分析主变纵差动保护不平衡电流原因及解决方法

合集下载

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因变电站主变压器差动保护是保护变电站主变压器安全运行的重要装置之一,它能够对变压器进行差动保护,及时发现和处理变压器内部出现的故障。

不平衡电流是造成差动保护误动作的常见原因之一。

本文将从不平衡电流产生的原因进行分析,以便更好地深入了解主变压器差动保护故障的成因。

1. 主变压器内部故障主变压器内部的故障是导致不平衡电流产生的主要原因之一。

当主变压器出现短路、接地故障或绕组内部接触不良等故障时,容易导致不同相之间电流不平衡。

在绕组短路时,故障相的电流会明显大于正常相的电流,这样就会导致差动保护误动作。

主变压器内部故障是造成不平衡电流的主要原因之一。

2. 绕组接地故障3. 负载不平衡主变压器负载不平衡也是导致不平衡电流产生的原因之一。

在负载不平衡的情况下,变压器各相的负载不一样,导致各相电流不平衡。

特别是在大型工业用电场合,负载不平衡现象十分常见,这就需要主变压器差动保护对不平衡电流进行准确判断,避免误动作。

4. 谐波的影响电网中存在谐波也是导致不平衡电流产生的一个重要原因。

当电网中存在谐波时,会引起主变压器内部的不平衡电流,尤其当谐波电流通过绕组时,会产生非对称的磁场,导致不同相之间的电流不平衡,从而影响差动保护的灵敏度和可靠性。

不平衡电流是主变压器差动保护误动作的一个常见问题。

主要原因包括主变压器内部故障、绕组接地故障、负载不平衡和谐波的影响。

对这些产生不平衡电流的原因进行深入分析,可以为差动保护的改进提供一些借鉴和参考,进一步提高其灵敏度和可靠性。

分析主变纵差动保护不平衡电流原因及解决方法(2)

分析主变纵差动保护不平衡电流原因及解决方法(2)

分析主变纵差动保护不平衡电流原因及解决方法(2)对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2种方法来克服:一是采用自耦变流器进行补偿。

通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH的二次电流,从而使流入差动继电器的电流为零或接近为零。

二是利用中间变流器的平衡线圈进行磁补偿。

通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。

适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。

采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,因此还会有一残余的不平衡电流存在,这在进行纵差保护定值整定计算时应该予以考虑。

2、由变压器两侧电流相位不同而产生的不平衡电流的克服方法对于由变压器两侧电流相位不同而产生的不平衡电流可以通过改变LH接线方式的方法(也称相位补偿法)来克服。

对于变压器Y形接线侧,其LH采用△形接线,而变压器△形接线侧,其LH采用Y形接线,则两侧LH二次侧输出电流相位刚好同相。

但当LH采用上述连接方式后,在LH接成△形侧的差动一臂中,电流又增大了3倍,此时为保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧LH的变比扩大3倍,以减小二次电流,使之与另一侧的电流相等。

3、由变压器外部故障暂态穿越性短路电流产生的不平衡电流的克服方法在变压器外部故障的暂态过程中,使纵差保护产生不平衡电流的主要原因是一次系统的短路电流所包含的非周期分量,为消除它对变压器纵差保护的影响,广泛采用具有不同特性的差动继电器。

对于采用带速饱和变流器的差动继电器是克服暂态过程中非周期分量影响的有效方法之一。

浅谈对变压器差动保护不平衡电流的认识

浅谈对变压器差动保护不平衡电流的认识

浅谈对变压器差动保护不平衡电流的认识摘要:差动保护是变压器的主保护。

但在实际运行中,产生了不平衡电流降低了保护的灵敏度,有时会产生误动作现象。

本文分析了差动保护不平衡电流产生的原因,并提出有效的防范措施。

关键词:差动保护不平衡电流影响措施引言在旗县农电局66千伏变电所中,差动保护是变压器的主保护。

理论上,当变压器两侧电流互感器的极性相同时,把电流互感器不同极性的二次端子相连,差动继电器的工作线圈并联在电流互感器的二次端子上,此时变压器两侧的二次电流大小相等,方向相反,通过继电器中的电流为零,差动继电器将不会动作。

但是在实际运行时,由于各种因素产生了不平衡电流,因而降低了保护的灵敏度,有时会产生误操作现象。

因此通过了解变压器差动保护工作原理,分析差动保护不平衡电流产生的原因,找出有效的防范措施,提高差动保护动作的灵敏度性,对确保变压器的安全稳定运行很有必要。

1 不平衡电流产生的原因及其对差动保护的主要影响和消除方法(1)变电所主变压器基本采用Yd11的接线方式,其两侧电流的相位差为30度,所以会在差动继电器中产生不平衡电流。

消除这种不平衡电流影响的最好方法是采用相位补偿法,通常将变压器的高压侧的三个电流互感器接成三角形,将变压器低压侧的三个电流互感器接成星形,通过调整互感器出线联接方式可使二次电流的相位相同。

但是经过相位调整后,在高低压侧的电流幅值出现了偏差,差动电流增大。

为了保证在正常运行情况下差动回路中电流近似为零,常通过将该侧电流互感器的电流乘以个系数,尽可能与另一侧的电流相近,使差动电流维持在最小水平。

这是消除不平衡电流的一种常用方法。

(2)变压器的励磁涌流也会产生不平衡电流。

变压器空载投入运行时,由于变压器的铁芯非常饱和,励磁电流将剧烈增大,这时出现可达额定电流8倍左右的励磁涌流。

励磁涌流的大小与回路的阻抗、变压器的容量和铁芯性质等有关系,变压器容量越大,涌流倍数反而越小。

另一方面,励磁涌流中含有二次谐波分量和大量的非周期分量,非周期分量都是偏到时间轴的一边,衰减比较慢。

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因变电站主变压器差动保护是电力系统中非常重要的保护之一,其主要作用是监测主变压器两侧的电流是否平衡,如果出现不平衡,则切断故障电流以保护设备的安全运行。

在实际工作中,经常出现差动保护误动或误动率过高的情况,其中一个主要原因就是不平衡电流的产生。

下面从以下几个方面进行分析。

1.主变压器的不平衡主变压器的不平衡是导致差动保护误动或误动率过高的主要原因之一。

主变压器本身存在着磁路不对称性、接线不对称性等问题,这些问题都会导致主变压器两侧的电流不平衡。

而差动保护的动作依赖于两侧电流的差值,因此如果主变压器本身的不平衡电流大于设定值,则会误动差动保护。

2. 对称分量不同对称分量不同也会导致差动保护误动或误动率过高。

在电力系统中,对称分量是指电流或电压分解成正序、负序、零序三个分量。

如果主变压器两侧电流的对称分量不同,则会导致差动保护误动。

例如,如果主变压器两侧电流的负序分量不同,则会导致差动保护产生不平衡电流,从而导致误动或误动率过高。

3. 母线电抗不同4. 安装误差导致的相位偏差最后,安装误差也可能导致差动保护误动或误动率过高。

差动保护是通过主变压器两侧的电流差值来判断故障的存在,因此安装位置的相对偏差会导致电流测量的不准确性,从而导致差动保护误动或误动率过高。

综上所述,导致变电站主变压器差动保护误动或误动率过高的原因主要来自主变压器的不平衡、对称分量不同、母线电抗不同以及安装误差。

因此,在实际工作中,应该对主变压器进行定期检修和维护,尽量保证其正常运行,同时安装差动保护时也要注意检查安装误差,以减少差动保护误动或误动率过高的情况的发生。

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因变电站主变压器差动保护是一种保护装置,其原理是通过检测主变压器两侧电流的差值,当差值超过设定值时,保护动作,从而实现对主变压器的保护。

然而,在实际应用中,存在着差动保护误动以及抗干扰能力弱等问题。

其中,不平衡电流是导致差动保护误动的主要原因之一。

不平衡电流是指主变压器两侧电流的不相等现象,其产生的原因主要有以下几个方面。

1. 负载不均衡负载不均衡是主要导致不平衡电流产生的原因之一。

在电力系统中,由于电网接入负载的不同,不同的负载分布不同,因此会导致主变压器两侧电流的负载不均衡。

负载不均衡会导致电流的流动方向不一致,从而造成主变压器两侧电流的不平衡。

2. 主变压器内部故障主变压器内部故障也是导致差动保护误动的常见原因之一。

在主变压器内部有可能出现短路、接触不良、线圈断线等故障,这些故障都会造成主变压器两侧电流的不平衡。

如果差动保护的设定值比较低,就会导致误动。

3. 变压器组接方式不同在变电站中,采用不同的变压器组接方式也会导致主变压器两侧电流的不平衡。

比如,当变压器中性点接地时,主变压器两侧电流的不平衡可能会更加明显。

4. 零序电流的影响零序电流也会对差动保护产生影响。

当系统中存在零序电流时,它会通过主变压器的铁心流动,由于铁心对电流具有阻抗特性,因此会产生磁通,从而导致主变压器两侧电流的不平衡。

5. 线路中的杂乱信号变电站周围的电子设备、通信系统等都会产生杂乱信号,这些信号可能会影响到差动保护的工作。

当杂乱信号超过差动保护的判别能力时,就会导致误动。

总之,不平衡电流是导致差动保护误动的主要原因之一,其产生的原因较为复杂,需要对变电站的运行情况进行全面认真的分析,以制定相应的防护措施,保障变电站的运行安全。

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因变电站主变压器差动保护是保护电力系统中主变压器的重要装置,它能够及时监测主变压器的运行状态,一旦出现故障能够快速切除故障区域,保护整个电力系统的安全稳定运行。

在实际运行中,差动保护系统有时会出现不平衡电流问题,这种情况会对保护装置造成影响,甚至导致误动作。

了解不平衡电流产生的原因对改善差动保护系统的性能具有重要意义。

一、不平衡电流的产生原因1. 主变压器接地故障主变压器的接地故障是导致不平衡电流产生的一个主要原因。

当主变压器出现接地故障时,会导致主变压器的相间短路,从而引起不平衡电流。

由于接地故障通常只发生在一个相位上,因此会导致该相位电流增大,而其他两个相位的电流并不受影响,从而造成了不平衡电流。

2. 主变压器绕组短路主变压器的绕组短路也是不平衡电流产生的原因之一。

主变压器绕组中如果出现相间短路现象,就会导致不平衡电流的产生。

绕组短路会导致电流在绕组中流动路径发生改变,从而引起不平衡电流的产生。

3. 不同相位的负载不平衡电力系统中,如果不同相位的负载不平衡,即各相的负载功率不相等,就会导致不平衡电流。

当电力系统中的负载不平衡时,会导致各相的电流不相等,同时引起不平衡电流问题。

主变压器的冷却系统故障也是不平衡电流产生的原因之一。

主变压器的冷却系统如果出现故障,会导致主变压器的冷却效果不良,可能导致主变压器的一些绕组过热,从而引起不平衡电流。

1. 误动作不平衡电流会导致差动保护系统的误动作。

由于不平衡电流的存在,可能会导致差动保护系统误判为主变压器发生了内部故障,从而切除了主变压器,影响了电力系统的正常运行。

2. 对设备造成损坏不平衡电流会使主变压器绕组和绝缘系统承受不均匀的电流,可能会造成设备的损坏,甚至会导致设备的烧毁。

3. 降低保护系统的可靠性不平衡电流会影响差动保护系统的可靠性,导致保护系统的性能下降,这对电力系统的安全稳定运行具有严重的影响。

变压器纵差动保护不平衡电流产生的原因

变压器纵差动保护不平衡电流产生的原因
变压器纵差动保护是一种重要的保护装置,用于检测和保护变压器主绕组的不平衡电流。

不平衡电流产生的原因有以下几个方面:
1. 负载不平衡:当变压器的负载不均匀分布在各相上时,会导致不平衡电流的产生。

例如,当负载过于集中在一相上,而其他相的负载较轻时,就会出现不平衡电流。

2. 接地故障:当变压器的绝缘系统存在接地故障时,会导致绕组发生短路,从而产生不平衡电流。

3. 相间短路:当变压器的两个相之间发生短路时,会导致电流在相间流动,引起不平衡电流的产生。

4. 绕组接触不良:变压器的绕组接触不良或电气连接故障,如接线头松动、腐蚀等,会导致不平衡电流的产生。

5. 电源故障:当供电系统出现相间电压偏差、频率偏差等问题时,也会导致变压器的不平衡电流。

为了防止不平衡电流引发变压器损坏或事故,我们使用变压器纵差动保护系统来监测和保护变压器的运行。

该保护系统通过检测主绕组上的电流差异来判断是否有不平衡电流产生,并在必要时切断电流。

总之,变压器纵差动保护不平衡电流产生的原因主要包括负载不平衡、接地故障、相间短路、绕组接触不良和电源故障等。

简述变压器差动保护中产生不平衡电流的原因及消除措施

简述变压器差动保护中产生不平衡电流的原因及消除措施
变压器差动保护中产生不平衡电流的原因主要有以下几点:
1. 变压器内部绕组故障:如绕组短路、接地故障等,会导致绕组电流不平衡。

2. 变压器连接线路不平衡:如三相线路电阻不均、接地不均等,会导致变压器输入输出电流不平衡。

3. 变压器负载不平衡:变压器的负载分布不均,或负载变化较大,也会导致输入输出电流不平衡。

消除变压器差动保护中产生的不平衡电流的主要措施包括:
1. 均衡变压器负载:通过调整变压器负载分布,使三相负载接近平衡,可以减小不平衡电流的产生。

2. 检修变压器内部故障:及时发现绕组短路、接地故障等问题,并及时修复。

3. 检查线路连接和接地情况:确保变压器输入输出线路的连接和接地均衡,避免线路阻抗不均引起的不平衡电流。

4. 使用差动保护装置:差动保护装置可以检测到不平衡电流,当不平衡电流超过设定值时,可以及时切断电路,保护变压器安全运行。

5. 定期检测变压器的运行状态,包括输入输出电流的平衡情况,及时发现问题并采取相应措施。

分析变电站主变压器差动保护的不平衡电流产生的原因

分析变电站主变压器差动保护的不平衡电流产生的原因
主变压器内部绕组的不平衡是不平衡电流产生的主要原因之一。

主变压器内部的绕组
受到制造工艺、绝缘材料、接地方式等诸多因素的影响,容易出现一些不均匀分布的情况。

这样就会导致主变压器中绕组的电阻、电感、容量等参数存在一定的不平衡,进而产生差
动电流。

负载的不平衡也是不平衡电流产生的重要因素之一。

主变压器的负载通常是通过三相
线路进行供电的,而不同用户的用电负载不一定相同,可能存在不对称的情况。

某一相的
负载较大,而其他两相的负载较小,这就会导致主变压器的负载不平衡,进而产生不平衡
电流。

主变压器的接地方式也会影响差动保护的不平衡电流问题。

主变压器的接地方式可以
分为星形接地和三角接地两种。

星形接地时,由于每个相之间有一个接地电抗器,可能会
导致不同相之间存在一定的接地电流差异,从而产生不平衡电流。

而三角接地时,由于每
个相都直接接地,理论上不会产生不平衡电流。

还有一些外部因素也可能对不平衡电流产生影响。

线路故障、继电器故障、传感器元
件的误差等都可能导致不平衡电流的产生。

主变压器差动保护的不平衡电流产生是由于主变压器本身的不平衡特性、负载的不平衡、接地方式以及一些外部因素的影响共同作用的结果。

在实际应用中,需要对这些因素
进行综合考虑,并采取相应的措施来减小不平衡电流的影响,保证差动保护的准确性和可
靠性。

浅析变压器差动保护中不平衡电流产生的原因及克服方法

浅析变压器差动保护中不平衡电流产生的原因及克服方法摘要:在电力系统中,变压器是一种非常重要的电气元件。

本文通过对变压器差动保护中不平衡电流产生原因的分析,进而阐述了变压器差动保护中不平衡电流的克服方法,从而达到保证变压器差动保护正确灵敏动作的目的。

关键词:电气工程;变压器;差动保护;不平衡电流;比率差动引言:电力系统是由发电、变电、输电、配电和用户等五部分组成的有机整体。

在电力系统中,变压器是一种非常重要的电气元件。

在发电厂,利用升压变压器将低压电能变换成高压电能,以利于电能的远距离传输;在变电所,利用降压变压器将高压电能变换成低压电能,以供用户使用。

因此,变压器如发生故障,将会给系统安全运行和可靠供电带来严重后果。

为保证变压器的安全运行和防止事故扩大,应给变压器装设继电保护装置,而差动保护就是其主保护之一,它能快速切除变压器绕组和引出线相间短路、大电流接地系统侧绕组和引出线的单相接地短路以及绕组匝间短路故障,确保变压器安全运行。

但是,由于差动保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中流有不平衡电流,使差动保护处于不利的工作条件下。

为保证变压器差动保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生原因,采取措施予以消除。

1 变压器差动保护中不平衡电流产生的原因变压器的运行情况可分为稳态情况和暂态情况,稳态运行就是变压器带正常负荷运行,暂态情况就是变压器外部故障以及变压器空载投入或外部故障切除后恢复供电等。

各种情况下差动保护回路产生不平衡电流的原因不同,克服方法也不同,下面分类进行分析:1.1 稳态情况下的不平衡电流变压器在正常运行时差动保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。

1.1.1 由电流互感器计算变比与实际变比不同而产生的不平衡电流正常运行时变压器各侧电流的大小是不相等的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析主变纵差动保护不平衡电流原因及解
决方法
摘要:本文从对变压器纵差保护原理进行阐述的基础上,较详细地分析了纵差保护不平衡电流的形成原因,并提出了解决变压器纵差保护中不平衡电流的方法。

关键词:主变;纵差保护;不平衡电流;解决方法
前言:纵差动保护是变电站主变压器的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。

但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,使得变压器纵差保护所固有原理性矛盾更加突显。

一、变压器纵差保护原理
纵差保护作为变压器内部故障的主保护,将有许多特点和困难。

变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。

当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于“0”,但是实际上在外
部发生短路时还存在一个不平衡电流。

事实上,外部发生短路故障时,因为外部短路电流大,特别是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。

因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。

另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。

为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。

二、纵差保护不平衡电流分析
1、稳态情况下的不平衡电流
变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。

(1)由电流互感器计算变比与实际变比不同而产生。

正常运行时变压器各侧电流的大小是不相等的。

为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。

但是,实际上由于电流
互感器的变比都是根据产品目录选取的标准变比,而变压器的变比是一定的,因此上述条件是不能得到满足的,因而会产生不平衡电流。

(2)由变压器两侧电流相位不同而产生。

变压器常常采用两侧电流的相位相差30°的接线方式(对双绕组变压器而言)。

此时,如果两侧的电流互感器仍采用通常的接线方式(即均采用Y形接线方式),则二次电流由于相位不同,也会在纵差保护回路产生不平衡电流。

(3)由变压器带负荷调整分接头产生。

在电力系统中,经常采用有载调压变压器,在变压器带负荷运行时利用改变变压器的分接头位置来调整系统的运行电压。

改变变压器的分接头位置,实际上就是改变变压器的变化。

如果纵差保护已经按某一运行方式下的变压器变比调整好,则当变压器带负荷调压时,其变比会改变,此时,纵差保护就得重新进行调整才能满足要求,但这在运行中是不可能的。

因此,变压器分接头位置的改变,就会在差动继电器中产生不平衡电流,它与电压调节范围有关,也随一次电流的增大而增大。

2、暂态情况下的不平衡电流
(1)由变压器励磁涌流产生
变压器的励磁电流仅流经变压器接通电源的某一侧,对差动回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流。

因此,它必然给纵差保护的正确工作带来不利
影响。

正常情况下,变压器的励磁电流很小,故纵差保护回路的不平衡电流也很小。

在外部短路时,由于系统电压降低,励磁电流也将减小。

因此,在正常运行和外部短路时励磁电流对纵差保护的影响常常可忽略不计。

但是,在电压突然增加的特殊情况下,比如变压器在空载投入和外部故障切除后恢复供电的情况下,则可能出现很大的励磁电流,这种暂态过程中出现的变压器励磁电流通常称励磁涌流。

(2)由变压器外部故障暂态穿越性短路电流产生
纵差保护是瞬动保护,它是在一次系统短路暂态过程中发出跳闸脉冲。

因此,必须考虑外部故障暂态过程的不平衡电流对它的影响。

在变压器外部故障的暂态过程中,一次系统的短路电流含有非周期分量,它对时间的变化率很小,很难变换到二次侧,而主要成为互感器的励磁电流,从而使互感器的铁心更加饱和。

三、变压器纵差保护中不平衡电流的解决方法
从上面的分析可知,构成纵差保护时,如不采取适当的措施,流入差动继电器的不平衡电流将很大,按躲开变压器外部故障时出现的最大不平衡电流整定的纵差保护定值也将很大,保护的灵敏度会很低。

若再考虑励磁涌流的影响,保护将无法工作。

因此,如何克服不平衡电流,并消除它对保护的影响,提高保护的灵敏度,就成为纵差保护的中心问题。

1、由电流互感器变比产生的不平衡电流的克服方法
对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2种方法来克服:一是采用自耦变流器进行补偿。

通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH的二次电流,从而使流入差动继电器的电流为零或接近为零。

二是利用中间变流器的平衡线圈进行磁补偿。

通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。

适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。

采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,因此还会有一残余的不平衡电流存在,这在进行纵差保护定值整定计算时应该予以考虑。

2、由变压器两侧电流相位不同而产生的不平衡电流的克服方法
对于由变压器两侧电流相位不同而产生的不平衡电流可以通过改变LH接线方式的方法(也称相位补偿法)来克服。

对于变压器Y形接线侧,其LH采用△形接线,而变压器△
形接线侧,其LH采用Y形接线,则两侧LH二次侧输出电流相位刚好同相。

但当LH采用上述连接方式后,在LH接成△形侧的差动一臂中,电流又增大了3倍,此时为保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧LH的变比扩大3倍,以减小二次电流,使之与另一侧的电流相等。

3、由变压器外部故障暂态穿越性短路电流产生的不平衡电流的克服方法
在变压器外部故障的暂态过程中,使纵差保护产生不平衡电流的主要原因是一次系统的短路电流所包含的非周期分量,为消除它对变压器纵差保护的影响,广泛采用具有不同特性的差动继电器。

对于采用带速饱和变流器的差动继电器是克服暂态过程中非周期分量影响的有效方法之一。

根据速饱和变流器的磁化曲线可以看出,周期分量很容易通过速饱和变流器变换到二次侧,而非周期分量不容易通过速饱和变流器变换到二次侧。

因此,当一次线圈中通过暂态不平衡电流时,它在二次侧感应的电势很小,此时流入差动继电器的电流很小,差动继电器不会动作。

另外,采用具有磁力制动特性的差动继电器。

这种差动继电器是在速饱和变流器的基础上,增加一组制动线圈,利用外部故障时的短路电流来实现制动,使继电器的起动电流
随制动电流的增加而增加,它能可靠地躲开变压器外部短路时的不平衡电流,并提高变压器内部故障时的灵敏度。

因此,继电器的启动电流随着制动电流的增大而增大。

通过正确的定值整定,可以使继电器的实际启动电流不论在任何大小的外部短路电流的作用下均大于相应的不平衡电流,变压器纵差保护能可靠躲过变压器外部短路时的不平衡电流。

结束语:综上所述,从不平衡电流的形成来看,主变励磁涌流仍然是产生不平衡电流的主导因素,而主变纵差保护的设计方案也因不平衡电流的影响而各不相同;另外,还需要对主变差动保护的动作电流进行科学的整定,使差动保护即躲开不平衡电流影响,又要保证保护的可靠性和灵敏性;因此,在实际工作中,应根据设备实际情况对主变纵差动保护设计方案进行适宜的设计。

参考文献:
[1] 许实章电机学
[2] 王维俭电气主设备继电保护原理与应用
[3] 陈德树计算机继电保护原理与技术
[4] 周玉兰、詹荣荣全国电网继电保护与安全自动装置运行情况与分析
[5] 周玉兰、王俊永 2001年全国电网主设备保护运行分析
二00九年九月十六日。

相关文档
最新文档