大数据价值PPT

合集下载

大数据分析PPT(共 73张)

大数据分析PPT(共 73张)

' LOGO '
COMPANY LOGOTYPE INSERT
Value 价值
• 挖掘大数据的价值类似沙里淘金,从海量数据中挖掘稀疏但珍贵的信息. • 价值密度低,是大数据的一个典型特征.
' LOGO '
COMPANY LOGOTYPE INSERT
• 2010年海地地震,海地人散落在全国各地,援助人员为 弄清该去哪里援助手忙脚乱。传统上,他们只能通过飞往 灾区上空来查找需要援助的人群。
数据量增加
数据结构日趋复杂
大量新数据源的出现则导致了非结构化、 半结构化数据爆发式的增长
根据IDC 监测,人类产生的数据量正在呈指数级 增长,大约每两年翻一番,这个速度在2020 年之 前会继续保持下去。这意味着人类在最近两年产生 的数据量相当于之前产生的全部数据量。
TB
PB
EB
ZB
' LOGO '
• 一些研究人员采取了一种不同的做法:他们开始跟踪
海地人所持手机内部的SIM卡,由此判断出手机持有人所
处的位置和行动方向。正如一份联合国(UN)报告所述,此
举帮助他们“准确地分析出了逾60万名海地人逃离太子港
之后的目的地。”后来,当海地爆发霍乱疫情时,同一批
研究人员再次通过追踪SIM卡把药品投放到正确的地点,
这些消息足够一个人昼夜不息的浏览16 年…
每天亚马逊上将产生 6.3 百万笔订单…
每个月网民在Facebook 上要花费7 千亿分钟,被移动互联
网使用者发送和接收的数据高达1.3EB…
Google 上每天需要处理24PB 的数据…
' LOGO '
COMPANY LOGOTYPE INSERT

大数据分析PPT(共73张)

大数据分析PPT(共73张)

2024/1/26
22
未来发展趋势预测
人工智能与大数据融合
人工智能技术将进一步提高大数据处 理和分析的效率和准确性。
数据驱动决策
大数据将更广泛地应用于企业决策、 政府治理等领域,提高决策的科学性 和有效性。
2024/1/26
跨界融合与创新
大数据将与云计算、物联网、区块链 等技术相结合,推动跨界融合和创新 发展。
模型评估与优化
通过交叉验证、网格 搜索等方法对模型进 行评估与优化,提高 模型预测性能。
成果展示
实现用户行为预测模 型,为电商平台提供 个性化推荐服务,提 高用户满意度和购买 转化率。
2024/1/26
26
项目经验教训总结
数据质量至关重要
在项目实施过程中,发现原始数据存在大量噪声 和缺失值,对数据清洗和预处理工作提出了更高 要求。为了保证分析结果的准确性,需要投入更 多时间和精力进行数据清洗和预处理。
模型评估不可忽视
在构建模型后,需要对模型进行评估和优化,以 确保模型在实际应用中的性能表现。采用合适的 评估指标和方法对模型进行全面评估是非常重要 的。
2024/1/26
特征工程影响模型性能
在特征工程阶段,需要仔细考虑哪些特征与用户 行为相关,并选择合适的特征提取方法。不同的 特征选择和处理方式会对模型性能产生较大影响 。
大数据分析PPT(共73张)
2024/1/26
1
目录
• 大数据分析概述 • 大数据技术基础 • 大数据分析方法与工具 • 大数据在各行业应用案例 • 大数据挑战与未来趋势 • 大数据分析实践项目分享
2024/1/26
2
01
大数据分析概述
2024/1/26

2024大数据ppt课件完整版

2024大数据ppt课件完整版
2024大数据ppt课件完整版
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。

大数据PPT免费

大数据PPT免费

人工智能和机器学习在大数据中的应用前景
数据挖掘与预测分析
通过机器学习算法对历史数据进行深度挖掘,发现数据间的潜在 联系和规律,实现预测分析。
自动化决策支持
基于大数据和人工智能技术,构建自动化决策支持系统,提高决策 的准确性和效率。
个性化推荐与服务
利用大数据分析和机器学习技术,为用户提供个性化的产品推荐和 服务体验。
总结:把握大数据时代机遇,应对挑战
01
强化技术创新
持续推动大数据、人工智能、物联网等领域的技术创新,提升数据处理
和分析能力。
02
加强人才培养
重视大数据领域人才培养,打造具备跨学科知识和技能的专业团队。
03
完善政策法规
建立健全大数据相关政策法规,保障数据安全和个人隐私,促进大数据
产业健康发展。
THANK YOU
物联网和5G技术对大数据的影响和挑战
数据量爆炸式增长
物联网设备的普及和5G技术的推广将带来数据量的爆炸式 增长,对大数据存储和处理能力提出更高要求。
数据实时性要求提 高
物联网和5G技术使得数据实时传输和处理成为可能,对大 数据处理速度和实时性要求更高。
数据安全与隐私保 护
随着物联网设备的普及,数据安全和隐私保护问题日益突 出,需要加强相关技术和政策保障。
工具选择建议
根据数据量、分析需求、呈现效果等因素选择合适的工具。
图表类型选择及设计原则
1 2
常见图表类型
柱状图、折线图、饼图、散点图、热力图等。
图表选择原则
根据数据类型和分析目的选择合适的图表类型。
3
图表设计原则
简洁明了、颜色搭配合理、突出重点、避免过度 装饰。
报告撰写技巧与注意事项

大数据介绍pptppt课件

大数据介绍pptppt课件

01大数据概述Chapter大数据的定义与特点定义特点1 2 3萌芽期发展期成熟期大数据的发展历程物联网物联网产生的海量数据需要大数据技术进行处理和分析,以实现智能化应用。

金融机构利用大数据分析进行风险评估、信用评级、反欺诈等。

医疗健康大数据在医疗健康领域的应用包括疾病预测、个性化医疗、药物研发等。

商业智能通过大数据分析,帮助企业了解市场趋势、客户需求和行为公共服务效率和质量,如交通拥堵预测、大数据的应用领域02大数据技术基础Chapter分布式计算技术MapReduce01Spark02Flink03Hadoop HDFS一个分布式文件系统,设计用来存储和处理大规模数据集,具有高容错性和高吞吐量。

HBase一个高可扩展性的列存储系统,用于存储非结构化和半结构化的稀疏数据。

Cassandra一个高度可扩展的NoSQL数据库,提供高可用性和无单点故障的数据存储服务。

数据挖掘与机器学习通过统计学、计算机视觉、自然语言处理等技术,从数据中提取有用信息和预测未来趋势。

数据清洗与整合对数据进行预处理,包括数据去重、缺失值处理、异常值检测等,以保证数据质量。

SQL 与NoSQL 数据库(如MySQL 、PostgreSQL )和非关系型数据库(如MongoDB 、Redis )。

数据可视化技术TableauPower BID3.js03大数据平台与工具ChapterHadoop平台介绍Hadoop概述Hadoop核心组件Hadoop应用场景Spark概述01Spark核心组件02Spark应用场景03Flink概述Flink核心特性Flink应用场景常用大数据工具介绍Hive HBase Kafka Sqoop04大数据应用案例Chapter风险管理与合规客户洞察投资决策支持精准医疗流行病预测与防控医疗资源优化智能调度预测性维护供应链优化通过实时分析交通状况、货物信息和配送需求,实现智能调度和路线规划。

01020304通过分析学生的学习数据,提供个性化教育资源和教学方法。

大数据ppt课件

大数据ppt课件

改善社会治理和公共服务
2
• 大数据技术可以提升政府服务能力和效率 ,推动公共服务的个性化和精细化。
推动科技创新和进步
3
• 大数据技术为科学研究提供了更加高效和 准确的数据分析工具,推动了科技创新和进
步。
大数据的技术与发展
数据采集与存储技术
数据处理和分析技术
• 大数据的采集和存储需要使用分布式 文件系统、数据库等技术。
分析方法
结论与展望
• 采用自然语言处理、图像识别、情感 分析等方法,对社交媒体数据进行情感分 析,提取其中的情感词汇和情感表达。
• 通过基于社交媒体的情绪分析。我们 可以更好地了解公众对于某个事件或产品 的情感倾向
案例五:金融行业的风控大数据应用
背景与目标
• 金融行业是风险密集的行业,如何 有效地进行风险控制是金融行业的重要 任务之一
市场调研
02
• 通过大数据分析,了解市场趋势和竞争对手情况,制定
市场策略。
客户分析
03
• 通过分析客户数据,了解客户需求和行为,提供个性化
服务。
医疗健康
病患数据分析
• 通过分析病患数据,提高医疗质量和效率。
药物研发
• 通过大数据分析,加速药物研发过程。
健康管理
• 通过分析个人健康数据,提供个性化健康建议。
分析方法
• 采用数据挖掘、空间分析等方法, 对城市数据进行分类、预测、聚类等分 析。
结论与展望
• 通过基于公共数据的城市规划研究 。我们可以提高城市规划的科学性和有 效性
案例四:基于社交媒体的情绪分析
背景与目标
数据来源
• 社交媒体的普及使得人们可以在网络 上公开表达自己的情绪和意见

大数据专题(共43张PPT)

大数据专题(共43张PPT)
应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务, 提供了高可用性和数据一致性保证。
对数据进行分组、汇总等 操作。
Part
04
大数据分析方法与应用
统计分析方法
描述性统计
对数据进行整理和描述, 包括数据的中心趋势、离 散程度、分布形态等。
推论性统计
通过样本数据推断总体特 征,包括参数估计和假设 检验等方法。
多元统计分析
研究多个变量之间的关系, 包括回归分析、因子分析、 聚类分析等。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode。 NameNode负责管理文件系统 的元数据,而DataNode负责存
储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
加密技术
采用加密算法对敏感数据进行加密处理,确保数 据在传输和存储过程中的安全性。
企业如何保障大数据安全
制定完善的大数据安全管理制度 和流程,明确各部门职责和权限。
加强员工安全意识教育和培训, 提高全员大数据安全意识。
加强大数据安全技术研发和投入, 提高安全防护能力和水平。
建立大数据安全应急响应机制, 及时应对和处理安全事件。

大数据ppt(数据有关文档)共30张

大数据ppt(数据有关文档)共30张
实时数据采集
利用流处理技术,实时采集数据源中的数 据。
网络爬虫技术
通过编写爬虫程序,从互联网上抓取指定 网站的数据。
API接口调用
通过调用第三方提供的API接口,获取相 关数据。
数据清洗与预处理
数据清洗
去除重复数据、处理缺失值、异常值 检测与处理、文本清洗(如去除停用 词、特殊符号等)。
数据转换
将数据转换成适合分析的格式,如将 文本数据转换为数值型数据。
常见的NoSQL数据库 列举几种常见的NoSQL数据库,如MongoDB、 Cassandra、Redis等,并简要介绍它们的特点 和应用场景。
NoSQL数据库的选择与使用 探讨如何根据实际需求选择合适的NoSQL数据 库,并给出使用NoSQL数据库的一般步骤和注 意事项。
数据仓库与数据挖掘技术
数据仓库概述
Tableau
专业的数据可视化工具,支持拖拽式操作和 丰富的图表类型。
Python可视化库
如Matplotlib、Seaborn等,提供强大的数 据可视化功能,可定制化程度高。
05
大数据在各领域应用案例
金融行业应用案例
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
的后盾支持。
大数据发展趋势
实时性要求更高
随着业务需求的不断变化,对大数据实时 性要求越来越高。
数据安全备受关注
大数据的快速增长使得数据安全问题日益 凸显,如何保障数据安全成为重要议题。
与人工智能深度融合
大数据与人工智能技术的深度融合将推动 智能化应用的快速发展。
行业应用不断拓展
大数据在各行各业的应用将不断拓展,为 行业转型升级提供有力支持。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机遇2:大数据蓝海成为企业竞争的新焦点
“棱镜门”引爆大数据时代争议
❖ 事情的起因是美国中情局前职员斯诺登向媒体爆料,过去6 年间,美国的情报部门通过一个代号为“棱镜”的项目,从 多家知名互联网公司获取电子邮件、在线聊天内容、照片、 文档、视频等网络私人数据,跟踪用户一举一动。他说,自 己只需要坐在办公桌前,动动指头,敲敲键盘,就能了解很 多人的私密信息。
Байду номын сангаас速度
高增长
随着计算机技术的发展及印刷技 术进步,平面设计在视觉感观领 域问题。
“大数据”是需要新处理模 式才能具有更强的决策力、 洞察发现力和流程优化能力。
海量
真实
来适应海量、高增长率和多
多样 样化的信息资产。
大数据是“未来的新石油”
大数据是需要新处理模式才 能具有更强的决策力、洞察 发现力和流程优化能力的海 量、高增长率和多样化的信 息资产。 大数据就是“未来的新石 油”。
加大隐私泄露风险
大量数据的集中存储增加了其泄露 的风险; 一些敏感数据的所有权和使用权并 没有清晰界定。
CONTENT
1. 大数据是什么? 2. 大数据的特征和结构 3. 大数据时代的机遇和挑战 4. 大数据的趋势 5. 大数据的应用和
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, pur
BIG DATA
大数据(BIG DATA)
指无法在一定时间范围内用常规软件工具进行捕捉、 管理和处理的数据集合,是需要新处理模式才能具 有更强的决策力、洞察发现力和流程优化能力的海 量、高增长率和多样化的信息资产。
大数据定义
对于“大数据”(Big data) 研究机构Gartner给出了这样
的定义。
机遇和挑战
机遇
大数据技术促进国家和社会发展大数据蓝海成为 企业竞争的新焦点大数据时代呼唤创新型人才
挑战
大数据技术的运用仍有困难大数据给信息安全带 来新挑战
机遇1:大数据技术促进国家和社会发展
实现科学发展 做出科学决策
当前,我国正处在全面建成小康社会征程 中,工业化、信息化、城镇化、农业现代 化任务很重,建设下一代信息基础设施, 发展现代信息技术产业体系,健全信息安 全保障体系,推进信息网络技术广泛运用, 是实现四化同步发展的保证。大数据分析 对我们深刻领会世情和国情,把握规律, 实现科学发展,做出科学决策具有重要意 义,我们必须重新认识数据的重要价值。
UTILIZATION
01
人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
学习
可以说几乎是自然科学和社会科学的所有学科,其范围已远远超 出了计算机科学的范畴,人工智能与思维科学的关系是实践和理
02
思考
论的关系,人工智能是处于思维科学的技术应用层次,是它的一 个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、
大数据带来的变革
更多
不是随机样本而是全部数据
01
更好
不是因果关系 而是相关关系
03
更杂
不是精确性 而是混杂性
02
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, pur
❖ 斯诺登的爆料引起一片哗然,根据他提供的资料,被卷入 “棱镜门”事件的公司包括微软、雅虎、谷歌、苹果、 Facebook等9大IT业巨头。在“棱镜门”事件开始发酵之后, 这些公司先是赶紧出面否认与美国政府的监视项目进行过合 作,并相继发表声明,呼吁政府采取更透明态度,以证明他 们的“清白”。
大数据给信息安全带来新挑战
❖ 容量(Volume)
数据的大小决定所考虑的数 据的价值和潜在的信息
❖ 种类(Variety)
数据类型的多样性
❖ 速度(Velocity)
指获得数据的速度
大数据的特征
1 2
3
7 6
5 4
❖ 价值(value)
合理运用大数据,以低成本 创造高价值
❖ 复杂性(Complexity)
数据量巨大,来源多渠道
人工
“人工”比较好理解,争议性也不大。 有时我们会要考虑什么是人力所能及 制造的,或者人自身的智能程度有没 有高到可以创造人工智能的地步,等 等。但总的来说,“人工系统”就是 通常意义下的人工系统。
人工 智能
智能
关于什么是“智能”,就问题多多了。 这涉及到其它诸如意识 (CONSCIOUSNESS)、自我(SELF)、 思维(MIND)(包括无意识的思维 (UNCONSCIOUS_MIND))等等问题。 人唯一了解的智能是人本身的智能, 这是普遍认同的观点。
半结构化
企业中80%的数据都是非结构化 数据,这些数据每年都按指数增 长60%。
大数据的三个层面
特征 价值 现在 大数据 定义 探讨 和未来 隐私
1
2
分布式处理平台 感知技术
云计算
存储技术
3
互联网的 政府的 企业的 个人的 大数据 大数据 大数据 大数据
理论
THEORY
技术
TECHNOLOGY
实践
03
推理
灵感思维才能促进人工智能的突破性的发展,数学常被认为是多
种学科的基础科学,数学也进入语言、思维领域,人工智能学科
规划
也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发
04
挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, pur
❖ 真实性(Veracity)
数据的质量
❖ 可变性(Variability)
妨碍了处理和有效地管理数 据的过程
大数据的结构
结构化
大数据包括结构化、半结构化和非结 构化数据,非结构化数据越来越成为 数据的主要部分。
非结构化
在以云计算为代表的技术创新大幕的 衬托下,这些原本看起来很难收集和 使用的数据开始容易被利用起来了
相关文档
最新文档