2017新人教版八年级数学上册全册教案112
部编人教版八年级数学上册优秀教案(全册)

部编人教版八年级数学上册优秀教案(全册)部编人教版八年级数学上册优秀教案(全册完整版)概述本文档是一份部编人教版八年级数学上册的优秀教案集合。
该教案全册完整,内容包括了八年级数学上册的所有章节和知识点。
教案列表以下是本文档包含的教案列表:1. 第一章:有理数的乘法与除法- 教案1:乘法和除法的基本概念- 教案2:乘方和除法的基本性质- 教案3:有理数的乘除法混合运算2. 第二章:代数式的等值变形- 教案1:代数式的基本概念和性质- 教案2:等式与等值变形的基本规律- 教案3:解一元一次方程式3. 第三章:图形的相似与尺度- 教案1:相似图形的基本概念和性质- 教案2:相似图形的判定和构造- 教案3:相似图形的尺度及应用4. 第四章:初识函数- 教案1:函数的概念和性质- 教案2:函数的表示和读图- 教案3:函数图象的平移和伸缩5. 第五章:一次函数与方程- 教案1:一次函数的概念和性质- 教案2:一次函数的图象和性质- 教案3:一次方程的解与应用6. 第六章:图形的平移和旋转- 教案1:平移的概念和性质- 教案2:平移的表示和图像- 教案3:旋转的概念和性质7. 第七章:数据的搜集、整理与表示- 教案1:数据的搜集和整理- 教案2:数据的图表表示- 教案3:数据的分析和应用8. 第八章:统计与概率- 教案1:统计调查和数据分布- 教案2:概率与事件- 教案3:概率的计算和应用使用说明本文档可以作为教师备课参考,提供了八年级数学上册的优秀教案,可以帮助教师更好地授课和引导学生研究。
每个教案都包括了基本概念、性质、规律和应用等内容,帮助学生深入理解数学知识。
注意事项请在使用教案时,根据具体教学需求进行调整和适应,并注意教学过程中的差异化教学和个性化指导。
【八年级】八年级数学上册112三角形全等的判定教学设计3新人教版

【关键字】八年级三角形全等的判定 教学课题课标要求 1、知识与技能:掌握三角形全等的“角边角”“角角边”判定方法2、过程与方法:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
培养学生的空间观念,推理能力,发展有条理地表达能力。
3、情感目标:经历和体验数学活动的过程以及数学在现实生活中的应用,树立学好数学的信心。
培养学生敢于实践,勇于发现,大胆探索,合作创新的精神。
识记理解 应用 综合 知识点1角边角”“角角边”判定方法∨ 知识点2几种判定方法的灵活应用∨ 目标设计 1、通过作图探索三角形全等条件的过程。
在运用的过程中,能够进行有条理的思考并进行简单的推理.2、进一步使学生对三角形的判定方法加深理解。
灵活应用几种判定方法进行简单的推理,加深对几何推理的认识。
教学过程设计一、情境与问题设计情境1、一同学不小心打破了一块三角形的玻璃,如图:他应该拿哪一块回玻璃店做一块与原玻璃一模一样的?情境2、先任意画一个△ABC ,再画一个△,使,, (即使两角和它们的夹边对应相等)。
把画好的△剪下,放到△ABC 上,它们全等吗?问题1、探究的结果反映了什么规律?你能得出什么结论?(得到“角边角”判定方法)问题2、课本12页例题 已知,如图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C ,求证:AD=AE例 题 变式:已知,如图,D 在AB 上,E 在AC 上,AB=AC , ∠B=∠C ,求证:BD=CE问题3、你能利用上面的结论解决上课开始提出的问题吗?问题4、在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 和△DEF 全等吗?你能利用角边角条件证明你的结论吗?问题5、证明的结果得出什么结论?(得到“角角边”判定方法)问题6、你能对三角形全等的判定方法做一个小结吗?知识点 认知层次(证明两个三角形全等的条件至少有一条边,三个角对应相等的两个三角形不一定全等,三边对应相等的两个三角形一定全等,两边和它们的夹角对应相等的两个三角形一定全等,两边和其中一边的对角对应相等的两个三角形不一定全等,两角和它们的夹边对应相等的两个三角形全等,两个角和其中一个角的对边对应相等的两个三角形全等。
2017最新人教版数学八年级上册教案全册

2017最新人教版数学八年级上册教案全册第一章知识点1.1 整数1.1.1 整数的概念•整数的定义和基本性质•整数的正负性1.1.2 整数的运算•整数的加减法•整数的乘法•整数的除法1.1.3 整数的应用•整数在现实生活中的应用1.2 分数1.2.1 分数的概念•分数的定义•分数的基本性质1.2.2 分数的化简和比较大小•分数的化简•分数的比较大小1.2.3 分数的加减乘除•分数的加法•分数的减法•分数的乘法•分数的除法1.2.4 分数的应用•分数在现实生活中的应用1.3 代数式的基础知识1.3.1 代数式的概念和表示法•代数式的定义和表达形式•代数式的分类和性质1.3.2 代数式的运算•代数式的加减法•代数式的乘法•代数式的除法1.3.3 代数式的应用•代数式在现实生活中的应用第二章教学建议2.1 教学方法2.1.1 循序渐进法•以简单的知识为基础,逐步引入难点•帮助学生理解知识点的内在联系2.1.2 同步讲解法•整体性地介绍历史、方法、技巧等•帮助学生综合理解知识点2.2 教学重点2.2.1 整数和分数的运算•通过实际例子让学生熟悉整数和分数的运算方法•提高学生的思维逻辑能力2.2.2 代数式的运算•帮助学生了解代数式的运算方法•培养学生的代数思维能力2.3 教学建议2.3.1 理论学习•学生需要对相关知识点进行理解和掌握•理论学习是学生掌握知识点的基础2.3.2 例题讲解•通过例题讲解帮助学生掌握知识点的应用•帮助学生建立解题思路2.3.3 考试模拟•模拟考试可以帮助学生了解自己的掌握程度•让学生对考试形式有更深入的了解第三章课程在本章中,我们学习了本学期的数学课程内容。
通过对整数、分数和代数式的学习,学生可以掌握基本数学概念和运算方法,并能在现实生活中灵活运用这些概念和方法。
同时,通过本章的教学建议,学生可以了解到课程重点和难点,并能通过理论学习、例题讲解和考试模拟等方式提高掌握程度和解题能力。
2017年秋季八年级数学上册全册教案(35份) 人教版25

难点:熟练地进行分式的混合运算.
┃教学过程设计┃
教学过程
设计意图
一、创设情境,导入新课
请同学们计算下列题目:
(1) - ;(2) + ;
(3) ;(4) · .
(1)当走第二条路时,她从甲地到乙地需要多长时间?
(2)她走哪条路花费时间少?少用多长时间?
师:当小丽从甲地到乙地走第二条路时需要多少时间?用式子表示为?
生: .
师:小丽走哪条路花费时间少?怎么比较?
生:作差比较,用式子表示为
师:以上两个式子你会计算吗?涉及什么运算?
生:分式的加法和减法,现在还不会.
四、课堂小结,提炼观点
本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?
五、布置作业,巩固提升
必做题:教材第146页、147页 第4,5,12题
选做题:教材第147页 第13,15题
【教学反思】
本设计的特点突出表现在:
(1)从学生的最近发展区组织教学,类比分数的加减运算,促成正向迁移,同化新知,巩固新知.培根说过:类比联想,支配发明.可见,指导学生学会类比将受益终生.
督促学生养成解题前仔细审题的习惯,为方法策略的选择提供判断的依据.
问题2:它们涉及的运算法则我们熟悉吗?说说看!并用公式表示.
都是我们已经熟悉的内容,它们涉及的运算法则有:
①分式的乘法法则:分式乘以分式,用分子的积作积的分子,分母的积作积的分母. · = .
②分式的除法法则:分式除以分式,把除式的分子和分母颠倒位置后,再和被除式相乘. ÷ = · = .
师顺势点题:那我们现在就来一起学习分式的加减.
人教版数学八年级上册全册教学设计(114页)

人教版数学八年级上册全册教学设计(114页)一. 教材分析人教版数学八年级上册全册教学设计共114页,涵盖了本册的所有知识点。
本册内容主要包括:一元一次方程、不等式及其应用、整式的加减、因式分解、函数及其图像、几何图形的性质等。
这些内容是学生进一步学习数学的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有了初步的了解。
但是,学生在解决实际问题时,往往还存在着对概念理解不深、逻辑思维不清晰等问题。
因此,在教学过程中,需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。
三. 教学目标1.知识与技能:使学生掌握本册的全部知识点,能够运用所学知识解决实际问题。
2.过程与方法:培养学生的逻辑思维能力、分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.教学重点:本册的所有知识点。
2.教学难点:函数的图像、几何图形的性质等。
五. 教学方法1.情境教学法:通过生活实例引入数学概念,使学生能够更好地理解和运用所学知识。
2.启发式教学法:引导学生主动思考、探索问题,培养学生的逻辑思维能力。
3.小组合作学习:鼓励学生进行合作交流,共同解决问题,提高学生的团队协作能力。
六. 教学准备1.教学PPT:制作精美的教学PPT,辅助讲解和展示教学内容。
2.教学素材:准备相关的数学题目和案例,用于巩固和拓展学生的知识。
3.教学设备:准备投影仪、白板等教学设备,方便教学演示和板书。
七. 教学过程1.导入(5分钟)通过一个生活实例,引出本节课要学习的内容,激发学生的学习兴趣。
2.呈现(10分钟)讲解本节课的主要知识点,通过PPT和板书的形式,清晰地呈现教学内容。
3.操练(10分钟)根据本节课的知识点,给出一些练习题目,让学生独立完成,巩固所学知识。
2017年秋季八年级数学上册全册教案(35份) 人教版28(免费推荐下载)

通过学生动手操作,引导学生体会全等变换中的变与不变,进一步体会全等图形中对应元素相等.学生自己画图、编制题目,可以很好地调动学生学习的积极性、进取心.
进一步体会的应用,掌握基本的尺规作图方法,提高学生的作图能力.
三角形全等的判定
第课时三角形全等的判定
【教目标】
.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,在探索过程中,培养有条理的思考和表达能力,形成良好的合作意识.
.会应用“边边边”判定两个三角形全等,能用尺规作一个角等于已知角.
【重点难点】
重点:探索三角形全等的条件,会应用“边边边”判定两个三角形全等.
.在课堂上要给予学生充分的时间去思考、动手实践.教师在课堂中照顾到每一名学生,让全体学生都动起来.在把他们的结论互相比较之前,留给学生足够的时间,使大部分学生都能完成画图的活动.
.例题教学也要让学生充分参与.调动学生动手操作,在全等变换下构图,在观察图形中编题,可以极大地激发学生的学习热情,深化、灵活和拓宽学生的思维.
难点:探索三角形全等的条件,用尺规作一个角等于已知角.
┃教学过程设计┃
教学过程
设计意图
一、创设情景,导入新课
问题:为了庆祝国庆节,老师要求同学们回家制作三角形彩旗,那么,老师应提供多少个数据,才能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?
通过问题情境的创设,引入本课课题,激发学生的好奇心和求知欲,使他们体会探索的过程是为了解决问题的实际需要,对学生提出的解决问题的不同策略,要给予肯定和鼓励.
变式:.根据已知条件,你还能得到哪些正确的结论?
人教版八年级数学上册:112与三角形有关的角教学设计

3.学会使用三角板、量角器等工具进行三角形内角度的测量和作图。
(二)教学设想
1.创设情境,导入新课
利用生活实例,如三角形交通标志、建筑物的三角形结构等,引出三角形的概念,激发学生的学习兴趣。
2.自主探究,合作交流
分组讨论,引导学生自主探究三角形的性质,如内角和、三角形的边的关系等。教师适时给予指导和反馈,帮助学生形成正确的认识。
1.针对学生对三角形基本概念掌握程度的不同,采用差异化教学策略,对基础薄弱的学生进行个别辅导,提高他们的自信心。
2.充分发挥学生的空间想象力,通过实际操作、观察和思考,帮助他们理解三角形的性质和内角和定理。
3.鼓励学生积极参与课堂讨论,培养他们的合作意识和交流能力,使学生在互动中提高对三角形知识点的掌握。
5.学会使用三角板、量角器等工具进行三角形内角度的测量和作图。
(二)过程与方法
在本章节的教学过程中,引导学生运用以下过程与方法:
1.观察与发现:通过观察生活中的三角形实物,引导学生发现三角形的特点,激发学生对三角形相关概念的兴趣。
2.探索与实践:鼓励学生通过小组合作、自主探究的方式,发现三角形的内角和定理,并在实践中运用。
4.注重培养学生的实际问题解决能力,将三角形知识应用于生活情境,让学生感受到数学的实用价值。
5.关注学生的情感态度,激发他们对数学几何的兴趣,引导他们形成积极的学习态度,为后续几何知识的学习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
1.理解和掌握三角形内角和定理,并能运用其解决实际问题。
7.教学评价,关注成长
采用多元化评价方式,关注学生在学习过程中的表现。既注重知识掌握程度,又关注学生的情感态度、合作交流能力等方面,全面评价学生的成长。
[初中数学]2017年秋季八年级数学上册全册教案(35份) 人教版3
![[初中数学]2017年秋季八年级数学上册全册教案(35份) 人教版3](https://img.taocdn.com/s3/m/54b76f376c175f0e7cd13764.png)
学生回答:不准确(或准确).
通过回顾小学所学知识,思考得出结论的过程,对结论产生怀疑,从而引入证明,不但降低了难度,也让学生感受到数学的严谨性,从而进一步引导学生思考运用更为严谨的方法进行探究.
二、师生互动,探究新知
1.观察三角形的构成,探索三角形的概念
问题1:如何用剪拼的方法验证△ABC的内角和等于180°?
本节的部分知识内容学生早在小学就已经学过了,而本节课是要对以前所学内容进行有理有据的推论,所以在教学过程中,教师不仅要引导学生发现以前所得结论的不严谨,还要让学生能够从已有的知识出发,对已知结论进行论证.在解决问题时,教师要留给学生充分的思考与交流的时间,让学生开阔思路,让学生能够经历得出结论的过程,培养学生的逻辑思维能力.
问题2:对于上面的问题,你还能想出其他的解法吗?
学生讨论写出过程,教师查看并引导改正.
三角形内角和等于180°,在小学就是通过剪拼的方法得出的,所以在这里仍以这种方法为主,引导学生从拼图中发现证明的方法.但需要强调的是:①证明定理时要自己画图,写好已知、求证和证明;②添加的辅助线要有利于解题;③添加辅助线时不用写“添加辅助线”这种字样,但要说明你所添加的辅助线的位置、名称和性质,这也是添加辅助线的“三要素”;④证明的每一步都要写理由,也就是在“∴”的后面写明得到这个结论的理论根据;⑤证明时要先理清证明的思路,再写过程.
此题的解法很多,以一种为主进行讲解,再让学生思考其他的解题方法,需要给学生充足的时间进行思考、讨论,对学生的每一种正确解ห้องสมุดไป่ตู้方法都要给予肯定,同时要注意:先理清思路,再动笔写过程.
三、运用新知,解决问题
1.下列各组角中哪三个角是同一个三角形的内角?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度八年级数学上册全册教案轴对称(1)教学目标①通过丰富的实例认识轴对称图形,并能找出轴对称图形的对称轴.②了解轴对称图形、两个图形成轴对称这两个概念之间的联系和区别.③经历丰富材料的学习过程,发展对图形的观察、分析、判断、归纳等能力.④体验数学与生活的联系、发展审美观.教学重点与难点重点:轴对称的有关概念;难点:轴对称图形与两个图形关于某条直线对称这两个概念之间的联系与区别.教学准备教师:收集有关轴对称的素材(包括图形、实物、图片等).学生:准备复写纸;收集有关窗花的素材,并要求进行剪纸----双喜字或其他窗花.教学过程作品展示,交流体会1.作品展示:让部分学生展示课前的剪纸作品(可以将作品粘贴到黑板上);2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?注:通过对收集材料、剪纸操作,增加学生对轴对称图形的感性认识,为轴对称概念的引出作准备.活动的目的一是为了交流,更主要的是说出(发现)“对称”.概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.注:在学生经历了一系列的过程后让学生尝试归纳,这本身也是一种能力的培养和对轴对称的理解.教学中应该有意识地加以渗透.2.结合教科书第118页图14.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例:试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教科书第119页练习;(2)补充:判断下面的图形是不是轴对称图形?并简要说明理由.注:对于一个概念的建立,让学生经历“实物——概括——应用”的过程,符合学生的认识规律.(二)两个图形关于某条直线对称对于第二个概念的建立,分两个步骤进行:先观察图形,再进行画图.其目的是突出两个图形和这两个图形之间的关系,在这个基础上再给出定义,比较合理.1.观察教科书第119页中的图14.1-3,思考:图中的每对图形有什么共同的特点?2.操作:取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?3.两个图形成轴对称的定义.如下图,图形F与图形F'就是关于直线l对称,点A与点A'是对称的.4.举例:你能举出一些生活中两个图形成轴对称的例子吗?5.练习:教科书第120页.辨析概念分组讨论:轴对称图形和两个图形成轴对称这两个概念之间的联系和区别.讨论后可列表比较如下:轴对称图形两个图形成轴对称区别一个图形两个图形联系1.沿着某条直线对折后,直线两旁的部分都能够互相重合(即直线两旁的两部分全等)2.都有对称轴(至少一条)3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线对称;如果把两个成轴对称的图形看成一个图形,那么这个图形就是轴对称图形注:通过讨论、比较,便于进一步理解概念,弄清它们之间的联系和区别,以突破本课的教学难点.采用小组讨论的目的意在引导学生参与,改变学习方式,发挥更佳的学习效果.实践和应用1.下列图片是生活中的一些建筑物,它们是轴对称图形吗?2.下列图形是部分汽车的标志,哪些是轴对称图形?奔驰宝马大众奥迪3.下图中的两个图形是否成轴对称?如果是,请找出它的对称轴.4.请在下图这一组图形符号中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形。
注:这是从数字1到7组成的轴对称图形,问题有一定的难度,需要学生有较强地观察、辨别能力.归纳小结通过本节课的学习,你有什么收获?主要围绕下列几个问题:1.概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点.2.找轴对称图形的对称轴.布置作业1.必做题;(1)教科书第125页第1、2题,第126页第6题.(2)收集3~5幅轴对称的图形.2.选做题设计1~2个轴对称的图案.作业的设计从知识性和趣味性两个方面去考虑.3.备选题:备选题主要是为教师提供一些教学的素材.(1)下列图形是不是轴对称图形?如果是,请找出它的对称轴.(2)按如下方法操作,剪一个轴对称图形:轴对称(2)教学目标①探索并理解对应点所连的线段被对称轴垂直平分的性质.②探索并理解线段垂直平分线的两个性质.③通过观察、实验、猜测、验证与交流等数学活动,初步形成数学学习的方法.④在数学学习的活动中,养成良好的思维品质.教学重点与难点重点:图形轴对称的性质和线段垂直平分线的性质.难点:由线段垂直平分线的两个性质得出的“点的集合”的描述.教学准备探究活动所需的木棒、橡皮筋(如教科书第121页的图14.1-6,第122页的图14.1-8).教学过程提出问题1.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.注:由于本课知识的教学是建立在上一节内容的基础之上,所以安排了两个复习的问题,为问题3的提出做好准备.2.如果两个图形成轴对称,那么这两个图形有什么关系?(如下图,△ABC和△A'B'C'关于直线MN对称)3.如图,△ABC和△A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C的对称点,线段AA'、BB'、CC'与直线MN有什么关系?注:提出问题3并不要求学生马上回答,而是为下一步的探究作准备,如果学生凭观察得出猜测,那么可以通过下一步的实验进行验证.实验探究1.折一折.要解决问题3,我们可以从最简单的一个点开始:先将一张纸对折,用圆规在纸上穿一个孔,然后再把纸展开,记两个孔的位置为点A和点A',折痕为直线MN(如图3).显然,此时点A和点A'关于直线MN对称.连结点A,A',交直线MN于点P.注:这里采用让学生动手折一折,目的是让学生在折纸中体验对称性.先选取一个点进行实验,一是解决一个点,就解决了其他的点,二是从简单入手分析问题本身是我们处理和解决问题的一种手段.2.说一说.观察图形,线段AA'与直线MN有怎样的位置关系?你能说明理由吗?(让学生能说出如下关系:AP=PA',∠MPA=∠MPA'=90°)类似地,点B与点B',点C与点C'是否也有同样的关系?你能用语言归纳上述发现的规律吗?(对称轴所在的直线经过对称点所连线段的中点,并且垂直于这条线段)注:在这个基础上,教师给出垂直平分线的概念,然后把上述规律概括成图形轴对称的性质(教科书第121页)图3图53.想一想.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢?(结合教科书第121页的图14.1-5让学生说明)从而得出:类似地,轴对称图形的对称轴,是任何一对对应点连线的垂直平分线. 注:从折一折到说一说、想一想,其意图是把这个教学过程设计成让学生主动地参与进来,转变以往的学习方式.合作探究探究一:教科书第121页的“探究”.学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB ,再画出它的垂直平分线MN ,在MN 上任意取点P1,P2,P3(如图4),分别量一量点P1,P2,P3到A 与B 的距离,你有什么发现?你能说明理由吗?请与同伴交流.处理方式:要求学生在独立尝试、独立思考的基础上进行合作交流,然后小组汇报.学生可以量一量、折一折,也可以运用第十三章的知识证明三角形全等.在学生充分讨论的基础上归纳出:线段垂直平分线上的点与这条线段两个端点的距离相等.注:合作与交流是目前课堂教学中比较缺乏的一种教学方式,在教学中应创造条件引导学生积极参与,同时教师应组织好,引导好.把垂直平分线的性质与全等三角形的知识结合起来,既能复习以往的知识,又能使新知识得到应用,便于加深对新知识的理解和掌握.想一想:如图5,我们在教科书第99页的练习1中,应用三角形全等的知识说明了CB=CB ,你能运用今天所学的知识给出解释吗?问题:反过来,如果PA=PB ,那么点P 是否在线段AB 的垂直平分线上?探究二:如图6,PA=PB ,取线段AB 的中点O ,连结PO ,PO 与AB 有怎样的位置关系?注:由于教科书第122页上的探究活动实际上是这样的一个数学问题:“如图6,已知OA=OB ,PA ,PB 满足什么条件时,OP ⊥AB?”这与上述命题的逆命题不完全一致,所以本设计改用直接的数学问题.学生可以运用三角形全等的知识判定△PAO ≌△PBO ,从而有∠POA =∠POB =90°,于是PO ⊥AB ,即PO 是线段AB 的垂直平分线.从而得出: 图 4图6与一条线段两个端点距离相等的点在这条线段的垂直平分线上.归纳结论:见教科书第122页的最后一段话.(注意:应该从正逆两个角度,结合具体的图形进行归纳)教科书第122页的最后一段话比较抽象,以教师讲解为主,可以结合角平分线的性质.处理方式:在教师的引导下,由学生讲述解题方法,教师给出解题过程.3.练习:教科书第123页.小结提高让学生从以下几方面去思考:1.本节课你学到了什么?(1)从知识上:一个概念(线段的垂直平分线),四条性质(轴对称图形的性质、垂直平分线的性质);(2)从方法上:合作探究是数学学习的一种重要方法,数学与实际问题的联系.2.轴对称图形的性质与线段垂直平分线的性质之间的联系;在解决问题的过程中所看到的新旧知识之间的联系(如全等三角形).注:让学生进行小结有利于培养学生良好的学习品质和学习习惯,当然教师应该加以引导.作业布置1.必做题:教科书第125页第3题,第126页第5、9题.2.选做题:教科书第126页第11题,第127页第12题.轴对称(3)教学目标①了解线段垂直平分线的画法.②会画两个成轴对称的图形(或一个轴对称图形)的对称轴.③通过画图和欣赏,陶冶学生的审美情操.教学重点与难点重点:画图形的对称轴.难点:对对称轴画法的理解.教学过程提出问题问题1:如果我们感觉两个平面图形是成轴对称的,你准备用什么方法去验证?问题2:两个成轴对称的图形,不经过折叠,你用什么方法画出它的对称轴?问题1是让学生能说出折叠法验证,这一方面是复习轴对称的知识,另一方面也是加深对轴对称的理解.提出问题2是引起学生的思考,以引出新课.学习新知我们已经知道,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.因此我们只要找到这两个图形的一对对应点,然后画出以这两个对应点为端点的线段的垂直平分线就可以了.如何画一条线段的垂直平分线呢?例1(补充)已知线段AB(如图1),用直尺和圆规作线段AB 的垂直平分线.图1教科书第123页上的例题是以线段的垂直平分线为基础的,所以这里就先给出线段的垂直平分线的作法,而这也恰恰是课标要求的基本尺规作图之一.可按如下的步骤进行:(1)教师启发:根据线段垂直平分线的性质,只要找到与A ,B 两点的距离相等的两个点即可.(2)作图示范.写出作法,根据作法一步一步地作出图形.(3)解后反思:①在上述作法中,为什么有CA=CB ,DA=DB?②如图2,直线CD 与AB 的交点就是线段AB 的中点,因此用这种方法可以作出线段的中点;③你还有其他的方法画一条线段的垂直平分线吗?注:反思是一种重要的思维品质,也是我们传统的教学所缺乏的.这里安排反思,一是有利于对作法的理解,一是有利于对学生思维发散性的培养.在完成补充例题的基础上把例题改成练习,不失为一种处理的好方法.解决问题:练习:教科书第123页中的例题.例2(补充)如图3,△ABC 和△A'B'C'是两个成轴对称的图形,请画出它的对称轴图3 图4处理方法:启发学生把这个问题转化为已解决的问题.只要画出点A ,A'的对称轴即可.注:补充这个例题是为了应用例1的方法,同时也是回答了开始提出的问题,更可以说是给出一种画轴对称图形的对称轴的通法.问题:上述提到的都是两个成轴对称的图形,如果是一个轴对称图形,你怎样画出它的对称轴?如图5所示的正五角星有几条对称轴?图5实践和应用1.练习:教科书第124页.2.正比例函数y=2x 的图象与y=-2x 的图象是不是轴对称图形?如果是,它的对称轴在图 2哪里?如果不是,请说明理由.已知正比例函数y=21x 的图象如图6所示,你能根据对称性作出正比例函数y=-21x 的图象吗? 注:将函数图象与图形的轴对称结合起来,一方面是对前面知识的应用,另一方面也是加深学生对轴对称图形性质的理解.图6师生小结 主要围绕以下几点进行归纳:1.线段垂直平分线的作法;2.画成轴对称的图形的对称轴的几种常见方法:(1)将图形对折;(2)用尺规作图;(3)用刻度尺先取一对对称点连线的中点,然后画垂线.3.有许多图形的对称轴不止一条.注:通过小结,突出本节课的内容和方法,同时也是对所学知识的提炼和延伸. 作业布置 1.必做题:教科书第125页第4题,第126页第7、8题;2.选做题:教科书第126页第10题;3.备选题:(1)在等腰三角形、等腰梯形、线段、数轴、平面直角坐标系、平行四边形等图形中,轴对称图形的个数是 ( )A .6个B .5个C .4个D .3个(2)下列图形是轴对称图形吗?如果是,请画出它的对称轴.3.图7是不是轴对称图形?如果是,请画出它的对称轴.图7轴对称变换(1)教学目标①通过动手操作体验轴对称变换.②能作出一个图形经一次或二次轴对称变换后的图形.③能利用轴对称变换设计一些简单的图案.④通过图案设计等活动,培养学生的动手操作能力、审美及数学兴趣,发展学生的空间观念.教学重点与难点重点:作一个图形经轴对称变换后的图形.难点:通过动手操作总结轴对称变换的特征.教学准备剪刀、画有一个简易风筝的半透明的纸.教学过程创设情境,引入新课多媒体介绍剪纸文化艺术:剪纸是中国最为流行的民间艺术之一,根据考古其历史可追溯到公元六世纪,甚至更早.在过去,人们经常用纸做成形态各异的物像和人像,与死者一起下葬或葬礼上燃烧,还被用作祭祀祖先和神仙所用供品的装饰物.现在,剪纸更多地是用于装饰,也可为礼品作点缀之用,甚至剪纸本身也可作为礼物赠送他人.剪纸不是用机器而是由手工做成的,常用的方法有两种:剪刀剪和刀剪.学生欣赏展示的剪纸图片,教师提出问题:如此漂亮的剪纸是如何剪出的呢?相信同学们学了本节课后你也能剪出如此漂亮的剪纸!引入新课,板书课题:轴对称变换.注:让学生了解剪纸艺术,认识我国悠久灿烂的民族文化,了解我国优秀的民间手工艺术.培养学生的审美,激发学习兴趣.动手操作,感受变换请学生拿出画有一个简易风筝(如图形状)的半透明的纸,把这张纸对折后描图.学生画好后打开对折的纸.注:采用风筝图便于学生画图,在动手操作中体验轴对称变换,发现轴对称变换的特征,在实践中体验学习的快乐,也使轴对称特征的得出显得更直观,更具体.也为下面画轴对称变换后的图形提供感性认识.请学生仔细观察回答下列问题:(1)画出的图形与原来的图形有什么关系?(学生回答后,师生补充得出:画出的图形与原图形关于折痕轴对称,折痕所在直线是对称轴)(2)两个图形成轴对称有什么特征?(学生回答后,让学生找出几个对应点,并连结对应点进行验证.)注:我们可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(多媒体演示如下图经多次重复后的图形),让学生感受运用所学知识设计出这些美丽的图案其实并不难!如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?学生交流后,总结归纳出:由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.注:让学生感受改变对称轴的方向和位置,不改变轴对称变换的特征.同时通过交流,培养学生的语言表达能力,归纳能力.提升思维,运用变换老师引出轴对称变换的概念,并指出:成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.老师提出问题:刚才的风筝图,要画经过轴对称变换后的图形,除了刚才所用的描图的方法外,还有哪些方法?学生试着说一说后,出示例1:如图,已知ΔABC可以和直线l,作出与△ABC关于直线l对称的图形.通过前面的印图案、说特征等活动,使学生时经轴对称变换后的两个图形具有一定的感性认识,在具有一定认识的基础上以及根据轴对称图形的特征能发现画图方法.培养学生的发散思维.如果将△ABC的位置移至如图2、3、4时,你还能作出关于直线l对称的图形吗?画出后如何验证是否正确?图1 图2 图3 图4 注:通过练习,使学生学会运用轴对称变换画图,培养学生思维的流畅性,体验变换思想.画图后让学生归纳画图要点,学生回答后,教师总结:一个平面图形都是由一些线组成,而点动成线,所以,要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.注:通过归纳要点,找到规律,形成方法.练习1:把下列图形补成关于直线l对称的图形.注:此练习比例题在层次上有了提升,使学生巩固方法,学会变通.而且图形的设计符合学生的心理特征,激发学习兴趣.学生画出图形后多媒体展示,共同纠错.练习2:如图,左边的树经过几次轴对称变换,可以变成右边的树?你能设计一种变换方案吗?请学生探索,可以小组合作完成.学生回答时经过几次变换不重要,只要讲得有道理即可.注:问题的设计促使学生去分析图形,分析轴对称,拓展思维.运用变换,设计图案利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案,许多镶边和背景的图案就是这样设计的.(多媒体放映图片) 注:感受通过轴对称变换可以设计出一些美丽的图案,激发学生设计的欲望.问题:展开你的想像,从一个图形或几个图形出发,利用轴对称变换,设计出一些图案,并与同学交流.本节课开始时放映的一些剪纸,你能利用所学知识想办法剪出来吗?课后去剪一剪.注:运用轴对称知识设计图案,体现学以致用思想,培养学生的创造性思维.归纳小结1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.注:通过小结归纳,巩固轴对称图形的性质和画图方法.布置作业1.必做题:教科书第135页习题14.2第1题,第136页第5题.2.选做题:(1)教科书第137页第8题.(2)请你利用所学知识剪一个“双喜”字.3.备选题:(1)分别以直线l为对称轴,将数字作轴对称变换,作出变换后所得的图形.(2)已知直线l和图形X(如图),将图形X以直线l为对称轴作轴对称变换后得到的图形是( )A.B.C.D.(3)利用轴对称变换画出花瓶图的另一半.轴对称变换(一)教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.(三)情感与价值观要求1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学方法讲练结合法.教具准备多媒体课件.教学过程Ⅰ.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是来作简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.(课件演示)取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.Ⅲ.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.。