第六章 几种离散型变量的分布及其应用
医学统计学课件:第六章 几种离散型变量的分布及其应用

2020/10/18
医学统计学 第六章 几种离散型变量的分布及其应用
1.52 SPSS: 常用PDF函数(23种)
11
BERNOULLI:贝努里。
BINOM:二项分布。
CHISQ:卡方分布。
第七章。
F:F分布,第四章。
NORMAL:正态分布。
POISSON:泊松分布。
下一节。
T:t分布。
UNIFORM:均匀分布。
从阳性率为 的总体中随机抽取大小为 n 的
样本,则出现阳性数为 X 的概率分布呈二项分布,
记为 X~B(n,)。
2020/10/18
医学统计学 第六章 几种离散型变量的分布及其应用
1.2 二项分布,binomial distribution
6
用某药治疗某种疾病,其疗效分为有效或无效, 每个病案的有效率相同; 在动物的致死性试验中,动物的死亡或生存; 接触某种病毒性疾病的传播媒介后,感染或非 感染等。
X 2 X 1 X 0
n 3,( (1 ))3 3 3 2(1 ) 3 (1 )2 (1 )3
2020/10/18
XБайду номын сангаас3
X 2 X 1
X 0
医学统计学 第六章 几种离散型变量的分布及其应用
1.5 例6-1 二项分布概率的计算
9
某种药物治疗某种非传染性疾病的有效率为 0.70。今用该药治疗该疾病患者10人。计算10 人中有6人、7人、8人有效概率。
P(8) 10! 0.708 (1 0.70)108 0.23347 8!(10 8)!
2020/10/18
医学统计学 第六章 几种离散型变量的分布及其应用
1.51 SPSS: PDF函数
离散型随机变量及其分布函数_图文

5.超几何分布
设X的分布律为
说明 超几何分布在关于废品率的计件检验中常用到.
三、内容小结
1.常见离散型随机变量的分布 两点分布 二项分布 泊松分布
几何分布 超几何分布
两点分布
二项分布
泊松分布
则 X 的取值范围为 (a, b) 内的任一值.
定义 说明
离散型随机变量的分布律也可表示为 或
例1 设一汽车在开往目的地的路上需经过四盏信号
灯.每盏灯以
的概率禁止汽车通过.以
表示汽车首次停下时已经过的信号灯盏数(信
号灯的工作是相互独立的),求 的分布律.
Байду номын сангаас
离散型随机变量的分布函数与其分布律之间的关系 :
也就是: 分布律
分布函数
二、常见离散型随机变量的概率分布
1.两点分布
设随机变量 X 只取0与1两个值 , 它的分布律为
则称 X 服从 (0-1) 分布或两点分布或伯努利分布.
说明
两点分布是最简单的一种分布,任何一个只有 两种可能结果的随机现象, 比如新生婴儿是男还是 女、明天是否下雨、种籽是否发芽等, 都属于两点 分布.
离散型随机变量及其分布函数_图文.ppt
一、离散型随机变量的分布函数
随机变量
离散型 非离散型
连续型 其它 (1)离散型 若随机变量所有可能的取值为有限个
或可列无穷个,则称其为离散型随机变量.
实例1 观察掷一个骰子出现的点数. 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6.
实例2 若随机变量 X 记为 “连续射击, 直至命 中时的射击次数”, 则 X 的可能值是:
二十世纪初罗瑟福和盖克两位科学家在观察 与分析放射性物质放射出的 粒子个数的情况时, 他们做了2608 次观察(每次时间为7.5 秒),发现 放射性物质在规定的一段时间内, 其放射的粒子 数X 服从泊松分布.
离散型随机变量及其分布规律

解:
例5. 某射手连续向一目标射击,直到命中为止,
已知他每发命中的概率是p,求射击次数X 的分布列.
解: 显然,X 可能取的值是1,2,… , 为计算 P(X =k ), k = 1,2, …,
设 Ak = {第k 次命中},k =1, 2, …,
于是
P(X =1)=P(A1)=p,
P(X 2)P(A1A2 ) (1 p)p
P(X 3)P(A1A2 A3)(1 p)2p
可见 P(Xk)(1 p)k1p k1,2,
这就是所求射击次数 X 的分布列.
若随机变量X的分布律如上式, 则称X 服从
几何分布. 不难验证:
(1 p)k1p 1
k 1
几个重要的离散性随机变量模型
(0,1)分布 二项分布 波松分布
一、 (0-1)分布 (二点分布)
按Po
k
n=10 n=20 n=40 n=100 =np=1 p=0. p=0.05 p=0.02 p=0.01
0 10.349 0.3585 0.369 0.366
0
1 0.305 0.377 0.372 0.370
0
2 0.194 0.189 0.186 0.185
0
3 0.057 0.060 0.060 0.061
•• • • • • • 56 7 8 9 10
•
•
•
•
•
•
•
•
•20x
二项分布的图形特点:
X ~ Bn, p
对于固定n 及 P, 当k 增加时 , 概率P (X = k ) 先是随之增加
Pk
直至达到最大值, 随后单调减少.
当 n 1p 不为整数时, n 1p 二项概率 PX k
医学统计学重点概要

第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
专题06 离散型随机变量及其分布列、数字特征(解析版)

06离散型随机变量及其分布列、数字特征知识点1随机变量(1)定义:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.随机变量的取值X(ω)随着随机试验结果ω的变化而变化.(2)离散型随机变量:可能取值为有限个或可以一一列举的随机变量称之为离散型随机变量.(2)表示:随机变量通常用大写英文字母表示,例如X,Y,Z;随机变量的取值用小写英文字母表示,例如x,y,z.知识点2离散型随机变量的分布列的定义(1)定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x i,…,x n,我们称X取每一个值x i 的概率P(X=x i)=p i,i=1,2,…,n为X的概率分布列,简称分布列.(2)表示方法:①表格;②概率分布图.知识点3离散型随机变量的分布列的性质(1)p i ≥0,i =1,2,…,n ;(2)p 1+p 2+…+p n =1.知识点4离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列如下表所示,X x 1x 2…x n Pp 1p 2…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =i ii 1nx P =∑为随机变量X 的均值或数学期望,数学期望简称期望.(2)方差:称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i 1n=∑(x i -E (X ))2p i 为随机变量X的方差,有时也记为Var (X ),并称D (X )为随机变量X 的标准差,记为σ(X ).(3)均值的意义:均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.(4)方差和标准差的意义:随机变量的方差和标准差都可以度量随机变量取值与其均值E (X )的偏离程度,反映了随机变量取值的离散程度.方差或标准差越小,随机变量的取值越集中;方差或标准差越大,随机变量的取值越分散.知识点5均值与方差的性质若Y =aX +b ,其中X 是随机变量,a ,b 是常数,随机变量X 的均值是E (X ),方差是D (X ).则E (Y )=E (aX +b )=aE (X )+b ;D (Y )=D (aX +b )=a 2D (X ).(a ,b 为常数).知识点6分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.知识点7均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数.(2)E (X 1+X 2)=E (X 1)+E (X 2).(3)D (X )=E (X 2)-(E (X ))2.(4)若X1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2).考点1离散型随机变量分布列的性质(1)求a的值;(2)求;(3)求X.【答案】(1)由分布列的性质,得++++P(X=1)=a+2a+3a+4a+5a=1,所以a=115.(2)=++P(X=1)=3×115+4×115+5×115=45.(3)X=++=115+215+315=25.【总结】离散型随机变量分布列性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.【变式1-1】设随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,C为常数,则P(X<3)=__________.【答案】89【解析】随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,∴C2+C6+C12=1,即6C+2C+C12=1,解得C=43,∴P(X<3)=P(X=1)+P(X=2)=43=89.【变式1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列;(3)求随机变量ξ=X2的分布列.【解析】(1)由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为:X012342X+113579从而Y=2X+1的分布列为:Y13579P0.20.10.10.30.3(2)列表为:X01234|X-1|10123∴P(η=0)=P(X=1)=0.1,P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为:η0123P0.10.30.30.3(3)首先列表为:X01234X2014916从而ξ=X2的分布列为:ξ014916P0.20.10.10.30.3【变式1-3】设随机变量X的分布列如下:X12345P 112161316p则p为()A.1 6B.13C.14D.112【答案】C【解析】由分布列的性质知,112+16+13+16+p=1,∴p=1-34=14.【变式1-4】设X是一个离散型随机变量,其分布列为X-101P 121-q q-q2则q等于()A.1 B.22或-22C.1+22D.2 2【答案】D【解析】1-q+q-q2=1,1-q≤12,q-q2≤12,解得q=22.【变式1-5】(多选)设随机变量ξ的分布列为ak(k=1,2,3,4,5),则()A.a=115B.ξ=15C.ξ=215D.P(ξ=1)=310【答案】AB【解析】对于选项A,∵随机变量ξ的分布列为ak(k=1,2,3,4,5),∴P(ξ=1)=a+2a+3a+4a+5a=15a=1,解得a=115,故A正确;对于B,易知ξ3×115=15,故B正确;对于C,易知ξ=115+2×115=15,故C错误;对于D,易知P(ξ=1)=5×115=13,故D错误.【变式1-6】设X是一个离散型随机变量,其分布列为X01P9a2-a3-8a则常数a的值为()A.13B.23C.13或23D.-13或-23【答案】A【解析】≤9a 2-a ≤1,≤3-8a ≤1,a 2-a +3-8a =1,解得a =13.【变式1-7】离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P X 的值为()A.23B.34C.45D.56【答案】D【解析】因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以X P (X =1)+P (X =2)=54×12+54×16=56.【变式1-8】若随机变量X 的分布列如下表,则mn 的最大值是()X 024Pm0.5n A.116B.18C.14D.12【答案】A【解析】由分布列的性质,得m +n =12,m ≥0,n ≥0,所以mn =116,当且仅当m =n =14时,等号成立.【变式1-9】随机变量X 的分布列如下:X -101Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______.【答案】23-13,13【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.考点2求离散型随机变量的分布列【例2】双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A)对阵负者组最终获胜的选手(败过一场,记为B),若A胜则A获得冠军,若B胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M,求M的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.【分析】(1)先求出8人平均分成四组的方法数,再求出甲,乙,丙都不分在同一组的方法数,从而可求得答案;(2)①甲恰在对阵三场后淘汰,有两种情况:“胜,败,败”和“败,胜,败”,然后利用互斥事件的概率公式求解即可;②由题意可得ξ∈{3,4,5,6,7},然后求出各自对应的概率,从而可得ξ的分布列.【解析】(1)8人平均分成四组,共有C28C26C24C22A44种方法,其中甲,乙,丙都不分在同一组的方法数为A35,所以P(A)=A35C28C26C24C22A44=4 7.(2)①甲恰在对阵三场后淘汰,这三场的结果依次是“胜,败,败”或“败,胜,败”,故所求的概率为23×13×13+13×23×13=427.②若甲在第一轮获胜,ξ∈{3,4,5,6,7}.当ξ=3时,表示甲在接下来的两场对阵都败,即P(ξ=3)=13×13=19.当ξ=4时,有两种情况:(ⅰ)甲在接下来的3场比赛都胜,其概率为23×23×23=827;(ⅱ)甲4场对阵后被淘汰,表示甲在接下来的3场对阵1胜1败,且第4场败,概率为C12·23×13×13=427,所以P (ξ=4)=827+427=49.当ξ=5时,有两种情况:(ⅰ)甲在接下来的2场对阵都胜,第4场败,概率为23×23×13=427;(ⅱ)甲在接下来的2场对阵1胜1败,第4场胜,第5场败,概率为C12·23×13×23×13=881;所以P (ξ=5)=427+881=2081.当ξ=6时,有两种情况:(ⅰ)甲第2场胜,在接下来的3场对阵为“败,胜,胜”,其概率为23×132=881;(ⅱ)甲第2场败,在接下来的4场对阵为“胜,胜,胜,败”,其概率为133×13=8243;所以P (ξ=6)=881+8243=32243.当ξ=7时,甲在接下来的5场对阵为“败,胜,胜,胜,胜”,即P (ξ=7)=134=16243.所以ξ的分布列为:ξ34567P194920813224316243【总结】离散型随机变量分布列的求解步骤【变式2-1】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列.【解析】(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B ,“这两人中一人送考1次,另一人送考3次”为事件C ,“这两人送考次数相同”为事件D .由题意知X 的所有可能取值为0,1,2,则P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199,P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199.P (X =2)=P (C )=C 120C 180C 2200=16199.∴X 的分布列为:X 012P8319910019916199【变式2-2】(多选)设离散型随机变量X 的分布列为X 01234Pq0.40.10.20.2若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有()A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8D .E (Y )=5,D (Y )=7.2【答案】ACD【解析】因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.考点3求离散型随机变量的均值与方差【例3】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).【解析】(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3-14--16-=124.则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)ξ可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以,随机变量ξ的分布列为ξ04080120160P1241451214124∴E (ξ)=0×124+40×14+80×512+120×14+160×124=80,D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.【总结】求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ全部的可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)由均值的定义求E (ξ),由方差的定义求D (ξ).【变式3-1】据有关权威发布某种传染病的传播途径是通过呼吸传播,若病人(患了某种传染病的人)和正常人(没患某种传染病的人)都不戴口罩而且交流时距离小于一米90%的机率被传染,若病人不戴口罩正常人戴口罩且交流时距离小于一米时60%的机率被传染,若病人戴口罩而正常人不戴口罩且交流距离小于一米时30%的机率被传染上,若病人和正常人都带口罩且交流距离大于一米时不会被传染.为此对某地经常出入某场所的人员通过抽样调查的方式对戴口罩情况做了记录如下表:男士女士戴口罩不戴口罩戴口罩不戴口罩甲地40203010乙地10304515假设某人是否戴口罩互相独立(1)求去甲地的男士带口罩的概率,用上表估计所有去甲地的人戴口罩的概率.(2)若从所有男士中选1人,从所有女士中选2人,用上表的频率估计概率,求戴口罩人数X 的分布列和期望.(3)上表中男士不戴口罩记为“ξ=0”,戴口罩记为“ξ=1”,确定男士戴口罩的方差为Dξ,和女士不戴口罩记为“η=0”,戴口罩记为“η=1”确定女士戴口罩的方差为Dη.比较Dξ和Dη的大小,并说明理由.【解析】(1)设“去甲地的男士带口罩”为事件M ,则P (M )=4040+20=23,设“去甲地的人戴口罩”为事件N ,则P (N )=40+3040+20+30+10=710,(2)设“男士带口罩”为事件A ,则P (A )=40+1040+20+10+30=12,设“女士带口罩”为事件B ,则P (B )=30+4530+10+45+15=34,所有男士中选1人,从所有女士中选2人,戴口罩人数X =0,1,2,3,P (X =0)=12×14×14=132,P (X =1)=12×14×14+12×34×14+12×14×34=732,P (X =2)=12×34×14+12×14×34+12×34×34=1532,P (X =3)=12×34×34=932分布列为:X123P1327321532932E (X )=0×132+1×732+2×1532+3×932=2(3)E (ξ)=0×12+1×12=12,D (ξ)=(0-12)2×12+(1-12)2×12=14,E (η)=0×14+1×34=34,D (η)=(0-34)2×14+(1-34)2×34=316.100名男士中有50人戴口罩,50人不戴口罩,100名女士中有75人戴口罩,25人不戴口罩,从数据分布可看出来女士戴口罩的集中程度要好于男士,所以其方差偏小.【变式3-2】已知X 的分布列为X -101P121316设Y =2X +3,则E (Y )的值为()A .73B .4C .-1D .1【答案】A【解析】∵E (X )=-12+16=-13,∴E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-3】已知离散型随机变量X 的分布列为X 012P0.51-2qq 2则常数q =________.【答案】1-22【解析】由分布列的性质得0.5+1-2q +q 2=1,解得q =1-22或q =1+22(舍去).【变式3-4】设随机变量X 的分布列为P (X =k )=a k,k =1,2,3,则a 的值为__________.【答案】2713【解析】因为随机变量X 的分布列为P (X =k )=a k,k =1,2,3,所以根据分布列的性质有a ·13+a 2+a 3=1,所以a +19+=a ×1327=1,所以a =2713.【变式3-5】已知随机变量X 的分布列如下:X -101P121316若Y =2X +3,则E (Y )的值为________.【答案】73【解析】E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-6】若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________.【答案】0【解析】因为P (X =c )=1,所以E (X )=c ×1=c ,所以D (X )=(c -c )2×1=0.【变式3-7】(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于()A.32B.53C.74D.95【答案】A【解析】由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种,当X =1时,取法有C 24种,即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种,即P (X =2)=C 23C 35=310;当X =3时,取法有C22种,即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.【变式3-8】已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差D (Y )等于()A.59B.209C.43D.299【答案】B【解析】由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )×16+×13+×12=59,又Y =2X +1,所以D (Y )=4D (X )=209.【变式3-9】已知m ,n 为正常数,离散型随机变量X 的分布列如表:X -101Pm14n若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________.【答案】11813【解析】+n +14=1,-m =712,=112,=23,所以mn =118,P (X ≤0)=m +14=13.【变式3-10】(2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1购买实物商品(元)(0,100)[100,500)[500,1000)积分246概率141214表2购买虚拟商品(元)(0,20)[20,50)[50,100)[100,200)积分1234概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率;(2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.【解析】(1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分;②购买实物商品积分为4分,购买虚拟商品的积分为4分,故小张一个月积分不低于8分的概率为14×+12×16=14.(3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:X 345P25310310E (X )=3×25+4×310+5×310=3910.考点4均值与方差在决策中的作用【例4】2021年3月5日李克强总理在政府作报告中特别指出:扎实做好碳达峰,碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.某环保机器制造商为响应号召,对一次购买2台机器的客户推出了两种超过机器保修期后5年内的延保维修方案:方案一:交纳延保金5000元,在延保的5年内可免费维修2次,超过2次每次收取维修费1000元;方案二:交纳延保金6230元,在延保的5年内可免费维修4次,超过4次每次收取维修费t 元;制造商为制定收取标准,为此搜集并整理了200台这种机器超过保修期后5年内维修的次数,统计得到下表:维修次数0123机器台数20408060以这200台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示2台机器超过保修期后5年内共需维修的次数.(1)求X 的分布列;(2)以所需延保金与维修费用之和的均值为决策依据,为使选择方案二对客户更合算,应把t 定在什么范围?【分析】(1)由题设描述确定2台机器超过保修期后5年内共需维修的次数的可能值,并确定对应的基本事件,进而求各可能值的概率,写出分布列.(2)根据(1)所得分布列,由各方案的费用与维修次数的关系写出费用的分布列,并求期望,通过期望值的大小关系求参数的范围.【解析】(1)由题意得,X =0,1,2,3,4,5,6,P (X =0)=110×110=1100,P (X =1)=110×15×2=125,P (X =2)=110×25×2+15×15=325,P (X =3)=110×310×2+15×25×2=1150,P (X =4)=310×15×2+25×25=725,P (X =5)=310×25×2=625,P (X =6)=310×310=9100,∴X 的分布列为X 0123456P110012532511507256259100(2)选择方案一:所需费用为Y 1元,则X ≤2时,Y 1=5000,X =3时,Y 1=6000;X =4时,Y 1=7000;X =5时,Y 5=8000,X =6时,Y 1=9000,∴Y 1的分布列为Y 150006000700080009000P1710011507256259100E (Y 1)=5000×17100+6000×1150+7000×725+8000×625+9000×9100=6860,选择方案二:所需费用为Y 2元,则X ≤4时,Y 2=6230;X =5时,Y 2=6230+t ;X =6时,Y 2=6230+2t ,则Y 2的分布列为Y 262306230+t 6230+2t P671006259100E (Y 2)=6230×67100+(6230+t )×625+(6230+2t )×9100=6230+21t50,要使选择方案二对客户更合算,则E (Y 2)<E (Y 1),∴6230+21t50<6860,解得t <1500,即t 的取值范围为[0,1500).【总结】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式4-1】直播带货是扶贫助农的一种新模式,这种模式是利用主流媒体的公信力,聚合销售主播的力量助力打通农产品产销链条,切实助力贫困地区农民脱贫增收.某贫困地区有统计数据显示,2020年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示.若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,则“经常使用直播销售用户”中有56是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,并根据列联表判断是否有85%的把握认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2021年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售.根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为710,15,110;方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35,310,110.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.0500.0250.010x α2.0722.7063.8415.0246.635其中,χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .【解析】(1)由图1知,“年轻人”占比为45.5%+34.5%=80%,即有200×80%=160(人),“非年轻人”有200-160=40(人),由图2知,“经常使用直播销售用户”占比为30.1%+19.2%+10.7%=60%,即有200×60%=120(人),“不常使用直播销售用户”有200-120=80(人).“经常使用直播销售用户的年轻人”有120×56=100(人),“经常使用直播销售用户的非年轻人”有120-100=20(人).∴补全的列联表如下:年轻人非年轻人合计经常使用直播销售用户10020120不常使用直播销售用户602080合计16040200于是a =100,b =20,c =60,d =20.∴χ2=200×(100×20-60×20)2120×80×160×40=2512≈2.083>2.072,即有85%的把握认为经常使用网络直播销售与年龄有关.(2)若按方案一,设获利X 1万元,则X 1可取的值为300,-150,0,X 1的分布列为:X 1300-1500p71015110E (X 1)=300×710+(-150)×15+0×110=180(万元),D(X1)=(300-180)2×710+(-150-180)2×15+(0-180)2×110=1202×710+3302×15+1802×110=35100若按方案二,设获利X2万元,则X2可取的值为500,-300,0,X2的分布列为:X2500-3000p 35310110E(X2)=500×35+(-300)×310+0×110=210(万元),D(X2)=(500-210)2×35+(-300-210)2×310+(0-210)2×110=2902×35+5102×310+2102×110=132900∵E(X1)<E(X2),D(X1)<D(X2),由方案二的均值要比方案一的均值大,从获利角度来看方案二更大,故选方案二.由方案二的方差要比方案一的方差大得多,从稳定性方面看方案一线下销售更稳妥,故选方案一.【变式4-2】某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.【解析】(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为X0410P0.20.240.56(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P (Y =6)=0.7×(1-0.8)=0.14,P (Y =10)=0.7×0.8=0.56,则Y 的均值为E (Y )=0×0.3+6×0.14+10×0.56=6.44,因为E (X )>E (Y ),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.【变式4-3】为加快某种病毒的检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和均值E (X );(2)若采用“5合1检测法”,检测次数Y 的均值为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【解析】(1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次,所以总检测次数为20.②由题意,X 可以取20,30,P (X =20)=111,P (X =30)=1-111=1011,则X 的分布列为X 2030P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599,则E (Y )=25×499+30×9599=295099>E (X ).【变式4-4】(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一工序第一工序第二工序第三工序概率0.50.750.8表二等级一等品二等品三等品利润2385(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.【解析】(1)由题意可知,η的所有可能取值为23,8,5,产品为一等品的概率为0.5×0.75×0.8=0.3,产品为二等品的概率为(1-0.5×0.75)×0.8=0.5,产品为三等品的概率为1-0.3-0.5=0.2,所以η的分布列为η2385P0.30.50.2E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x ,设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x ,+19x 0.75×0.8=0.3+x15,二等品的概率为10.75×0.8=0.5-x15,三等品的概率为10.2,所以E (ξ)-x )-x )+0.2×(5-x )=6.9-0.3x +2315x -115x 2+4-0.5x -815x +1152+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.1.(多选)设离散型随机变量X 的分布列如下表:X 12345Pm0.10.2n0.3若离散型随机变量Y =-3X +1,且E (X )=3,则()A .m =0.1B .n =0.1C .E (Y )=-8D .D (Y )=-7.8【答案】BC【解析】由E (X )=1×m +2×0.1+3×0.2+4×n +5×0.3=3得m +4n =0.7,又由m +0.1+0.2+n +0.3=1得m +n =0.4,从而得m =0.3,n =0.1,故A 选项错误,B 选项正确;E (Y )=-3E (X )+1=-8,故C 选项正确;因为D (X )=0.3×(1-3)2+0.1×(2-3)2+0.1×(4-3)2+0.3×(5-3)2=2.6,所以D (Y )=(-3)2D (X )=23.4,故D 选项错误.2.已知随机变量ξ的分布列如下表,D (ξ)表示ξ的方差,则D (2ξ+1)=___________.ξ012pa1-2a14【答案】2【解析】由题意可得:a +1-2a +14=1,解得a =14,ξ012p141214所以E (ξ)=0×14+1×12+2×14=1,D (ξ)=14(0-1)2+12×(1-1)2+14×(2-1)2=12,D (2ξ+1)=22D (ξ)=2.3.京西某地到北京西站有阜石和莲石两条路,且到达西站所用时间互不影响.下表是该地区经这两条路抵达西站所用时长的频率分布表:时间(分钟)10~2020~3030~4040~5050~60莲石路(L 1)的频率0.10.20.30.20.2阜石路(L 2)0.10.40.40.1的频率若甲、乙两人分别有40分钟和50分钟的时间赶往西站(将频率视为概率)(1)甲、乙两人应如何选择各自的路径?(2)按照(1)的方案,用X表示甲、乙两人按时抵达西站的人数,求X的分布列和数学期望.【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B1表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率,则有P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应选择路径L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),所以乙应选择路径L2;(2)用A,B分别表示针对(1)的选择方案,甲,乙在各自的时间内到达火车站,由(1)知P(A)=0.6,P(B)=0.9,且A,B相互独立,X的取值是0,1,2,P(X=0)=P(A-B-)=0.1×0.4=0.04,P(X=1)=P(A-B+A B-)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=0.9×0.6=0.54,所以X的分布列为:X012P0.040.420.54E(X)=0×0.04+1×0.42+2×0.54=1.5.4.品酒师需定期接受酒味鉴别功能测试,通常采用的测试方法如下:拿出n(n∈N*且n≥4)瓶外观相同但品质不同的酒让品酒师品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序.这称为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.现分别以a1,a2,a3,…,a n表示第一次排序时被排在1,2,3,…,n的n种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+...+|n-a n|,则X是对两次排序的偏离程度的一种描述.下面取n=4研究,假设在品酒师仅凭随机猜测来排序的条件下,a1,a2,a3,a4等可能地为1,2,3,4的各种排列,且各轮测试相互独立.(1)直接写出X的可能取值,并求X的分布列和数学期望;(2)若某品酒师在相继进行的三轮测试中,都有X≤2,则认为该品酒师有较好的酒味鉴别功能.求出现这种现象的概率,并据此解释该测试方法的合理性.【解析】(1)X的可能取值为0,2,4,6,8P(X=0)=1A44=124,。
几种常见离散型变量的分布及其应用

图 6-1.
=0.5 时,不同 n 值下的二项分布
2、二项分布的图形特征
当π≠0.5时,分布是偏态的,但随着n的增大, 分布趋于对称。当n ~ ∞时,只要π不太靠近0 或1,二项分布则接近正态分布, 见图6-2。
图6-2
10! P(X 9) 0.609 (1 0.60)109 0.040311 9!(10 9)!
比 实际样本更 背 离 无 效 假 设 的 事 件 , 即 满足 P( X i) 0.040311 的 i(i 9)分别有:0、1、2、10。 因此,所要计算的双侧检验概率 P 值为
X k X k
X !(n X )!
对于双侧检验而言,由于要回答的是 “有无差别” ,即备择假设 H1:π π0 是否 成立,因此,所要计算的双侧检验概率 P 值 应为实际样本(记“阳性”次数为 k 次)出 现的概率与更背离无效假设的事件(记“阳 性”次数为 i 次,i k)出现的概率之和, 即
5.394
查u界值表(t界值表中 v为 ∞的一行)得单 侧 P<0.005 。按 а=0.05水准,拒绝H0, 接受H1,即新的治疗方法比常规疗法的效 果好。
(三)两样本率的比较 两样本率的比较,目的在于对相应的两总体率 进行统计推断。 设两样本率分别为p1和p2,当n1与n2均较大, 且p1 、1-p1 及p2 、1-p2 均不太小,如n1p1 、 n1(1-p1)及n2p2 、n2(1-p2)均大于5时,可利 用样本率的分布近似正态分布,以及独立的 两个正态变量之差也服从正态分布的性质, 采用正态近似法对两总体率作统计推断。
验中,下面两种情形的概率计算是不可少的。
离散型随机变量及其分布

定是一个离散型随机变量,其分布函数 F(x) 唯一确定.
例 2.6 设随机变量 X 的分布律为
X2
3
4
P 0.2
0.3 0.5
求 X 的分布函数,并求 P{X 2}, P{2.4 X 3.8}, P{3 X 4} .
解 当 x 2 时, F(x) P{X x} 0 ;
当 2
x 3 时,
元和 6 万元.设 X 为总公司应付出的奖金,求 X 的分布
律并计算 P{4 X 10} 和 P{X 6} .
解 X 的所有可能取值为 0,4,6,10 (单位:万元).设 Ai { 第 i 个 分 公 司 获 得 奖 金 }( i 1, 2 ), 则 P(A1) 0.8 , P(A2 ) 0.4 ,且 A1, A2 相互独立.因此
离散型随机变量 及其分布
1.1 离散型随机变量及其分布律
定义 2.3 若随机变量 X 的所有可能取值是有限个或可
列无限多个,则称此随机变量为离散型随机变量.
例如,掷骰子朝上一面的点数、一昼夜120接到的呼叫 次数等均为离散型随机变量,而某元件寿命的所有可能取 值充满一个区间,无法按一定次序一一列举出来,因而它是 一个非离散型随机变量.
显然
(1) P{X k} 0 ( k 0,1, 2, , n );
F ( x)
P{X
xi x
xi}
P{X
2}
0.2
;
当 3
x 4 时,
F ( x)
P{X
xi x
xi}
P{X
2}
P{X
3}
0.5 ;
当 x 4 时, F(x) P{X 2} P{X 3} P{X 4} 1 .
6 第6讲 离散型随机变量及其分布列

第6讲 离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表X x 1 x 2 … x i … x n Pp 1p 2…p i…p n的概率分布列,简称为的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n ); ②∑ni =1p i =1. 3.两点分布若随机变量X 服从两点分布,则其分布列为X 0 1 P1-pp=P (X =1)称为成功概率[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)由下表给出的随机变量X 的分布列服从两点分布.( )X 2 5 P0.30.7[教材衍化]1.(选修2-3P77A 组T1改编)设随机变量X 的分布列如下:解析:由分布列的性质知,112+16+13+16+p =1, 所以p =1-34=14.答案:142.(选修2-3P49A 组T1改编)有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X 的所有可能取值是________.解析:因为次品共有3件,所以在取到合格品之前取到次品数为0,1,2,3. 答案:0,1,2,33.(选修2-3P49A 组T5改编)设随机变量X 的分布列为解析:由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4) =14+16=512. 答案:512[易错纠偏]随机变量的概念不清.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数D .取到的球的个数解析:选C.A ,B 两项表述的都是随机事件,D 项是确定的值2,并不随机;C 项是随机变量,可能取值为0,1,2.故选C.离散型随机变量的分布列的性质设离散型随机变量X的分布列为X 01234P 0.20.10.10.3m(2)|X-1|的分布列.【解】由分布列的性质知:0.2+0.1+0.1+0.3+m=1,解得m=0.3.(1)2X+1的分布列为2X+113579P 0.20.10.10.30.3(2)|X-1|的分布列为|X-1|012 3P 0.10.30.30.3(变问法)在本例条件下,求P(1<X≤4).解:由本例知,m=0.3,P(1<X≤4)=P(X=2)+(X=3)+P(X=4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X为随机变量,则2X+1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X等可能地取1,2,3,…,n,若P(X<4)=0.3,则n的值为() A.3B.4C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n =0.3,所以n =10.2.随机变量X 的分布列如下:X -1 0 1 Pabc解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎡⎦⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容) 角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:日销售量(件)0 1 2 3 频数1595当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为X 2 3 P1434角度二 古典概型的离散型随机变量的分布列(2020·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A ,P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45.(2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920;P (X =5)=C 25C 36=12,所以随机变量X 的分布列为X 3 4 5 P12092012离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列.解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12, 化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为X 0 1 2 P522611522[基础题组练]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13D.23解析:选C.设X 的分布列为X1即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A.14B.12C.34D.23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝⎛⎭⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34. 3.设随机变量X 的概率分布列如下表所示:若F (x )=P A.13 B.16 C.12D.56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56. 4.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A. 5.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:166.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎨⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎡⎦⎤-13,13 7.若离散型随机变量X 的分布列为则常数c =________,P (X 解析:由分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 138.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2.P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:9.(1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为 P (X ≥2)=P (X =2)+P (X =3)=38+18=12.10.(2020·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列.解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故X 的分布列为X 0 10 20 50 60 P1325115215 1151.(2020·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584,P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184.所以X 的分布列为X 1 2 3 4 P71225843281842.O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为3.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量X 的分布列;(3)求甲取到白球的概率.解:(1)设袋中原有n 个白球,由题意知17=C 2n C 27=n (n -1)27×62=n (n -1)7×6, 所以n (n -1)=6,解得n =3或n =-2(舍去).即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635; P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135. 所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A ,则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)两样本率的比较 两样本率的比较,目的在于对相应的两总体率进 行统计推断。 设两样本率分别为p1 和p2 ,当n1 与n2 均较大,且 p1 、1-p1 及p2 、1-p2 均不太小,如n1p1 、n1(1-p1) 及n2p2 、n2(1-p2)均大于5时,可利用样本率的分 布近似正态分布,以及独立的两个正态变量之差 也服从正态分布的性质,采用正态近似法对两总 体率作统计推断。
=0.023257
按=0.05水准,拒绝H0 ,接受H1 ,即认 为实施峡部-峡部吻合术妇女的受孕率要高 于壶腹部-壶腹部吻合术。
例 6-5 已知某种非传染性疾病采用甲药治疗的 有效率为 0.60。今改乙药治疗该疾病患者 10 人,发 现 9 人有效。问甲、乙两种药物的疗效是否不同? 显然,这是双侧检验的问题。记乙药治疗该疾病 的有效率为π,其假设检验为 H0:π=0.60 H1:π 0.60 =0.05 本例 n=10,按π=0.60,实际样本阳性数 X =9 出现 的概率由公式(6-1)有
P(X k) P( X )
X 0
k
k
X 0
n! X (1 ) n X X !( n X )!
(2)出现“阳性”的次数至少为k次的概率为
P(X k) P( X )
X k
n
n
X k
n! X n X (1 ) X !(n X )!
i
,其中 i 满足
P( X i ) P( X k ) 。
例6-4 据报道,对输卵管结扎了的育龄妇女实施 壶腹部-壶腹部吻合术后,受孕率为0.55。今对10 名输卵管结扎了的育龄妇女实施峡部-峡部吻合术, 结果有9人受孕。问实施峡部-峡部吻合术妇女的 受孕率是否高于壶腹部-壶腹部吻合术? 显然,这是单侧检验的问题,其假设检验为 H0:π=0.55 H1:π>0.55 =0.05
本例n=180,p=117/180=0.65
u
0.65 0.45 0.45(1 0.45) 180
5.394
查u界值表(t界值表中 为 ∞的一行)得 单侧 P 0.0005 。按 а=0.05水准,拒绝H0, 接受H1 ,即新的治疗方法比常规疗法的效 果好。
的1 可信区间为:
( p u 2 S p , p u 2S p )
如: 的95%可信区间为 ( p 1.96S p , p 1.96S p ) 的99%可信区间为 ( p 2.58Sp , p 2.58Sp )
例6-3 在观测一种药物对某种非传染性疾病 的治疗效果时,用该药治疗了此种非传染性 疾病患者100人,发现55人有效,试据此估 计该药物治疗有效率的95%可信区间。
10! P(X 9) 0.609 (1 0.60)109 0.040311 9!(10 9)!
比 实际样本更 背 离 无 效 假 设 的 事 件 , 即 满足 P( X i) 0.040311 的 i(i 9)分别有:0、1、2、10。 因此,所要计算的双侧检验概率 P 值为
本例n=13,X=6。查附表6,取0.05时,在n=13 (横行)与X=6(纵列)的交叉处数值为19~75, 即该吻合术妇女受孕率的95%可信区间为(19%, 75%)。 n n X 时,可先按 附表6只列出 X 2的部分。当 2 1 “阴性”数n-X查得总体阴性率的 可信区间 1 QL~QU,再用下面的公式转换成所需的阳性率 的 可信区间。 PL=1-QU, PU=1-QL
n n! 称为二项系数。总有: P ( X ) 1 。 X ! ( n X )! x0
例6-1 某种药物治疗某种非传染性疾病的有 效率为0.70。今用该药治疗该疾病患者10 人,试分别计算这10人中有6人、7人、8人 有效的概率。 本 例 n=10 , π=0.70 , X=6 , 7 , 8 。 按 公 式 (6-1)计算相应的概率为
(二)样本率与总体率的比较 1.直接法 在诸如疗效评价中,利用二项分 布直接计算有关概率,对样本率与总体率 的差异进行有无统计学意义的比较。比较 时,经常遇到单侧检验,即“优”或“劣” 的问题。那么,在总体阳性率为π的n次独 立重复试验中,下面两种情形的概率计算 是不可少的。
(1)出现“阳性”的次数至多为k次的概率为:
对这10名实施峡部-峡部吻合术的妇女,按 0.55的受孕率,若出现至少9人受孕的概率 大于0.05,则不拒绝H0 ;否则,拒绝H0 , 接受H1。 本例n=10,π=0.55,k=9。按公式(6-12) 有:
P(X 9) P( X )
X 9 10 10 X 9
10! 0.55 X (1 0.55)10 X X !(10 X )!
P P( X 9) P( X 0) P( X 1) P( X 2) P( X 10)
=0.040311+0.000104858+0.001572864+0.010617 +0.006046618 =0.058652 0.05<P<0.10,按 =0.05 水准,不拒绝 H0,尚不 能认为甲、乙两种药物的疗效不同。
在医学中类似如这种n重Bernoulli试验的 情形较为常见。 如用某种药物治疗某种疾病,其疗效分 为有效或无效; 在动物的致死性试验中,动物的死亡或 生存; 接触某种病毒性疾病的传播媒介后,感 染或非感染等。
若从阳性率(死亡率、感染率等) 为π的总体中随机抽取大小为n的样本, 则出现阳性数为X的概率分布即呈二项 分布,记为X~B(n,π).
Sp
p(1 p) / n
2.二项分布的图形 对于二项分布而言, 当π=0.5时,分布是对称的,见图6-1;
图 6-1.
=0.5 时,不同 n 值下的二项分布
当 0.5时,分布是偏态的,但随着n的增 大,分布趋于对称。当n 时,只要π不 太靠近0或1,二项分布则接近正态分布, 见图6-2。
2. 正态近似法 根据数理统计学的中心极限 定理可得,当n较大、π不接近0也不接近1 时,二项分布B(n,π)近似正态分布 N (n , n (1 )) ,而相应的样本率p的分布也近 N ( , p 2 ) 正态分布。为此,当n较大、 似 p和1-p均不太小,如np和n(1-p)均大于5时, 可利用样本率p的分布近似正态分布来估计 总体率的可信区间。
一、二项分布的适用条件和性质
(一) 二项分布的适用条件 1. 每次试验只会发生两种对立的可能结果 之一,即分别发生两种结果的概率之和 恒等于1; 2. 每次试验产生某种结果(如“阳性”) 的 概率π固定不变; 3. 重复试验是相互独立的,即任何一次试 验结果的出现不会影响其它试验结果出 现的概率。
10! 6 106 P(6) 0.70 (1 0.70) 0.20012 6! (10 6)!
10! 7 107 P(7) 0.70 (1 0.70) 0.26683 7! (10 7)!
10! 8 108 P(8) 0.70 (1 0.70) 0.23347 8! (10 8)!
第一节 二项分布
二项分布(binomial distribution)是指在只 会产生两种可能结果如“阳性”或“阴性” 之一的n次独立重复试验(常常称为n重 Bernoulli试验)中,当每次试验的“阳性” 概率保持不变时,出现“阳性”的次数X=0, 1,2,…,n的一种概率分布。
本例 n=100,p=55/100=0.55
Sp p(1 p) Sp n 0.55(1 0.55) 0.0497 100
0.55-1.96×0.0497=0.4526 0.55+1.96×0.0497=0.6474 即该药物治疗有效率的 95%可信区间为(45.26%, 64.74% ) 。
n
2
n (1 )
总体标准差为 n (1 )
若以率表示,则样本率p的 总体均数为
p
p
2
总体方差为
(1 )
n
(1 )
n
总体标准差为
p
样本率的标准差也称为率的标准误,可用 来描述样本率的抽样误差,率的标准误越 小,则率的抽样误差就越小。 在一般情形下,总体率π往往并不知道。此 时若用样本资料计算样本率p=X/n作为π的 估计值,则 的估计为: p
对于双侧检验而言,由于要回答的是 “有无差别” ,即备择假设 H1:π π0 是否 成立,因此,所要计算的双侧检验概率 P 值 应为实际样本(记“阳性”次数为 k 次)出 现的概率与更背离无效假设的事件(记“阳 性”次数为 i 次,i k)出现的概率之和, 即
P P( X k ) P( X i )
二项分布有两个参数:
总体率
n
样本含量
记作:X~B(n,π)
在n个独立的个体中出现X个阳性的概率可由下 式求出:
n! P( X ) X (1 )n X X !(n X )!
P( X )
X 0,1, 2, , n
实际 上就是二 项函数 (1 )n 展 开式中的 通项,式中 的
第六章
几种离散型变量的 分布及其应用
Distribution and Application of Discrete Data
Binomial
distribution Poissin distribution
随机变量有连续型和离散型之分,相应 的概率分布就可分为连续型分布和离散型 分布。 有关连续型分布如正态分布、t分布和F 分布等在前面的章节中已作了介绍。 本章主要介绍在医学中较为常用的离散 型分布,即二项分布、Poisson分布。