《随机事件的独立性》PPT课件
合集下载
随机事件的独立性教学课件(共41张PPT)高中数学人教B版(2019)必修第二册

( ∪ )
() + ()
()() + ()()
A,B中至多有一个发生
( ∪ ∪ )
1
1 − ()()
02
探索新知
例1 甲、乙两人各掷一个均匀的骰子,观察朝上的面的点数,记事件A:甲得到的点数为2,B:
乙得到的点数为奇数.
(1)求p(A),P(B),P(AB),判断事件A与B是否相互独立;
= (1 )[1 − (2 )] + [1 − (1 )](2 )
= 0.7 × (1 − 0.7) + (1 − 0.7) × 0.7
= 0.42
02
探索新知
例3 某同学在参加一次考试时,有三道选择题不会,每道选择题他都随机选择了一个答案,且
1
4
每道题他猜对的概率均为 .
(1)求该同学三道题都猜对的概率;
Classroom test
PART 01
学 习 目 标
01
学习目标
01
在具体情境中,了解随机两个事件相互独立的概念
02
能利用相互独立事件同时发生的概率公式解决一些简单的
实际问题
03
综合运用互斥事件的概率加法公式及独立事件的乘法公式
解决一些问题
PART 02
探 索 新 知
02
探索新知
情境回顾
问题3 :请分别算出p(A),P(B),P(AB)的值.
1
1
1
() = , () = , () =
3
2
6
02
探索新知
抽象概括
1.事件相互独立性的含义
事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫作相互
1.4 随机事件的独立性

0.5 0.6 0.5 0.6
0.8
定理1.4 若事件A与事件B相互独立,
则A与B,A与B,A与B也分别相互独立
证 因为PAB PAPB,所以
PAB PA B 由对称性知
注:事件的独立 性与事件的互不 相容是两个完全 不同的概念
P A AB
A与B相互独立
P A P AB
A1,A2, ,An也相互独立,故
P n Ai 1 n P Ai
n
1 1 PAi
i1
i 1
i 1
注3: 相互独立一定两两独立,两两独立不一定相互独立。
例 四张卡片上分别写着 110,011,101,000,从中任取一张,
记 Ai={第 i 个数字为 1} i=1,2,3.
则
P( A1 )
PA1 A2 An PA1 PA2 PAn
(2) 计算n个相互独立的事件A1, A2 , , An的和事件 的概率可简化为
n
PA1 A2 An 1 P Ai i 1
例3(保险赔付)设有 n个人向保险公司购买人身意
外保险(保险期为1年),假定投保人在一年内发生
意外的概率为0.01,
利用数学归 纳法,可把 定理1推广 至有限多个
则称事件A1, A2 , A3相互独立。 事件的情形
注1:
如果n n 2个事件A1, A2 L An相互独立,则将
其中任何m(1 m n)个事件改为相应的对立事 件,形成的n个新的事件仍相互独立。
设5个事件A1 A2 A3 A4 A5相互独立
则
A1 A2 A3 A4 A5 也相互独立
注2:
若A1, A2 , , An是n个相互独立的事件, 则这个事件中至少有一个发生的概率为
0.8
定理1.4 若事件A与事件B相互独立,
则A与B,A与B,A与B也分别相互独立
证 因为PAB PAPB,所以
PAB PA B 由对称性知
注:事件的独立 性与事件的互不 相容是两个完全 不同的概念
P A AB
A与B相互独立
P A P AB
A1,A2, ,An也相互独立,故
P n Ai 1 n P Ai
n
1 1 PAi
i1
i 1
i 1
注3: 相互独立一定两两独立,两两独立不一定相互独立。
例 四张卡片上分别写着 110,011,101,000,从中任取一张,
记 Ai={第 i 个数字为 1} i=1,2,3.
则
P( A1 )
PA1 A2 An PA1 PA2 PAn
(2) 计算n个相互独立的事件A1, A2 , , An的和事件 的概率可简化为
n
PA1 A2 An 1 P Ai i 1
例3(保险赔付)设有 n个人向保险公司购买人身意
外保险(保险期为1年),假定投保人在一年内发生
意外的概率为0.01,
利用数学归 纳法,可把 定理1推广 至有限多个
则称事件A1, A2 , A3相互独立。 事件的情形
注1:
如果n n 2个事件A1, A2 L An相互独立,则将
其中任何m(1 m n)个事件改为相应的对立事 件,形成的n个新的事件仍相互独立。
设5个事件A1 A2 A3 A4 A5相互独立
则
A1 A2 A3 A4 A5 也相互独立
注2:
若A1, A2 , , An是n个相互独立的事件, 则这个事件中至少有一个发生的概率为
1.8随机事件的独立性

或 P(B|A) = P(B)
更好,它不受 的制约. 更好 它不受P(B)>0或P(A)>0的制约 它不受 或 的制约
两事件独立的定义 若两事件A 若两事件 、B满足 满足 P(AB)= P(A) P(B) (1)
独立, 相互独立. 则称A 独立 或称A 相互独立 则称 、B独立,或称 、B相互独立 若 定理1 定理1 设A, B是两事件, A, B 相互独立,
§1.8 随机事件的独立性
有限个事件的独立 有限个事件的独立
n 个事件 A1 , A2 ,⋯, An 称为是相互独立的,如果这 些事件中的任一事件Ai (i = 1,2,⋯, n) 与其它任意几个 事件的交是独立的,即
P ( Ai A j Ak ⋯ ) = P ( Ai ),
m
其中 A j Ak ⋯ 表示除事件 Ai 外的其它 n − 1个事件中 任意 m ( m = 1, 2,⋯ , n − 1) 个事件的交 .
1 已知, 已知 P(A1)=1/5,P(A2)=1/3,P(A3)=1/4 P(A1+A2+A3) =1− P(A + A + A ) 1 2 n 2
=1− P( A A A ) 1 2 3
3
=1− P( A )P( A )P( A ) 1 2 3
=1-[1-P(A1)][1-P(A2)][1-P(A3)] 4 2 3 3 =1− ⋅ ⋅ = = 0.6 5 3 4 5
第一章 随机事件及其概率
§1.8 随机事件的独立性
两事件的独立性 先看一个例子: 先看一个例子: 将一颗均匀骰子连掷两次, 将一颗均匀骰子连掷两次, 设 显然 A={第二次掷出 点}, 第二次掷出6点 , 第二次掷出 B={第一次掷出 点}, 第一次掷出6点 , 第一次掷出 P(A|B)=P(A)
新教材高中数学第五章统计与概率3.5随机事件的独立性课件新人教B版必修第二册 课件(共13张PPT)

问题 1.如果乙要连胜四局,比赛应如何进行? 提示:若要乙连胜四局,则对阵情况是第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第 三局:乙对甲,乙胜;第四局:乙对丙,乙胜. 2.要求出乙连胜四局时的概率需要用到哪些概率知识?如何求? 提示:应用事件的独立性知识,按照每局乙胜的情况分析,所求概率为P=(1-0.4)2×0. 52=0.32=0.09.
求复杂事件的概率一般可分三步进行: (1)列出题中涉及的各个事件,并用适当的符号表示它们; (2)理清各事件之间的关系,用事件间的“并”“交”恰当地表示所求事件; (3)根据事件之间的关系准确地运用概率公式进行计算. 注意:当直接计算符合条件的事件的概率较复杂时,可先间接地计算其对立事件 的概率,再求出符合条件的事件的概率.
∩F)+P( D∩E∩F)=0.6×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5=0.55. 解法二:“红队中至少有两名队员获胜”与“红队中最多有一名队员获胜”为对 立事件,而红队都不获胜的事件为 D∩ E ∩ F ,且P( D∩ E ∩ F )=0.4×0.5×0.5=0.1. 则红队中至少有两名队员获胜的概率P2=1-P1-P( D∩ E ∩ F )=1-0.35-0.1=0.55. 方法总结 处理事件的独立性问题主要用直接法和间接法.当遇到“至少”“至 多”问题时可以考虑间接法.
解析 设甲胜A为事件D,乙胜B为事件E,丙胜C为事件F,则 D, E , F 分别表示A胜 甲、B胜乙、C胜丙. 因为P(D)=0.6,P(E)=0.5,P(F)=0.5, 所以由对立事件的概率公式知P( D)=0.4,P( E )=0.5,P( F )=0.5. (1)红队中有且只有一名队员获胜的事件有D∩ E ∩ F , D∩E∩ F , D∩ E ∩F,以上 3个事件彼此互斥且相互独立. 所以红队中有且只有一名队员获胜的概率P1=P[(D∩ E ∩ F )∪( D∩E∩ F )∪( D ∩ E ∩F)]=P(D∩ E ∩ F )+P( D∩E∩ F )+P( D∩ E ∩F)=0.6×0.5×0.5+0.4×0.5×0.5+ 0.4×0.5×0.5=0.35. (2)解法一:红队中至少有两名队员获胜的事件有D∩E∩F,D∩E∩ F ,D∩ E ∩F, D ∩E∩F,由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队中至少有两名队员获胜的概率P2=P(D∩E∩F)+P(D∩E∩ F )+P(D∩ E
人教B版高中数学必修第二册-5.3.5-随机事件的独立性【课件】

第五章 统计与概率
5 .3 概率 5.3.5 随机事件的独立性
1
PART ONE
15分钟对点练
知识点一 随机事件独立性的判定
1.袋中有黑、白两种颜色的球,从中进行有放回地摸球,用 A1 表
示第一次摸得黑球,A2 表示第二次摸得黑球,则 A1 与-A2是( )
A.相互独立事件
B.不相互独立事件
C.互斥事件
知识点三 相互独立事件概率的综合应用 5.某公司为了解用户对其产品的满意度,从A,B两地区分别随 机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 根据用户满意度评分,将用户的满意度从低到高分为三个等级:
P(C) = P(A -B + -A B) = P(A -B ) + P( -A B) = P(A)P( -B ) + P( -A )P(B) = 0.96×0.05+0.04×0.95=0.086.
(3)由于事件 AB 与 C 互斥, 所以至少有一件是正品的概率为 P(D)=P(AB+C)=P(AB)+P(C)=0.912+0.086=0.998.
2.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别
为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一
个一等品的概率为( )
A.12
B.152
C.14
D.16
解析 设事件 A:甲实习生加工的零件为一等品,事件 B:乙实习生
加工的零件为一等品,则 P(A)=23,P(B)=34,所以这两个零件中恰有一个
5 .3 概率 5.3.5 随机事件的独立性
1
PART ONE
15分钟对点练
知识点一 随机事件独立性的判定
1.袋中有黑、白两种颜色的球,从中进行有放回地摸球,用 A1 表
示第一次摸得黑球,A2 表示第二次摸得黑球,则 A1 与-A2是( )
A.相互独立事件
B.不相互独立事件
C.互斥事件
知识点三 相互独立事件概率的综合应用 5.某公司为了解用户对其产品的满意度,从A,B两地区分别随 机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 根据用户满意度评分,将用户的满意度从低到高分为三个等级:
P(C) = P(A -B + -A B) = P(A -B ) + P( -A B) = P(A)P( -B ) + P( -A )P(B) = 0.96×0.05+0.04×0.95=0.086.
(3)由于事件 AB 与 C 互斥, 所以至少有一件是正品的概率为 P(D)=P(AB+C)=P(AB)+P(C)=0.912+0.086=0.998.
2.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别
为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一
个一等品的概率为( )
A.12
B.152
C.14
D.16
解析 设事件 A:甲实习生加工的零件为一等品,事件 B:乙实习生
加工的零件为一等品,则 P(A)=23,P(B)=34,所以这两个零件中恰有一个
概率论之随机事件的独立性

的概率相等,都是 pk (1 p)nk ,故由概率的有限可
加性有 Pn (k) Cnk pk qnk , q 1 p, k 0,1, 2, , n
§4随机事件的独立性
随机事件及其概率
考研(2007,4 分)某人向同一目标独立重复射击, 每次射击命中目标的概率为 p ( 0 p 1 ),则此人 第 4 次射击时恰好第二次命中目标的概率为 ( C ). (A) 3 p(1 p)2 ;(B) 6 p(1 p)2 ;
随机事件及其概率
定理 若事件 A, B 相互独立,则事件 A 与 B ,A 与
B , A 与 B 也独立.
证明 只证 A 与 B 独立 P( AB) P( A) P( AB)
P(A) P(A)P(B)
P( A)[1 P(B)] P( A)P(B)
§4随机事件的独立性
实际问题
P( A) 1 p ,
则称试验 E 为伯努利(Bernoulli)试验.称 n 重独立 重复贝努利试验为 n 重伯努利试验.
§4随机事件的独立性
随机事件及其概率
定理 (伯努利定理)在 n 重伯努利试验中,若每次
试验中事件 A 发生的概率为 p(0 p 1) ,则在这 n 次
试验中事件 A 恰好出现 k(0 k n) 次的概率为
则称事件 A1, A2 ,, An 相互独立(Independence each
other).
§4随机事件的独立性
随机事件及其概率
当 n 个事件 A1, A2 , , An 相互独立时
P( A1 A2 An ) P(A1)P(A2 ) P(An )
P( A1 A2
1 P(A1 A2
An )
《随机事件的独立性》课件

《随机事件的独立性》PPT课件
# 随机事件的独立性 ## 什么是随机事件? - 随机事件的定义 - 随机事件的例子 ## 什么是事件的独立性? - 独立事件的定义 - 独立事件的特点 ## 什么是条件概率? - 条件概率的定义 - 条件概率的计算方法 ## 独立事件和条件概率的关系 - 独立事件的条件概率 - 条件概率的独立事件 ## 非独立事件的条件概率 - 非独立事件的定义 - 非独立事件的条件概率的计算方法
非独立事件的条件概率
定义
非独立事件是指两个事件之间存在某种关联,一个 事件的发生会影响另一个事件的发生概率。
条件概率的计算方法
非独立事件的条件概率可以通过已知的条件和事件 的发生次数进行计算。
总结
1 随机事件的独立性的
重要性
2 独立事件和条件概率
的适用范围
3 非独立事件的条件概
率的应用场景
了解随机事件的独立性可以 帮助我们更好地分析和理解 概率问题。
什么是条件概率?
定义
条件概率是指当已知与之相关的一些条件时,事件发生的概率。Байду номын сангаас
计算方法
条件概率可以通过已知的条件和事件的发生次数进行计算。
独立事件和条件概率的关系
1
独立事件的条件概率
在独立事件中,条件概率的计算结果与事件的发生与否无关。
2
条件概率的独立事件
在条件概率中,独立事件的发生与否不会影响条件概率的结果。
什么是随机事件?
定义
随机事件是在一次试验中,有多种可能结果中的某 种结果发生的事件。
例子
抛一枚硬币,正面朝上或反面朝上都是随机事件。
什么是事件的独立性?
定义
独立事件是指两个事件之间互不影响,一个事件的 发生不受另一个事件的发生与否的影响。
# 随机事件的独立性 ## 什么是随机事件? - 随机事件的定义 - 随机事件的例子 ## 什么是事件的独立性? - 独立事件的定义 - 独立事件的特点 ## 什么是条件概率? - 条件概率的定义 - 条件概率的计算方法 ## 独立事件和条件概率的关系 - 独立事件的条件概率 - 条件概率的独立事件 ## 非独立事件的条件概率 - 非独立事件的定义 - 非独立事件的条件概率的计算方法
非独立事件的条件概率
定义
非独立事件是指两个事件之间存在某种关联,一个 事件的发生会影响另一个事件的发生概率。
条件概率的计算方法
非独立事件的条件概率可以通过已知的条件和事件 的发生次数进行计算。
总结
1 随机事件的独立性的
重要性
2 独立事件和条件概率
的适用范围
3 非独立事件的条件概
率的应用场景
了解随机事件的独立性可以 帮助我们更好地分析和理解 概率问题。
什么是条件概率?
定义
条件概率是指当已知与之相关的一些条件时,事件发生的概率。Байду номын сангаас
计算方法
条件概率可以通过已知的条件和事件的发生次数进行计算。
独立事件和条件概率的关系
1
独立事件的条件概率
在独立事件中,条件概率的计算结果与事件的发生与否无关。
2
条件概率的独立事件
在条件概率中,独立事件的发生与否不会影响条件概率的结果。
什么是随机事件?
定义
随机事件是在一次试验中,有多种可能结果中的某 种结果发生的事件。
例子
抛一枚硬币,正面朝上或反面朝上都是随机事件。
什么是事件的独立性?
定义
独立事件是指两个事件之间互不影响,一个事件的 发生不受另一个事件的发生与否的影响。
5.3.5 随机事件的独立性(课件)高一数学(人教B版2019必修第二册)

教材例题
【典例 2】已知甲运动员的投篮命中率为 0.7, 乙运动员的投篮命中率为 0.8. (1)若甲、乙各投篮一次,则都命中的概率为多少? (2)若甲投篮两次,则恰好投中一次的概率为多少?
【解析】(1)记事件 :甲投中, :乙投中,因为 与 相互独立,所以 即都命中的概率为 0.56.
教材例题
课堂练习
【解析】A 中,M,N 是互斥事件,不相互独立;B 中,M,N 不是相互独立 事件;C 中,P(M)=12,P(N)=12,P(MN)=14,P(MN)=P(M)P(N),因此 M, N 是相互独立事件;D 中,第一次为正面对第二次的结果不影响,因此 M,N 是相互独立事件.故选 CD.
课堂练习
一般地,当
时,就称事件 与 相互独立(简称独立).事件 与
相互独立的直观理解是, 事件 是否发生不会影响事件 发生的概率,事件 是
否发生也不会影响事件 发生的概率.
可以证明,如果事件 与 相互独立,则 与 与 与 也相互独立.
新知探索 知识点一:随机事件的独立性
相互独立事件的定义和性质: 定义:一般地,当 P(AB)=P(A)P(B)时,就称事件 A 与 B 相互独立(简称独立). 性质:如果事件 A 与 B 相互独立,则与 B,A 与,与也相互独立. n 个事件相互独立: “A1,A2,…,An 相互独立”的充要条件是“其中任意有限个事件同时发生的 概率都等于它们各自发生的概率之积”.
【解析】(1)三道题都猜对可以表示为
, 又因为
相互独立,因此
教材例题
(2)“至少猜对一道题”的对立事件是 “三道都猜错”,后者可以表示为
,
所以
因此所求概率为
课堂练习
【训练 1】一袋中装有 5 只白球,3 只黄球,在有放回地摸球中,用 A1 表示第 一次摸得白球,A2 表示第二次摸得白球,则事件 A1 与 是( ) A.相互独立事件 B.不相互独立事件 C.互斥事件 D.对立事件