[22]. 我们从C 1s的XPS谱图可以直观的看到,与空气短暂接触后,样品表面瞬间生成新的结构,随着暴露时间增加到1 min,副反应产物大量增加(HCO3−/CO32−). 而XPS原位转移仓负压密封模式下在空气中放置18 h内,C结构基本不变,在空气中放置24 h后,C结构只有微小变化. 因此根据试验结果分析,对于空气极其敏感的材料,在负压密封模式下,建议XPS原位转移仓在空气中放置时间不要超过18 h. 这种模式适合对空气极其敏感样品的短距离转移.表 1 通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Li 1s的半峰宽Table 1 Full width at half maxima (FWHM) of Li 1stransferred by two methods (standard and vacuum sealings) and placed in air for different times样品说明进样方式半峰宽/eV密封放置0 h XPS原位转移仓负压密封模式转移1.38密封放置2 h同上 1.39密封放置4 h同上 1.36密封放置8 h同上 1.32密封放置18 h同上 1.32密封放置24 h同上 1.62暴露15 s标准样品台进样(封口袋密封)1.622.1.2 正压密封模式下原位转移仓对金属Li片的密封时效性验证将金属Li片通过两种(标准和正压密封)方式转移并在空气中放置不同时间,对这一系列样品进行XPS测试,Li 1s高分辨谱图结果如图4所示,所测得的Li 1s半峰宽值如表2所列. 根据XPS结果分析,XPS原位转移仓正压密封后,在空气中放置72 h内,Li 1s半峰宽基本保持为(1.38±0.04) eV,说明有明显的密封效果,金属Li片仍然保持原有化学状态. 所以对于空气极其敏感的材料,在正压密封模式下,可至少在72 h内保持样品表面不发生化学态变化. 这种模式适合长时间远距离(可全国范围内)转移空气敏感样品.2.1.3 负压密封模式下XPS原位转移仓对空气敏感样品CuCl的密封时效性验证除了金属Li片样品,本文还继续考察XPS原位转移仓对空气敏感样品CuCl的密封时效性. 图5为CuCl粉末通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Cu 2p高分辨谱图. XPS谱图中结合能[22]位于932.32 eV的峰归属为Cu+的Cu 2p3/2,位于935.25 eV的峰归属为Cu2+的Cu 2p3/2,此外,XPS谱图中位于940.00~947.50 eV 处的峰为Cu2+的震激伴峰,这些震激伴峰被认为是表 2 通过两种(标准和正压密封)方式转移并在空气中放置不同时间的Li 1s的半峰宽Table 2 FWHM of Li 1s transferred by two methods(standard and inert gas sealings) and placed in air fordifferent times样品说明进样方式半峰宽/eV 密封放置0 h XPS原位转移仓正压密封模式转移1.42密封放置2 h同上 1.35密封放置4 h同上 1.35密封放置8 h同上 1.34密封放置18 h同上 1.38密封放置24 h同上 1.39密封放置48 h同上 1.42密封放置72 h同上 1.38暴露15 s标准样品台进样(封口袋密封)1.62Binding energy/eVIntensity/a.u.Li 1s半峰宽比正压密封的宽半峰宽=1.62 eV半峰宽=1.38 eV暴露 15 s密封放置 72 h密封放置 48 h密封放置 24 h密封放置 18 h密封放置 0 h605856545250图4 金属Li片通过两种(标准和正压密封)方式转移并在空气中放置不同时间的Li 1s高分辨谱图Fig. 4 High-resolution spectra of Li 1s on Li sheet samples transferred by two methods (standard and inert gas sealings) and placed in air for different times34分析测试技术与仪器第 29 卷价壳层电子向激发态跃迁的终态效应所产生[23],而在Cu +和Cu 0中则观察不到.根据XPS 结果分析,CuCl 在XPS 原位转移仓保护(负压密封)下,即使放置空气中72 h ,测得的Cu 2p 高分辨能谱图显示只有Cu +存在,说明CuCl 并未被氧化. 若无XPS 原位转移仓保护,CuCl 粉末放置空气中3 min 就发生了比较明显的氧化,从测得的Cu 2p 高分辨能谱图能够直观的看到Cu 2+及其震激伴峰的存在,并且随着放置时间增加到40 min ,其氧化程度也大大增加. 因此,对于空气敏感的无机材料、纳米催化剂和钙钛矿材料等,采用负压密封模式转移就可至少在72 h 内保持样品表面不发生化学态变化.3 结论本工作中自主研制的正负压一体式无空气XPS原位转移仓在空气敏感样品转移过程中可以有效隔绝空气,从而获得样品最真实的表面化学结构.试验者可根据样品情况和实验室条件选择转移模式,并在密封有效时间内将样品从实验室转移至能谱仪中完成测试. 综上所述,该XPS 原位转移仓是一种设计小巧、操作简便、密封性能优异、成本较低的样品无水无氧转移装置,因此非常适合广泛开放给有需求的试验者使用. 在原位和准原位表征技术被广泛用于助力新材料发展的现阶段,希望该设计理念能对仪器功能的开发和更多准原位表征测试的扩展提供一些启示.参考文献:黄惠忠. 论表面分析及其在材料研究中的应用[M ].北京: 科学技术文献出版社, 2002: 16-18.[ 1 ]杨文超, 刘殿方, 高欣, 等. X 射线光电子能谱应用综述[J ]. 中国口岸科学技术,2022,4(2):30-37.[YANG Wenchao, LIU Dianfang, GAO Xin, et al.TheapplicationofX -rayphotoelectronspectroscopy [J ]. China Port Science and Technology ,2022,4 (2):30-37.][ 2 ]郭沁林. X 射线光电子能谱[J ]. 物理,2007,36(5):405-410. [GUO Qinlin. X -ray photoelectron spectro-scopy [J ]. Physics ,2007,36 (5):405-410.][ 3 ]Malmgren S, Ciosek K, Lindblad R, et al. Con-sequences of air exposure on the lithiated graphite SEI [J ]. Electrochimica Acta ,2013,105 :83-91.[ 4 ]Zhang Y H, Chen S M, Chen Y, et al. Functional poly-ethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries [J ]. Materials Chemistry Frontiers ,2021,5 (9):3681-3691.[ 5 ]周逸凡, 杨慕紫, 佘峰权, 等. X 射线光电子能谱在固态锂离子电池界面研究中的应用[J ]. 物理学报,2021,70(17):178801. [ZHOU Yifan, YANG Muzi,SHE Fengquan, et al. Application of X -ray photoelec-tron spectroscopy to study interfaces for solid-state lithium ion battery [J ]. Acta Physica Sinica ,2021,70(17):178801.][ 6 ]Huang J J, Song Y Y, Ma D D, et al. The effect of thesupport on the surface composition of PtCu alloy nanocatalysts: in situ XPS and HS-LEIS studies [J ].Chinese Journal of Catalysis ,2017,38 (7):1229-1236.[ 7 ]Koley P, Shit S C, Sabri Y M, et al. Looking into moreeyes combining in situ spectroscopy in catalytic bio-fuel upgradation with composition-graded Ag-Co core-shell nanoalloys [J ]. ACS Sustainable Chemistry &Engineering ,2021,9 (10):3750-3767.[ 8 ]Opitz A K, Nenning A, Rameshan C, et al. Enhancingelectrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes [J ]. Ange-wandte Chemie (International Ed in English),2015,54(9):2628-2632.[ 9 ]Czekaj I, Loviat F, Raimondi F, et al. Characterization[ 10 ]Binding energy/eVI n t e n s i t y /a .u .Cu 2pCu +Cu 2+暴露 3 min暴露 40 min 密封放置 7 h 密封放置 72 h 密封放置 24 h密封放置 0 h960950945935925955940930920图5 CuCl 粉末通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Cu 2p 高分辨谱图Fig. 5 High-resolution spectra of Cu 2p on CuCl powder samples transferred by two methods (standard and vacuumsealings) and placed in air for different times第 1 期章小余,等:正负压一体式无空气X 射线光电子能谱原位转移仓的开发及研制35of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X -ray photoelectron spectroscopy (XPS)[J ]. Applied Cata-lysis A:General ,2007,329 :68-78.Rutkowski M M, McNicholas K M, Zeng Z Q, et al.Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an X -ray photoemission spectroscopy analysis system [J ]. Review of Scientific Instruments ,2013,84 (6):065105.[ 11 ]伊晓东, 郭建平, 孙海珍, 等. X 射线光电子能谱仪样品前处理装置的设计及应用[J ]. 分析仪器,2008(5):8-11. [YI Xiaodong, GUO Jianping, SUN Haizhen, et al. Design of a sample pretreatment device for X -ray photoelectron spectrometer [J ]. Analytical Instrumentation ,2008 (5):8-11.][ 12 ]Aurbach D, Weissman I, Schechter A, et al. X -ray pho-toelectron spectroscopy studies of lithium surfaces pre-pared in several important electrolyte solutions. A comparison with previous studies by Fourier trans-form infrared spectroscopy [J ]. Langmuir ,1996,12(16):3991-4007.[ 13 ]Światowska-Mrowiecka J, Maurice V, Zanna S, et al.XPS study of Li ion intercalation in V 2O 5 thin films prepared by thermal oxidation of vanadium metal [J ].Electrochimica Acta ,2007,52 (18):5644-5653.[ 14 ]Weingarth D, Foelske-Schmitz A, Wokaun A, et al. Insitu electrochemical XPS study of the Pt/[BF 4]system [J ]. Electrochemistry Communications ,2011,13 (6):619-622.[ 15 ]Schneider J D, Agocs D B, Prieto A L. Design of asample transfer holder to enable air-free X -ray photo-electron spectroscopy [J ]. Chemistry of Materials ,2020,32 (19):8091-8096.[ 16 ]Karamurzov B S, Kochur A G, Misakova L B, et al.Calculation of the pure surface composition of the bin-ary alloy according to XPS data obtained after the al-loy surface contact with air [J ]. Journal of Structural Chemistry ,2015,56 (3):576-581.[ 17 ]章小余, 赵志娟. 一种半原位XPS 样品转移装置: 中国, 201620925237.5[P ]. 2017-02-15.[ 18 ]章小余, 袁震, 赵志娟. 一种半原位X 射线光电子能谱分析仪的样品转移装置: 中国, 201720056623.X [P ]. 2017-12-08.[ 19 ]袁震, 章小余, 赵志娟. 一种样品转移装置及转移方法: 中国, 2011203822.1[P ]. 2022-03-01.[ 20 ]刘芬, 赵志娟, 邱丽美, 等. XPS 分析固体粉末时的样品制备法研究[J ]. 分析测试技术与仪器,2007,13(2):107-109. [LIU Fen, ZHAO Zhijuan, QIU Limei, et al. Study of sample preparation method for XPS analysis of powdered samples [J ]. Analysis and Testing Technology and Instruments ,2007,13 (2):107-109.][ 21 ]Wagner C D, Riggs W M, Davis L E, et al. Handbookof X -ray photoelectron spectroscopy [M ]. Eden Prair-ie, Minnesota, 1978.[ 22 ]Watts J F, Wolstenholme J. 表面分析(XPS 和AES)引论[M ]. 吴正龙, 译. 上海: 华东理工大学出版社,2008.[ 23 ]36分析测试技术与仪器第 29 卷。
很全面的资料-中子星与黑洞 Neutron Stars and Black Holes

vesc
vesc
The Schwarzschild Radius
=> There is a limiting radius where the escape velocity reaches the speed of light, c:
Black Holes
Just like white dwarfs (Chandrasekhar limit: 1.4 Msun), there is a mass limit for neutron stars:
Neutron stars can not exist with masses > 3 Msun
We know of no mechanism to halt the collapse of a compact object with > 3 Msun. It will collapse into a single point – a singularity:
=> A Black Hole!
Escape Velocity
Pulsars / Neutron Stars
Neutron star surface has a temperature of ~ 1 million K.
Cas A in X-rays
Wien’s displacement law,
lmax = 3,000,000 nm / T[K] gives a maximum wavelength of lmax = 3 nm, which corresponds to X-rays.
X-ray 辐射X射线英文PPT

X - ray irradiation 射线的照射
Penetrating Action 穿透作用
Ionization Effect 电离作用
Biological response 生物反应
Application method Application examples 应 用 例
Measure 测量
Non-destructive Inspection 非破坏检查
・Concentration measurement 浓度计测 ・Density measurement 密度计测
・ X light perspective X光透视
・ CT detection CT检查
Diagnosis 诊断
・X - ray radiography X射线造影
Radiation
Ezreal & Allen
Vocabulary
X-ray:X射线 X-ray spectrum:射线谱 Coherent scattering:相干散射 Incoherent scattering:非相干散射 attenuation of X-ray: X射线的衰减 Absorb of X-ray: X射线的真吸收 Optic-electric effect:光电效应 fluorescent radiation:荧光辐射
h = Planck's constant = 1.38 10-16 erg sec
X-Ray Tubes
X-Ray Tubes
1-高压变压器;2-钨丝变压器; 3-X射线管;4-阳极; 5-阴极;6-电子;7-X射线
7 3
5
6
4 2
1
Application of X-ray
X-Ray基础培训

X-Ray Generator功能
• 提供电力給X-Ray Tube和其他系统组件
• 控制影响图像质量的技术条件,如mA 、 kVp 、 sec.等
衡量Radiographic Quality的四要素: • Density (密度) - mAs • Contrast (对比度)- kVp • Sharpness(锐利度)- motion, Geometric • Distortion(失真度)- position, angle
热量计算单位 (Heat Units): 1HU = 0.71J Single Phase: H.U.=kVp x mA x sec. Three Phase: H.U.=kVp x mA x sec x 1.35
X光球管散热方式 阳极靶吸收 经由轴承散发 经由绝缘油散发
X球管处理热量方法
阳极热容量 (Heat Capacity) • X光球管阳极能夠包容的热量,可由Rating Chart上表现出來,单位是H.U.。
阳极靶构造
阳极是圆盘状,具有倾斜边 缘,其材料一般是用钼合金 (Mdybdenum)或是石墨 (Graphite)作为机体,用 钨(Tungsten)和少量的铼 (Rhenium)合金附着于傾 斜的边缘,称此边缘角度為 Target Angle(靶角),主要是 接受阴极电子束撞击产生X 射线。
阳极靶种类
•乳腺机
模拟乳腺机、平板乳腺机
•数字拍片机(DR)
移动DR、DR
X光球管支架系統 • 悬吊式(Ceiling Mounted)
– Inboard Mounted – Outboard Mounted • 地板到天花板式(Floor-to-Ceiling) • 整合式(Integrated) – ex. Silhouette BT20, Compax400….
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:078.2296v1[astro-ph]16Aug27Linking Jet Emission,X-ray States and Hard X-ray Tails in the Neutron Star X-ray Binary GX 17+2S.Migliari 1,ler-Jones 2,R.P.Fender 3,J.Homan 4,T.Di Salvo 5,R.E.Rothschild 1,M.P.Rupen 6,J.A.Tomsick 7,R.Wijnands 2,M.van der Klis 2ABSTRACT We present the results from simultaneous radio (Very Large Array)and X-ray (Rossi-X-ray Timing Explorer)observations of the Z-type neutron star X-ray binary GX 17+2.The aim is to assess the coupling between X-ray and radio properties throughout its three rapidly variable X-ray states and during the time-resolved transitions.These observations allow us,for the first time,to investigate quantitatively the possible relations between the radio emission and the presence of the hard X-ray tails and the X-ray state of the source.The observations show:1)a coupling between the radio jet emission and the X-ray state of the source,i.e.the position in the X-ray hardness-intensity diagram (HID);2)a coupling between the presence of a hard X-ray tail and the position in the HID,qualitatively similar to that found for the radio emission;3)an indication for a quantitative positive correlation between the radio flux density and the X-ray flux in the hard-tail power law component;4)evidence for the formation of a radio jet associated with the Flaring Branch-to-Normal Branch X-ray state transition;5)that the radio flux density of the newly-formed jet stabilizes when also the normal-branch oscillation (NBO)in the X-ray powerspectrum stabilizes its characteristic frequency,suggesting a possible relationbetween X-ray variability associated to the NBO and the jet formation.Wediscuss our results in the context of jet models.Subject headings:radio continuum:general-X-rays:binaries-stars:individual(GX17+2)-accretion,accretion disks-ISM:jets and outflows1.IntroductionIn X-ray binaries(XRBs),the studies of relativistic radio jets and their coupling with X-ray properties received a boost in the last decade thanks to coordinated multiwavelength observations.Black hole(BH)systems are surely the best studied among the relativistic jet XRB sources(see Fender2006for a review).However,relativistic jets are not exclusively associated with BHs.The jet phenomenology observed in BHs can be found in neutron star(NS)XRBs as well:1)highly-accreting NS XRBs can launch transient jets at ultra-relativistic velocities(e.g.with bulk Lorentz factors of more than15in Cir X-1;Fender et al.2004);2)low-luminosity NS XRBs can form a compact jet of the same kind observed in BH XRBs and active galactic nuclei(i.e.4U0614+091;Migliari et al.2006).The necessary ingredients for the formation and launch of relativistic jets seem not to be related to the nature of the compact object.Therefore,studies of NS jets and their connections to the accretion properties have an important impact on our understanding of jet sources in general.In BH XRBs,studies of the accretion mode transitions and their coupling to the jet activity(e.g.,Fender,Belloni&Gallo2005)rely on observations of occasional outbursts,of which there are1-2per year and which usually last a few months.In the case of NS XRBs and especially in the highly-accreting class of NSs called‘Z-type’(see below),we observe periodic X-ray state transitions on timescales of a few days.These state transitions are thought to be triggered by accretion rate changes.Z sources can be considered as the NS ‘counterparts’of transient highly-accreting BHs like GRS1915+105(see e.g.discussion in Migliari&Fender2005).Studying Z-type NSs,we are therefore able to assess the evolution of the accretion and jet activity in a very short observational time and more regularly than in transient BH sources.Z-type NS XRBs are a class of seven among the brightest XRBs in our Galaxy:Sco X-1,Cyg X-2,GX17+2,GX5-1,GX340+0,GX349+2and XTE J1701-462(eight if we add the‘peculiar’Z-source Cir X-1;Shirey,Bradt&Levine1999).The name of the class derives from the characteristic‘Z’shape they trace in the color-color diagram(CD;Hasinger &van der Klis1989;see van der Klis2006for a review).The three branches which form the Z-shaped CD are called the Horizontal Branch(HB),Normal Branch(NB)and FlaringBranch(FB),and define three distinct states of the systems,each with its own specific X-ray spectral and timing properties(see e.g.Homan et al.2002for the specific case of GX17+2).The relations between spectral and timing properties and the position on the CD suggest the accretion rate as the major physical parameter behind the position along the Z track(e.g.van der Klis2006for a review).Homan et al.(2007)showed that the complex variability behaviour of XTE J1701-462could be explained if the changes along the track are governed,not simply by the mass accretion rate through the disk,but by the ratio between this quantity and its time-averaged variations(see also van der Klis2000).Z sources show luminosities persistently near or above the Eddington limit and are very bright and rapidly variable both in X-rays and in the radio band.The Z-type NSs change X-ray states on timescales of hours to days,so they are always at the‘edge’of state transitions. They are therefore very good laboratories to study the connection between X-ray properties, state changes and radio behaviour in X-ray binary systems.Z-type NSs show optically thick radio emission(i.e.,α∼0,where Fν∝ναand Fνis theflux density at the frequencyν) and frequent optically thin radioflares(α<0).The optically thick emission is usually interpreted as radiation from a continuously replenished compact jet(see Fender2006for a review),while the optically thin radioflares are possible signatures of fast ejected plasmons, already observed as extended lobes in Sco X-1(Fomalont et al.2001a,b)and Cir X-1(Fender et al.1999;Fender et al.2004).Looking in detail at the radio behaviour of Z sources as a function of their X-ray prop-erties,Penninx et al.(1988)first found in GX17+2that the radio emission varied as a function of the position in the X-ray CD,decreasing with increasing inferred mass accre-tion rate from the HB(strongest radio emission)to the FB(weakest radio emission).A behaviour consistent with GX17+2has been found also in Cyg X-2(Hjellming et al1990a) and Sco X-1(Hjellming et al1990b),the exception seems to be GX5-1(Tan et al.1992; but see discussion in Migliari&Fender2006).Based on the results of these previous simul-taneous radio/X-ray observations and-mostly-on observations of Sco X-1(Fomalont et al. 2001b;Bradshaw et al.2003),a possible coherent phenomenological picture of Z sources, coupling X-rays(<20keV)and radio properties,has been drawn(Migliari&Fender2006). In our sketch,1)the compact jet is mostly responsible for the radio emission in the HB and partially in the NB;2)X-ray state transitions are coupled with transitions also in the jet emission,specifically transient radio optically thinflares appear to occur at the HB-to-NB transition(see Fig.6in Migliari&Fender2006).Non-thermal hard tails in the X-ray energy spectra,dominating above∼30keV,have been observed in almost all the known Z sources:GX5-1(Asai et al.1994),GX17+2 (Di Salvo et al.2000),Sco X-1(D’Amico et al.2001a),GX349+2(Di Salvo et al.2001; see also D’Amico et al.2001b),Cir X-1(Iaria et al.2001)and Cyg X-2(Di Salvo et al.2002;see also D’Amico et al.2001b).These hard X-ray tails can befitted with a power law with photon index ranging between1.6and3.3,and can contribute up to10%of the bolometric X-ray luminosity.Although the details of the individual Z sources are more complicated,we might say that,as a general trend,the hard X-ray tail in the spectrum seems to be related to the position in the CD:the hard X-ray component is strongest in the HB and becomes weaker towards the FB.In previous RXTE observations of GX17+2,for example,the spectrum showed a hard power-law tail with a photon index of∼2.7which is strongest in the HB and weakens as the source moves towards the NB,disappearing in the NB(Di Salvo et al.2000).However,a clear counter example seems to be Sco X-1, where no obvious relation between the hard tail X-rayflux and the position on the CD has been observed(D‘Amico et al.2001a).The physical origin of this non-thermal component is still an area of controversy.In particular,two main possibilities are under debate,both suggesting that the physical site of the emission is the central core region,close to the compact object:inverse Compton from a non-thermal electron population in a‘corona’(e.g. Poutanen&Coppi1998)or in the base of a jet(see e.g.Markoff,Nowak&Wilms2005for a discussion).Another possible explanation,the bulk motion Comptonization(BMC)which wasfirst explored by Titarchuck,Mastichiadis&Kylafis(1996)for BHs,has been proposed also for NS systems(e.g.Titarchuk&Zannias1998).In the specific case of GX17+2, for example,Farinelli et al.(2007)suggested that the spectrum derived from the BMC of soft photons by energetic electronsflowing on to the NS,can produce an X-ray hard tail consistent with the observations.In this work we present a study of simultaneous radio and X-ray observations of the Z source GX17+2,in order to assess the coupling between X-ray and radio properties throughout its three X-ray states(§3.1)and during the transitions between states(§3.2). Furthermore,these observations allow us,for thefirst time,to investigate more quantitatively the possible relations between the radio emission and the presence of the hard X-ray tails (§3.3),observed to be associated with the position of the source in the CD.2.ObservationsWe have observed the Z-type NS XRB GX17+2simultaneously in X-rays with the Rossi X-ray Timing Explorer(RXTE)and in the radio band with the Very Large Array (VLA),covering all its three X-ray branches.2.1.RXTE observations and data analysisRXTE observed GX17+2starting on2002November04,for a total of∼35hr over about11days.The3-20keV light curve of the observations is shown in Fig.1,middle panels. We used the Proportional Counter Array(PCA)Standard2data of the proportional counter unit2(working in all the observations)to produce the CD and the HID of all the RXTE observations of GX17+2.The soft color and the hard color are defined as the count rate ratio(4.6–7.1)keV/(2.9–4.6)keV and(10.5–19.6)keV/(7.1–10.5)keV,respectively.The HID in Fig.2clearly shows the three distinct X-ray branches of the source.For the spectral analysis,we have extracted X-ray energy spectra using PCA Standard2 and HEXTE Standard Mode data.For the PCA data,we subtracted the background es-timated using pcabckest v3.0,produced the detector response matrix with pcarsp v10.1, and analysed the energy spectrum in the range3–25keV.A systematic error of0.5%was added to account for uncertainties in the calibration.For the HEXTE data,we corrected for deadtime,subtracted the background,extracted the response matrix using FTOOLS v.6.1.2,and analysed the spectra between20and100keV(there is no significant detection above this energy in any of the observations).We show the log of the RXTE observations in Table1.The3-100keV spectra are wellfitted(see also Di Salvo et al.2000)using a black-body,a thermal Comptonization model(CompTT),a Gaussian emission line in the range6.4–6.7keV and an edge around9keV.An additional power law to account for an excess,of non-thermal origin,in the higher energy range above30keV is also necessary in three observations(see§3.3for a discussion).For a detailed X-ray spectral analysis of GX17+2with other models see e.g.Farinelli et al.(2005).The best-fit parameters of each of the3-100keV spectra as a function of their position on the HID are shown in Table2. The values are consistent with what was found in Di Salvo et al.(2000).For the temporal analysis,we have used event and binned data with a time resolution of125µs for the production of the power density spectra.We used time bins such that the Nyquist frequency is4096Hz.For each observation we created power spectra from segments of64s length using Fast Fourier Transform techniques(van der Klis1989and references therein),but no background subtraction was performed.No deadtime corrections were done before creating the power spectra.We averaged the Leahy-normalised power spectra(Leahy et al.1983)and subtracted the predicted Poisson noise spectrum applying the method of Zhang et al.(1995),shifted in power to match the spectrum between3000and4000Hz.We converted the normalisation of the power spectra to squared fractional rms(e.g.Belloni& Hasinger1990;see van der Klis1995).2.2.VLA observations and data analysisWe observed GX17+2with the VLA at three different epochs on2002November4,9, and15,simultaneous with the RXTE observations.The VLA was in its C configuration at the time.The NRAO project ID was AR495.Observing frequencies were1.425,4.86,8.46, 14.94,22.46and43.34GHz.Observations were carried out in standard continuum mode at each frequency,with a50-MHz bandwidth in each of two IF pairs.The primary calibrator was3C286,used to set theflux scale according to the coefficients derived at the VLA in 1999as implemented in the31Dec05version of the National Radio Astronomy Observa-tory’s(NRAO)Astronomical Image Processing System(AIPS).The secondary calibrators were J1834–126(4.7◦from the target)at1.46GHz and J1832–105(5.3◦from the target)at all higher frequencies.Data calibration and imaging were performed using standard pro-cedures within AIPS.At frequencies below15GHz,there were background sources present in thefield,most notably an AGN88arcmin to the southwest,which had to be properly deconvolved from the image.The data were subjected to a single round of phase-only self-calibration before making separate images of thefield in the time intervals corresponding to the different X-ray states.To obtain the time-resolved lightcurve of GX17+2,the other sources in thefield were subtracted from the uv-data before measuring the sourceflux density using the aips task uvplt.3.Results and discussion3.1.Radio emission correlated with the position in the HIDIn Fig.1we show the5GHz and8.5GHz VLA(top),3-20keV RXTE/PCA(middle) and hard X-ray color(bottom)light curves of GX17+2.The simultaneous X-ray and radio light curves show no obvious correlations between the X-ray count rate and the radioflux densities.However,during the radio observations,we note an overall correlation between the mean radioflux density and the mean hard color(top and bottom panels):the higher the mean radioflux density,the higher the hard color.More specifically,the radio emission is strongly related to the position in the HID.In Fig.2,we show the HID of GX17+2:the gray dots are the PCA observations with a time resolution of16seconds and the superimposed open circles indicate the radio emission strength:the bigger the circle,the more radioflux density.We clearly see that the radioflux density is strictly related to the position in the HID,in a way consistent with previous observations(Penninx et al.1988)and with the disc-jet coupling scenario described in Migliari&Fender(2006):the radioflux density increases from the FB to the NB and is highest in the HB.We also note an enhancement of radiofluxdensity in the HB(i.e.what we called HB high),corresponding to an increase in intensity of the source,with no significant change in hard color.The overall radio emission is consistent with being optically thick exept possibly for the observations during the HB high,which correspond to what seems to be the decay of an optically thin radioflare(withα=−0.16±0.01,measured byfitting theflux densities at 1.4,5,8.5and15GHz,of the averaged observations for the range of times<104sec from the beginning of our observations;see Fig.1,top-left panel).The radio decay in the top-left panel of Fig.1,might be associated with the(preceding)X-ray count rate decay shown in the middle-left panel.In this case,a possible scenario would be that of a radioflare associated with the NB-to-HB transition(not observed),of which we only see the decaying part.However,the X-ray count rate decay can also be the decay of a long type-I X-ray burst of the same kind observed for this source in previous RXTE observations(see e.g.the long ‘burst6’reported in Kuulkers et al.2002).Indeed,the X-ray decay shown in the PCA light curve seems to be exponential,supporting the interpretation as a type-I burst.We tried to investigate this possibility byfitting the2-25keV PCA energy spectrum of the X-ray decay (thefirst1700seconds of the observation70023-01-01-01)with the model described in§2.1, without the power-law component,plus an extra blackbody component to account for the possible thermal emission from the surface of the NS,but the additional blackbody does not give a significant statistical improvement to thefit.The radio/X-rayflux decay simultaneity would be,in the case of a type-I burst,only accidental.3.2.A radio jet switches-on at the FB-to-NB state transitionThe HID in Fig.2shows that during the FB,no radio emission is detected,while emission,although weak,is observed in the lower NB.Our observations cover the exact time in which the source transits from the FB to the lower NB(panels of the middle-column in Fig.1).In Fig.3,we show the radio and X-ray light curves of GX17+2during the transition from FB to NB.Thefirst panel from the top shows the radio light curve at8.5GHz(re-binned to a higher temporal resolution with respect to that in Fig.1).The second panel shows the X-ray PCA light curve.In thefirst part of the observation,i.e.before4.47×105sec the source is not significantly detected(with a nominalflux density of0.024±0.048mJy). However,after4.48×105sec the radio source is detected at8.5GHz at a significance level of8.8σand at5GHz at a significance level of6.8σ.The radio power-law spectral index is α=−0.27±0.33).Physically,we interpret this as a compact jet that switches-on soon after the FB-to-NB transition.(Note that,since the radio spectral index is not well constrained, an optically thin radioflare cannot be ruled out.)A sketch of the(phenomenological)jet/X-ray state coupling model for Z sources adapted from Migliari&Fender(2006)to include this result is shown in the top-right panel of Fig.2.For clarity,the drawings of the jet in the top-right panel refer only to the cycle from HB to FB.Indeed,if a compact jet is reformed during the FB-to-NB transition,optically thin shocks and transient jets may not be present in the NB.In Fig.3,the third panels from the top show the dynamical power density spectra of the two orbits(in black are evident the changes in the characteristic frequency of the QPOs),and the bottom panels show the positions of the observations on the HID as black markers.The lower FB is usually characterized by the presence of the so-calledflaring branch oscillation(FBO),which has a typical characteristic frequency above14Hz,while the NB power density spectra usually show the so-called normal branch oscillation(NBO), which has a typical characteristic frequency below10Hz(see Homan et al.2002).The first RXTE/PCA orbit shows the actual X-ray state transition from the FB to the lower NB:the black markers in the HID are spread in between the FB and the NB,and the dynamical power density spectrum shows a transition between the FBO and the NBO,with the QPO frequency oscillating between the typical frequencies of the two QPOs;thefit of the averaged power density spectrum gives a characteristic frequency ofνQP O=10.7±0.1 (the same kind of‘intermediate’QPO has been already observed in previous observations of GX17+2:Homan et al.2002).The QPO stabilizes into a NBO only in the second orbit with a characteristic frequency ofνNBO=7.8±0.1Hz.This stable NBO is simultaneous with a clear renewed radio activity of the source.As the QPO frequency stabilizes into a NBO,the compact jet appears to re-establish itself.The parallel between the stability of the NBO and the radio emission,and since in Z-sources the NBO,as well as the radio emission,has been observed in all the X-ray states with the exeption of the FB,suggests a relation between the formation of the jet and the X-ray variability associated to the NBO.In an attempt to draw analogies between the fast X-ray variability observed in Z sources and in BH XRBs,Casella, Belloni&Stella(2005)studied the properties of the low-frequency QPOs in the two types of systems,and related the FBO to the so-called‘type-A’QPO,the NBO to the‘type-B’QPO and the HBO to the‘type-C’QPO.In this framework,the jet formation in BHs might be related to the type-B QPO,and/or to the transition between the type-A to the type-B QPO. An association between the presence of QPOs and radio jet activity,similar to what we see in GX17+2,can be found in some BH XRBs,albeit with a much slower time-scale.A clear example comes from the multiwavelength studies of the decay of the outburst in H1743-322 (Kalemci et al.2006).The power density spectrum of the source shows a low-frequency QPO that appears during the transition from the thermal/soft state,where the radio jet is undetected,to the hard X-ray state(see also e.g.Homan&Belloni2005).While the source is in an intermediate state and entering the hard state,the characteristic frequency of theQPO decreases in time(possibly also changing‘type’;in their work Kalemci et al.did not classify the QPOs by‘type’)and,when the source is in its hard state,the radio jet renews its activity.In the bright atoll source GX13+1,Homan et al.(2004)observed a delay of approx-imately40minutes between the changes in the X-ray spectral hardness and the following radioflares.In GX17+2,we observe renewed radio activity around4.5×105sec(Fig.3, top).If we associate this radioflux increase with the preceding FB-to-NB transition,the delay is∼2hr.This time-delay is about three times that found in GX13+1and about twice the delays observed in the highly-accreting BH XRB GRS1915+105between the beginning of the X-ray hard dips and the following radioflares(see Klein-Wolt et al.2002),i.e.taking the hard X-ray dips’duration as the time that it takes the compact jet to re-form.If,on the other hand,the radio activity is associated with the stability of the characteristic frequency of the NBO,we obtain an upper limit on the X-ray/radio activity delay of 4000s,consistent with what has been observed in the NS GX13+1and the BH GRS1915+105.For com-parison,more‘traditional’BHs like H1743-322or4U1543-47(Kalemci et al.2005,2006), during the decay of the outburst show a time delay between the end of the thermal/soft state and the detection of the radio jet of at least a few days.3.3.Radio emission and hard X-ray tailsWe have analysed the3-100keV energy spectra offive observations along the HID. In Table2we show the best-fit parameters of the X-ray energy spectra using the model described in§2.1.A hard X-ray tail is present in the HB high and HB(an F-test for the addition of a power-law component gives a chance improvement probability of∼5×10−7in HB high and∼3×10−24in HB;Fig.4,top panel),and the2–100keVflux in the power-law component is approximately15%and10%,respectively,of the total2-100keVflux of the source.In the NB an extra power-law component is also needed in thefit of the energy spectrum(an F-test gives∼9×10−6chance probability),but the power-lawflux decreases to approximately1%of the total2-100keVflux.No additional component is needed to the spectralfits when the source is in NB low and in the FB(Fig.4,lower panel).Therefore,we confirm that in GX17+2there is a clear correspondence between the presence of a hard tail in the X-ray spectra and the position on the HID.The behaviour of the hard X-ray tail in GX17+2as a function of the position in the HID is qualitatively the same as that observed for the radio emission,suggesting a common physical driver for the production of the radio and hard X-ray tail emission.In order to quantify this qualitative radio emission/hard tail correspondence,in Fig.5we plot the meanradioflux density at8.5GHz against the2-100keVflux of the hard tail power-law component for the observations in FB,NB low,NB,HB,HB high.The three observations for which the presence of the X-ray power law and the radio emission is significantly detected show a positive correlation between the two quantities(with a correlation coefficient of99%):the radioflux density increases as the power-law X-rayflux increases.The upper limits on the other two observations are consistent with this trend.However,given the present statistics, the correlation cannot befirmly constrained and other observations are needed in order to confirm and properly quantify the radio/hard X-ray dependence.In BH systems,it has been suggested that the Comptonising corona gets ejected during a radioflare(e.g.Vadawale et al.2003;Fender,Belloni&Gallo2004);hence the transition of the source into the soft state.In the NS system GX17+2,we appear to see a correlation between the hard X-ray tail and the radio emission,with a strong hard X-ray tail also present during a radioflare.However,although during the HB high observation what we see is likely the decay portion of a radioflare,thus associated with a preceding‘transient’ejection,the radio spectra of GX17+2during the other X-ray states are consistent with the emission from a‘compact’jet.The compact jet,which can be present also during the HB high,is what appears to be associated with the hard X-ray tail.Similarly,in BH systems the radio compact jet is observed in the quiescent/hard state,when also a hard Comptonizing‘corona’is present.4.ConclusionsWe have analysed simultaneous radio(VLA)and X-ray(RXTE)observations covering all the three X-ray branches of the Z-type NS XRB GX17+2and found:•A relation between the radio emission and the position in the HID:the radioflux density is strongest in the HB,decreases in the NB,and is weakest in the FB(Fig.2).•A relation between the presence of a hard X-ray tail and the position on the HID:the hard power-law tail is observed in the HB,in the NB,and is not detected in the lower NB and in the FB(Fig.4and Table2).•A link between X-ray state transitions and the jet activity:a jet,likely a compact jet, forms soon after the FB-to-NB transition,with a time delay of less than2hr(Fig.3).•The radio emission of the jet(re-)formed after the FB-to-NB state transition stabilizes when the NBO characteristic frequency in the X-ray power spectrum also stabilizes(Fig.3).Thisfinding,together with the fact that in Z-sources the NBO,as well as the radio emission,has been observed in all the X-ray states with the exception of the FB, suggest a relation between the formation of the jet and the X-ray variability associated to the NBO.A similar behaviour,albeit with a longer time-scale,may be found in BH systems,where the decrease of the characteristic frequency and change of‘type’of the low-frequency QPO is followed by a renewed activity of the jet(see§3.2).•An indication for a quantitative relation between radio emission and the hard tail in the X-ray spectrum:there is a positive correlation between the hard tail power-law X-ray flux and the radioflux density(Fig.5).If further confirmed with a larger sample and improved statistics,especially in the hard X-ray tailflux measurement,this relation would point to a common mechanism for the production of the jet and the hard X-ray tails in the system.SM would like to thank Tommy Thompson for useful discussions.The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities,Inc.REFERENCESAsai,K.,Dotani,T.,Mitsuda,K.,Nagase,F.,Kamado,Y.,Kuulkers,E.,Breedon,L.M., 1994,PASJ,46,479Belloni,T.,Hasinger,G.,1990,A&A,227,L33Belloni T.,Psaltis D.,van der Klis M.,2002,ApJ,572,392Casella P.,Belloni T.,Stella L.,2005,ApJ,629,403D’Amico,F.,Heindl,W.A.,Rothschild,R.E.,Gruber,D.E.,2001a,ApJ,547,L147D’Amico,F.,Heindl,W.A.,Rothschild,R.E.,Gruber,D.E.,2001b,AIP Conference Proceedings,587,44Di Salvo,T.,Farinelli,R.,Burderi,L.,Frontera,F.,Kuulkers,E.,Masetti,N.,Robba,N.R.,Stella,L.,van der Klis,M.,2002,A&A,386,535Di Salvo,T.,Robba,N.R.,Iaria,R.,Stella,L.,Burderi,L.,Israel,G.L.,2001,ApJ,554, 49。