纵联差动保护原理

合集下载

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理
纵联差动保护是电力系统中常用的保护方式之一,用于检测和保护多个平行的发电机或变压器组的差动故障。

其原理是根据比较线圈中电流的差值来判断系统是否存在差动故障,并发出保护信号。

在纵联差动保护中,一组比较线圈置于发电机或变压器的两端,同时连接到保护装置中。

当正常运行时,比较线圈中的电流应该是相等的,差动电流为零。

而当系统发生差动故障时,比较线圈中的电流会出现差异,差动电流会产生并流入保护装置。

保护装置对比较线圈中的电流进行比较,并设定一个差动电流阈值。

当差动电流超过阈值时,保护装置会判断为故障发生,并发出保护信号,触发断路器进行故障切除,保护系统的正常运行。

为了提高纵联差动保护的检测能力和可靠性,通常还会采用差动电流的变比校正,以消除发电机或变压器的变比误差对差动保护的干扰。

此外,还可以通过差动电流的零序和负序成分的检测来区分故障类型,提高保护的选择性。

总之,纵联差动保护通过比较发电机或变压器两端的电流差异来检测差动故障,从而保护电力系统的安全运行。

它是一种常用且有效的保护方式,广泛应用于电力系统中。

线路纵联差动 零序差动保护原理

线路纵联差动 零序差动保护原理

线路纵联差动零序差动保护原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!线路纵联差动保护是电力系统中一种常见的保护手段,它主要用于保护电力输电线路免受纵联故障的影响。

纵联保护原理

纵联保护原理

纵联保护原理线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。

而普通的反应线路一侧电量的保护不能做到全线速动。

纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。

是属于直接比较两侧电量对纵联保护。

目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。

纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。

包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。

先了解一下纵联差动保护:为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。

输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路.纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。

高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。

安工作原理的不同可分为两大类:方向高频保护和相差高频保护。

光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。

光纤通信广泛采用PCM调制方式。

这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

距离保护:距离保护是通过测量被保护线路始端电压和线路电流比值而动作的一总保护,这个比值被称为测量阻抗Zm,用来完成这一测量任务的元件称为阻抗继电器KI。

因为在短路时的测量阻抗反应了短路点到保护安装点之间距离的长短,所以这总原理的保护为距离保护,有时也称之为阻抗保护。

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理
纵联差动保护是一种电力系统中常用的保护方式,用于检测和保护主变压器、发电机、母线等重要设备的故障。

其基本原理是比较设备两侧电流的差值,当差值超过设定值时,即认为发生了故障,触发保护动作。

纵联差动保护的工作原理可以分为两个阶段:采样和比较。

首先,在设备两侧分别安装电流互感器,采样得到两侧电流的信号。

这些信号经过放大和调节后,送入差动继电器。

差动继电器进行差动计算,即计算两侧电流的差值。

如果差值低于设定值,差动继电器保持动作,表示系统正常。

但当差值超过设定值,差动继电器即判定为发生故障,触发保护装置的动作。

纵联差动保护的核心是差动继电器,其内部包含了一个差动计算单元和一个保护决策单元。

差动计算单元计算两侧电流的差值,并将结果送入保护决策单元。

保护决策单元根据计算结果,进行故障判定和相应的保护动作。

纵联差动保护的设计要考虑到系统的复杂性和可靠性。

在设计时,需要合理选择互感器的参数、差动计算的方式和设定值。

此外,还需要考虑到与其他保护装置的协调工作,使整个保护系统能够快速、准确地检测和定位故障,并采取适当的措施进行隔离和保护。

综上所述,纵联差动保护通过比较设备两侧电流的差值来检测和保护设备的故障。

它是一种重要的电力系统保护方式,能够有效地提升系统的可靠性和安全性。

纵联差动保护

纵联差动保护

6.2 纵联差动保护6.2.1 基本原理6.2.1.1 定义差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。

变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。

6.2.1.2 基本原理变压器纵差保护是按照循环电流原理构成的变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2•'I -2•''I =0,保证纵差保护不动作。

但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

(a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布(图6.4 变压器纵差保护原理接线图)在图6.4(a )双绕组变压器中,变压器两侧电流1•'I 、1•''I 同相位,所以电流互感器TA 1、TA 2二次的电流2•'I 、2•''I 同相位,则2•'I -2•''I =0的条件是2•'I =2•''I ,即 2•'I =2•''I =11i n I •'=21i n I •'' (6.1) 即 12i i n n =11••'''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。

若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为K I •=2•'I -2•''I =0 (6.3)当区内故障时,2•''I 反向流出,则流入差动继电器的电流为K I •=2•'I +2•''I > 0 (6.4) 当K I > 0时,差动继电器动作,驱动变压器两侧断路器分闸,对变压器起到保护作用。

纵联差动保护

纵联差动保护

(2)带制动特性的差动继电器
Ir
带制动特性的差动继电器动作方程为: m I n K res I res I
I 其中:K res为制动系数,res 为制动电流。
I set
• • m


动作区
非动作区
I res
I res 取值又可分为两种形式:
I res | I
I res | I
• m
- I
r
I

m
I

K2故障(或正常运行)时: K1故障(内部短路)时:

Im In

Ir 0
I m , I n 接近同相 I r 0
具有很大量值
因此利用差动电流的幅值大小可以区分区外和区内短路。 考虑实际在正常运行或外部故障时,由于两端TA不可能完全相同,以及两端 TA饱和情况不一致等因数,流入KD的电流通常不为零(不平衡电流),因而在设 计差动继电器的动作判据时需考虑其影响。
2.电流纵差保护的动作方程及特性
(1)不带制动特性的差动继电器
不带制动特性的差动继电器动作方程为: m I n I set I

Ir
动作区
I set
I set 的整定有两个方面 : 1)躲过外部短路时的最大不平衡电流 2)躲过最大负荷电流 取以上两者的最大值作为整定值。
非动作区
I res
n

|
n| | I|来自(3)差动继电器典型动作方程及特性

I

m
I
n
K res I
I op 0
m
I
n
I
m
I
n

光纤纵联差动保护原理

光纤纵联差动保护原理

光纤纵联差动保护原理
光纤纵联差动保护是一种利用光纤通道进行数据传输的保护方式,其基本原理是利用基尔霍夫定律,将流入被保护设备的电流和流出的电流相等,差动电流等于零。

当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。

当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。

光纤纵联差动保护利用光纤通道,实时向对侧传送电流采样数据,同时接收对侧数据。

各侧保护利用本地和对侧电流数据进行差动电流计算,根据差动制动特性进行故障判别。

以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。

纵联差动保护原理

纵联差动保护原理

一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD 接于其差回路中,当正常运行或外部故障时,I 1 与 I 2 反向流入,KD 的电流为11TA I n - 22TA I n =1I '— 2I '≈0 ,故KD 不会动作.当在保护 区内K2点故障时, I1与 I2 同向流入,KD 的电流为:11TA I n + 22TA I n =1I '+ 2I '=2k TAI n当2k TAI n 大于KD 的整定值时,即 1I ' — (3)maxmax /unb st unp i k TA I K K f I n =≠0 ,KD 动作。

这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TAI n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示.通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达:.min.min .min()brk brk op ork brk op I I I K I I I >≥≤+式中:Kst —-同型系数,取0.5;Kunp--非周期性分量影响系数,取为1~1。

5; fi —-TA 的最大数值误差,取0.1。

为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流Iunb.max ,即Iop=KrelIunb 。

max(Krel 为可靠系数,取1。

3)。

Iunb 。

max 越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低.此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1 与 I2 反向流入,KD的电流为11TAIn- 22TAIn=1I' - 2I'≈0 ,故KD不会动作。

当在保护区内K2点故障时, I1与 I2 同向流入,KD的电流为:11TAIn+ 22TAIn=1I' +2I'=2kTAIn当2kTAIn大于KD的整定值时,即1I' - (3)max max/unb st unp i k TAI K K f I n=≠0 ,KD动作。

这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TAI n ≥Iset ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。

通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达:.min.min .min()brk brk op ork brk op I I I K I I I >≥≤+式中:Kst ——同型系数,取;Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。

为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop=(Krel 为可靠系数,取)。

越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。

此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。

对于大、中型发电机,即使轻微故障也会造成严重后果。

为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。

显然,图所示的差动保护整定的动作电流已大于额定电流,无法满足这种要求。

具有比率制动特性的差动保护保护的动作电流Iop 随着外部故障的短路电流而产生的Iunb 的增大而按比例的线性增大,且比Iunb 增大的更快,使在任何情况下的外部故障时,保护不会误动作。

这是把外部故障的短路电流作为制动电流Ibrk,而把流入差动回路的电流作为动作电流Iop 。

比较这两个量的大小,只要IOP ≥Ibrk ,保护动作;反之,保护不动作。

其比率制动特性折线如图 所示。

动作条件:分两段.min op op I I > .min ork brk I I ≤.min .min ()op ork brk op I K I I I ≥≤+ .min brk brk I I >式中, K 为制动特性曲线的斜率(也称为制动系数)。

在图(a )中,选取W1=W2=,DKB1、DKB2二次绕组匝数相同a 。

制动电流:121()2brk I I I ''=+差动回路电流:12op I I I ''=-当外部短路时,12KTAI I I n ''==,制动电流为121()2brkI I I ''=+K TA I n动作电流为12D I I I ''=- , ,保护不动作。

当正常运行时,则12NTAI I I n ''==121()2brkI I I ''=+.min N brk TA I In ==当Ibrk ≤,可以认为无制动作用,在此范围内有最小动作电流为,而此时120op I I I ''=-≈ ,保护不动作。

当内部故障时,2I '反向且 12I I ''≠ ,则 121()2brk I I I ''=+为两侧短路电流之差,数值小,而 1211op k TAI I I I n ''=-=大,保护能动作。

特别是当 12I I ''= 时,Ibrk=0,此时,只需取~)保护就能动作,保护灵敏度大大提高了。

当21110,,2brk op I I I I I '''===, ,保护也能动作。

二、发电机定子绕组的横联差动电流保护当发生任何一种定子绕组的匝间短路时,有一短路电流流进两中性点连线00′上,这是由于A 、B 、C 三相对中性点之间的电势平衡被破坏,则两中性点的电位不等之缘故。

利用流入两中性点连线的零序电流,构成单继电器式横联差动保护。

即在两分支绕组的中性点的连线上装一只电流互感器,保护就装在此电流互感器的二次侧。

当正常运行时,每个并联分支的电势是相等的,三相电势是平衡的,则两中性点无电压差,连线上无电流流过(或只有数值较小的不平衡电流),保护不会动作。

当发生任何一种类型的匝间短路时,两中性点的连线有零序电流通过,保护反应于这一电流而动作。

这就是发电机横联差动保护的原理。

由于发电机电流波形即使是在正常运行时也不是纯粹的正弦波,尤其是当外部故障时,波形畸变较严重,从而在中性点的连线上出现以三次谐波为主的高次谐波分量,给保护的正常工作造成影响,为此,保护装设了三次谐波滤过器,消除其影响,从而提高保护的灵敏度。

横联差动保护原理图转子回路发生两点接地故障时,转子回路的磁势平衡被破坏,则在定子绕组并联分支中所感应的电势不同,三相电势平衡被破坏,从而使并联分支中性点连线上通过较大的电流,造成横差动保护误动作。

若此两点接地故障是永久性的,则这种动作是允许的(最好是由转子两点接地保护切除故障,这有利于查找故障),但若两点接地故障是瞬时性的,则这种动作瞬时切除发电机是不允许的。

因此,需增设~1s 的延时,以躲过瞬时两点接地故障。

也就是当出现转子一点接地时,即将切换至延时回路,为转子永久性两点接地故障做好动作准备。

根据运行经验,保护的动作电流为:(0.2op I 0.3)/N TAI n式中:IN ——发电机的额定电流。

这种保护的灵敏度是较高的。

在切除故障时有一定的死区,即:①单相分支匝间短路的α较小时,即短接的匝数较少时;②同相两分支间匝间短路,且α1= α2,或α l 与α2差别较小时。

对于单“Y ”接线的发电机,宜采用下列保护。

发电机定子绕组的单相接地保护发生定子绕组单相接地故障的主要原因是,高速旋转的发电机,特别是大型发电机(轴向增长)的振动,造成机械损伤而接地;对于水内冷的发电机(大型机组均是采用这种冷却方式),由于漏水致使定子绕组接地。

发电机电压系统定子绕组单相接地时接线如图(a )所示,设发电机每相定子绕组对地电容为CM ,外接每相对地电容为Ct ,当A 相绕组距中性点外单相接地时:AK A A BK B ACK C A U E E U E E U E E ααα=-=-=-033AK BK CK A U E E E E α=++=-00A U E U E ϕαα=-=发电机内部单相接地故障示意图由于电压互感器二次开口三角形绕组的输出电压Umn在正常运行时近似为零,而在发电机出口端(机端)单相接地时为Umn=l00V。

因此,当故障发生在0<α<1 的位置时,Umn= α·100V,上式所表示的关系,在图中为一直线,零序电压保护继电器的动作电压应躲开正常运行时的不平衡电压(主要是三次谐波电压),其值为15~30V,考虑采用滤过比高的性能良好的三次谐波滤过器后,其动作值可降至5~10V,则保护的死区为α=~。

若定子绕组是经过渡电阻Rg单相接地时,则死区更大,这对于大、中型发电机是不能允许的,因此,在大、中型发电机上应装设能反映100%定子绕组单相接地保护。

三次谐波零序电压保护机端及中性点侧的三次谐波电压 和 : l )正常运行时的三次谐波电压正常运行时相电势中会有三次谐波电势 ,其等效图如图所示。

机端:2MS SM t C U E C C =+中性点端:2N SMtU E C C =+所以,12S MN M tU C U C C =<+当发电机中性点经高阻抗接地时,上式仍然成立NU •2)当定子绕组单相接地时的三次谐波电压当定子绕组单相接地时也会有三次谐波电压,其等效图如图(a )所示。

33(1)1S N SN U E U E U U αααα=-=-=当α >50% 时 ,S NU U ≥当α≤50% 时, S NU U <其关系如图(b )所示。

如果以此作为动作条件,则这种原理的保护的“死区”为a>50%,但若将这种保护与基波零序电压保护共同组合起来,就可以构成保护区为100%的定子绕组单相接地保护。

发电机励磁回路一点接地保护切换测量原理保护方案将一个电阻和电容网络接在转子绕组两端,通过顺序切换的方法改变网络的结构,并对三个有关的支路电流进行采样、记忆进行比较,达到测量励磁回路对地电阻的目的。

如图所示,电容的作用是消除转子电压中谐波分量及干扰电压对继电器的影响。

图 转子一点接地保护测量网络假设接地故障发生在转子绕组中部任一点,将转子电压分为Uf1和Uf2,故障点电阻为RX 。

开关S1单独闭合时,稳态电流 1112f X U I R R R =++ 经采样保持和整理后在装置内得到与I1成正比的电压U1:同理,开关S1与S2分别单独闭合时,相应的有:2222133233334f S f X K U U K I R R R K U U K I R R R ==++==++取R1=R3=Ra ,R2=R4=Rb(Ra 、Rb 皆为选定的参数),Kl=K2=K ,则上述三式可改写为:111222332f a b X f a S f a b X KU U KI R R R K U U R R KU U KI R R R =+++=+==++可选择保护的动作判据为:123U U U +≥对于给定的Ra 、Rb 、RX 、K2及K ,当上式等号成立时,RX 便为检测到的最大接地电阻,若K2取固定值,则改变K 可以调整灵敏性。

K2值可根据灵敏性要求,由式()取等号求出,即装置动作时对应的RX 为2(2)()X a S a b K R R R R R K ≤+-+对于给定的Ra 、Rb 、RX 、K2及K ,当上式等号成立时,RX 便为检测到的最大接地电阻,若K2取固定值,则改变K 可以调整灵敏性。

K2值可根据灵敏性要求,由式()取等号求出,即2.max(2)a Sa b XK R RKR R R+=++发电机励磁回路两点接地保护当转子绕组发生两点接地故障,由于故障点流过相当大的短路电流,因而会烧伤转子;由于部分绕组被短接,励磁绕组电流增加,转子可能因过热而损伤;气隙磁通失去平衡,会引起机组剧烈振动,可能因此而造成灾难性破坏。

相关文档
最新文档