大数据ppt资料讲解
合集下载
大数据培训课件ppt

欧盟《通用数据保护条例》(GDPR)
01
对个人数据的收集、存储和使用进行严格规定,违反者将面临
重罚。
中国《网络安全法》
02
强调保护个人信息安全,对网络运营者、用户等各方责任和义
务进行明确规定。
美国《加州消费者隐私法》(CCPA)
03
赋予消费者对个人信息的更多权利,对企业的数据收集和使用
进行限制。
隐私保护技术与实践案例分享
利用大数据技术对交易数据、客户行为等进行分析,以识别和预防 金融欺诈和洗钱行为。
医疗行业大数据应用实践案例分享
精准医疗与个性化治疗
通过对大量医疗数据的挖掘和分析,为患者提供更精准、个性化 的治疗方案。
疾病预测与预防
通过对历史病例、流行病学数据等进行分析,预测疾病的发生和传 播趋势,为预防措施提供科学依据。
大数据培训课件
汇报人:可编辑
2023-12-22
CATALOGUE
目 录
• 大数据概述 • 大数据处理技术 • 大数据挖掘与分析 • 大数据安全与隐私保护 • 大数据应用实践与案例分析
01
CATALOGUE
大数据概述
大数据的定义与特点
定义
大数据是指数据量巨大、复杂度 高、处理速度快的数据集合。
医疗健康
利用大数据进行疾病预防、诊 断和治疗方案的优化。
商业智能
通过大数据分析,提高企业决 策效率和准确性。
智慧城市
通过大数据实现城市资源优化 配置,提高城市管理效率。
科研领域
大数据在科研领域的应用包括 数据挖掘、知识发现和科研协 作等方面。
02
CATALOGUE
大数据处理技术
数据采集与清洗
数据采集
大数据介绍PPT课件

数据清洗与转换
缺失值处理
对缺失数据进行填充、插值或删除等操作。
数据转换
将数据转换为适合分析的格式,如数值型、 类别型等。
异常值处理
识别并处理数据中的异常值,如离群点、噪 声等。
数据规约
降低数据维度,减少数据冗余和复杂性。
数据集成与融合
01
数据集成
将来自不同数据源的数据进行整合, 形成一个统一的数据视图。
副本机制
为确保数据可靠性和可用性,对每个数据分片创建多个副本,并将 它们存储在集群的不同节点上。
一致性协议
通过分布式一致性协议(如Paxos、Raft等)确保数据在多个副本之 间保持一致性。
数据备份与恢复策略
定期备份
制定定期备份计划,将数据备份到远程存储或云 存储中,以防止数据丢失。
增量备份
仅备份自上次完整备份以来发生更改的数据,以 减少备份时间和存储空间。
数据去重
识别并删除重复的数据记录,确保 数据的唯一性。
03
02
数据融合
对多个数据源的数据进行融合,提 取出更全面、准确的信息。
数据校验
对数据进行校验,确保数据的准确 性和一致性。
04
04 大数据存储与管 理
分布式存储原理
数据分片
将大数据集分割成小块,分别存储在多个节点上,以实现数据的分 布式存储。
大数据可视化
处理大规模数据集的可视化技术,如分布式可视化、并行可视化等。
06 大数据挑战与未 来趋势
数据质量与可信度问题
数据来源多样性
大数据来自各种渠道和源头,数 据质量参差不齐,可能存在不准 确、不完整或误导性的数据。
数据清洗与预处理
为确保数据质量,需要进行数据 清洗、去重、异常值处理等预处 理步骤,增加数据处理复杂性和 成本。
2024年度《大数据时代》PPT课件

生物信息学与大数据
随着生物信息学的发展,大数据在基因测序、疾病诊断和治疗等领 域的应用将越来越广泛。
5G/6G与大数据
5G/6G通信技术将带来更高的数据传输速度和更低的延迟,为大数 据的实时处理和分析提供更强大的支持。
25
06
总结回顾与拓展思 考
2024/3/23
26
课程重点内容回顾
大数据的定义、特点与价值
探索大数据在产品研发、市场营销、客户服务等 方面的创新应用模式,提升企业竞争力。
20
05
大数据未来发展趋 势
2024/3/23
21
人工智能与大数据融合
深度学习算法应用于大数据分析
通过训练大量数据,深度学习算法能够发现数据中的隐藏模式和规律,提高预测的准确
性和效率。
智能数据分析工具
结合人工智能技术,开发智能数据分析工具,实现数据自动分类、异常检测、关联分析 等功能,提高数据分析的效率和准确性。
个性化学习
01
通过分析学生的学习习惯、能力和兴趣等数据,提供个性化的
学习资源和教学方法。
教育评估与改进
02
利用大数据对教育过程和结果进行全面评估,为教育政策和实
践提供科学依据。
在线教育与学习分析
03
通过在线学习平台收集和分析学生的学习数据,提高在线教育
的效果和质量。
14
其他行业应用
2024/3/23
创新业务模式
提高生活质量
大数据的应用可以催生新的商业模式和业 务机会,如个性化定制、智能制造等。
大数据在医疗、教育、交通等领域的应用 可以提高人们的生活质量和幸福感。
2024/3/23
6
02
大数据技术基础
随着生物信息学的发展,大数据在基因测序、疾病诊断和治疗等领 域的应用将越来越广泛。
5G/6G与大数据
5G/6G通信技术将带来更高的数据传输速度和更低的延迟,为大数 据的实时处理和分析提供更强大的支持。
25
06
总结回顾与拓展思 考
2024/3/23
26
课程重点内容回顾
大数据的定义、特点与价值
探索大数据在产品研发、市场营销、客户服务等 方面的创新应用模式,提升企业竞争力。
20
05
大数据未来发展趋 势
2024/3/23
21
人工智能与大数据融合
深度学习算法应用于大数据分析
通过训练大量数据,深度学习算法能够发现数据中的隐藏模式和规律,提高预测的准确
性和效率。
智能数据分析工具
结合人工智能技术,开发智能数据分析工具,实现数据自动分类、异常检测、关联分析 等功能,提高数据分析的效率和准确性。
个性化学习
01
通过分析学生的学习习惯、能力和兴趣等数据,提供个性化的
学习资源和教学方法。
教育评估与改进
02
利用大数据对教育过程和结果进行全面评估,为教育政策和实
践提供科学依据。
在线教育与学习分析
03
通过在线学习平台收集和分析学生的学习数据,提高在线教育
的效果和质量。
14
其他行业应用
2024/3/23
创新业务模式
提高生活质量
大数据的应用可以催生新的商业模式和业 务机会,如个性化定制、智能制造等。
大数据在医疗、教育、交通等领域的应用 可以提高人们的生活质量和幸福感。
2024/3/23
6
02
大数据技术基础
2024大数据ppt课件完整版

2024大数据ppt课件完整版
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。
大数据介绍ppt

大数据的价值与影响
01
价值
02
商业价值:通过大数据分析,企业可以更准确地了 解市场需求,优化产品和服务。
03
社会价值:政府和企业可以利用大数据提高公共服 务和决策效率。
大数据的价值与影响
• 个人价值:大数据也可以帮助个人更好地了解自己和他人 。
大数据的价值与影响
影响 经济影响:大数据产业已经成为全球经济的重要组成部分。
医疗资源优化
通过分析医疗资源的使用数据,优化医疗资源的 配置和调度,提高医疗效率和质量。
金融投资
1 2
市场预测
通过对历史市场数据的挖掘和分析,预测市场走 势和未来趋势,为投资决策提供支持。
风险管理
通过对金融数据的分析和建模,识别和评估潜在 的风险因素,为风险管理提供依据。
3
客户画像
通过对客户数据的挖掘和分析,了解客户的投资 偏好和风险承受能力,为个性化服务提供支持。
数据完整性
由于数据丢失、篡改等原因,数据完整性难以保证,需要采用数据 校验和恢复技术。
数据可信度
由于数据造假、欺骗等问题,数据可信度受到挑战,需要建立数据 信任机制。
数据处理与分析效率问题
数据存储与处理
大数据量巨大,需要高效的数据 存储和处理技术,如分布式存储 、并行计算等。
数据查询与分析
大数据查询和分析需要快速响应 和高效处理,需要采用实时计算 、流式计算等技术。
数据安全与隐私保护
数据安全
通过加密技术、访问控制和安全审计等手段,确保大数据的 安全性和完整性。
隐私保护
在处理大数据时,需要遵守隐私保护原则,保护个人隐私和 敏感信息,避免数据泄露和滥用。
03
大数据应用领域
大数据介绍ppt课件

ASG Server ASG Server
Grid Server
Grid Server
ASG Server
Grid Server
移动终端
ASG Server
Grid Server
To Other Grid Nodes
ASG Server
PC用户
移动终端
ASG Server
ASG Server
邮件服务器
➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
Task:携程数据库(游客数据、点评记录)
实战项目2—— 数据分析及可视化应用
1.Python—2012年美国总统大选数据分析 2.动态气泡图的实现 3.热力感应图(heatmap.js)
管理大数据“易”,理解大数据“难”
•目前大数据管理多从架构和并行等方面考虑, 解决高并发数据存取的性能要求及数据存储 的横向扩展,但对非结构化数据的内容理解 仍缺乏实质性的突破和进展,这是实现大数 据资源化、知识化、普适化的核心.
作用:
- 成本降低,能用PC机,不用大型机和高端存储 - 软件容错硬件故障视为常态,通过软件保证可靠性 - 简化并行分布式计算,无须控制节点同步和数据交换
技术变革
云计算:把集中的运算分散开来
物联网:把分散的设备连在一起
Hadoop:把大数据切成小模块
大数据处理技术——Hadoop
大数据专题(共43张PPT)

应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务, 提供了高可用性和数据一致性保证。
对数据进行分组、汇总等 操作。
Part
04
大数据分析方法与应用
统计分析方法
描述性统计
对数据进行整理和描述, 包括数据的中心趋势、离 散程度、分布形态等。
推论性统计
通过样本数据推断总体特 征,包括参数估计和假设 检验等方法。
多元统计分析
研究多个变量之间的关系, 包括回归分析、因子分析、 聚类分析等。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode。 NameNode负责管理文件系统 的元数据,而DataNode负责存
储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
加密技术
采用加密算法对敏感数据进行加密处理,确保数 据在传输和存储过程中的安全性。
企业如何保障大数据安全
制定完善的大数据安全管理制度 和流程,明确各部门职责和权限。
加强员工安全意识教育和培训, 提高全员大数据安全意识。
加强大数据安全技术研发和投入, 提高安全防护能力和水平。
建立大数据安全应急响应机制, 及时应对和处理安全事件。
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务, 提供了高可用性和数据一致性保证。
对数据进行分组、汇总等 操作。
Part
04
大数据分析方法与应用
统计分析方法
描述性统计
对数据进行整理和描述, 包括数据的中心趋势、离 散程度、分布形态等。
推论性统计
通过样本数据推断总体特 征,包括参数估计和假设 检验等方法。
多元统计分析
研究多个变量之间的关系, 包括回归分析、因子分析、 聚类分析等。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode。 NameNode负责管理文件系统 的元数据,而DataNode负责存
储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
加密技术
采用加密算法对敏感数据进行加密处理,确保数 据在传输和存储过程中的安全性。
企业如何保障大数据安全
制定完善的大数据安全管理制度 和流程,明确各部门职责和权限。
加强员工安全意识教育和培训, 提高全员大数据安全意识。
加强大数据安全技术研发和投入, 提高安全防护能力和水平。
建立大数据安全应急响应机制, 及时应对和处理安全事件。
《大数据介绍》课件

大数据分析应用
• 常用方法 • 商业应用案例 • 发展趋势
大数据安全与隐私保护
• 安全威胁 •前景 • 机遇与挑战 • 创新方向
结论
• 总结大数据的概念和意义 • 强调大数据的发展前景 • 提出未来大数据的需求和发展方向
《大数据介绍》PPT课件
大数据介绍: 了解什么是大数据,它的意义与价值,处理技术,分析应用,安 全与隐私保护,未来发展。
什么是大数据
• 定义解释 • 数据量的大小 • 快速增长的趋势 • 特点和应用
大数据的意义和价值
• 商业价值 • 社会意义 • 行业应用案例
大数据的处理技术
• 分类 • 常用工具和平台 • 优缺点比较
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想驾驭这庞大的数据,我们必 须了解大数据的特征。
*
大数据的4V特征
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
大趋势
—Big Data
国内大数据
马云对未来的预测,是建立在 对用户行文分析的基础上。 “2008年初,阿里巴巴平台上整个 买家询盘数急剧下滑,欧美对中 国采购在下滑。海关是卖了货,出 去以后再获得数据;而我们提前半 年时间从询盘上推断出世界贸易 发生变化了。”
子 商务
气象
*
5、管理大数据“易”理解大数据“难”
• 虽然大数据是一个重大问题,真正的问题 是让大数据更有意义
• 目前大数据管理多从架构和并行等方面考 虑,解决高并发数据存取的性能要求及数 据存储的横向扩展,但对非结构化数据的 内容理解仍缺乏实质性的突破和进展,这 是实现大数据资源化、知识化、普适化的 核心
…
facebook Βιβλιοθήκη 交网络电子商务 淘宝、ebuy
…
…
微博、Apps 移动互联
21世纪是数据信息大发展的时 代,移动互联、社交网络、电子商务 等极大拓展了互联网的边界和应用范 围,各种数据正在迅速膨胀并变大。
互联网(社交、搜索、电商)、移动 互联网(微博)、物联网(传感器, 智慧地球)、车联网、GPS、医学影 像、安全监控、金融(银行、股市、 保险)、电信(通话、短信)都在疯 狂产生着数据。
• 非结构化海量信息的智能化处理:自然语 言理解、多媒体内容理解、机器学习等
*
目录
大数据的定义 理解大数据
相关技术与应用
*
一些相关技术
➢ 分析技术:
➢ 存储
• 数据处理:自然语言处理技术 • 统计和分析:A/B test; top N排行榜;地域占比
;文本情感分析 • 数据挖掘:关联规则分析;分类;聚类 • 模型预测:预测模型;机器学习;建模仿真
• Hadoop(MapReduce技术) • 流计算(twitter的storm和yahoo!的S4)
*
大数据的应用
——企业在投入
行业拓展者,打造大数据行业基石:
IBM: • IBM大数据提供的服务包括数据分析,文本分析,蓝色云杉(混搭供电合作的网络平台);业务事件处
理;IBM Mashup Center的计量,监测,和商业化服务(MMMS) • IBM的大数据产品组合中的最新系列产品的InfoSphere bigInsights,基于Apache Hadoop。 • 该产品组合包括: • 打包的Apache Hadoop的软件和服务,代号是bigInsights核心,用于开始大数据分析
大量的不相关信息 对未来趋势与模式的可预测分析 深度复杂分析(机器学习、人工智能Vs传统商务智 能(咨询、报告等)
实时分析而非批量式分析 数据输入、处理与丢弃 立竿见影而非事后见效
*
目录
大数据的定义
理解大数据
相关技术与应用
*
1、密不可分的大数据与云计算
大数据是落地的云
商业模式驱动
应用需求驱动
云计算本身也是大数据的一种业务模式
*
美国的大数据战略
➢ 2012年3月,美国奥巴马政府宣布投资2亿美元启 动“大数据研发计划”,旨在提高和改进从海量和 复杂数据中获取知识的能力,加速美国在科学和工 程领域发明的步伐,增强国家安全。
➢ 这是继1993年美国宣布“信息高速公路”计划后的 又一次重大科技发展部署,由美国国家科学基金会 、能源部等6个联邦部门共同投资。
软件被称为bigsheet,软件目的是帮助从大量数据中轻松、简单、直观的提取、批注相关信息 为金融,风险管理,媒体和娱乐等行业量身定做的行业解决方案
微软: • 2011年1月与惠普(具体而言是HP数据库综合应用部门) 合作目标是开发了一系列能够提升生产力和
多大? 至少PB
级
比大更重要的是 数据的复杂性, 有时甚至大数据 中的小数据如一 条微博就具有颠
覆性的价值
*
4、大数据的应用不仅仅是精准营销
• 通过用户行为分析实现精准营销是大数据的典型 应用,但是大数据在各行各业特别是公共服务领 域具有广阔的应用前景
消费 行业
金融 服务
食品 安全
医疗 卫生
军事
交通 环保
•云计算的模式是业务模式,本质是数据处理技术。 •数据是资产,云为数据资产提供存储、访问和计算。 •当前云计算更偏重海量存储和计算,以及提供的云服务,运行云应用,但是缺乏盘活 数据资产的能力,挖掘价值性信息和预测性分析,为国家、企业、个人提供决策和服务, 是大数据核心议题,也是云计算的最终方向。
*
2、大数据不仅仅是“大”
*
数据大爆炸
地球上至今总共的数据量:
PB EB ZB
TB
GB
1PB = 2^50字节 1EB = 2^60字节 1ZB = 2^70字节
在2006 年,个人用户才刚刚迈进TB时代,全球 一共新产生了约180EB的数据;
在2011 年,这个数字达到了1.8ZB。
而有市场研究机构预测: 到2020 年,整个世界的数据总量将会增长44 倍 ,达到35.2ZB(1ZB=10 亿TB)!
• 结构化数据: 海量数据的查询、统计、更新等操作效率低
• 非结构化数据 图片、视频、word、pdf、ppt等文件存储 不利于检索、查询和存储
• 半结构化数据 转换为结构化存储 按照非结构化存储
➢ 大数据技术:
➢ 解决方案:
• 数据采集:ETL工具 • 数据存取:关系数据库;NoSQL;SQL等 • 基础架构支持:云存储;分布式文件系统等 • 计算结果展现:云计算;标签云;关系图等
*
目录
大数据的定义
理解大数据 相关技术与应用
*
大数据时代的背景
“大数据”的诞生:
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的 程度。它不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。信息爆炸的学科如天文学 和基因学,创造出了“大数据”这个概念*。如今,这个概念几乎应用到了所有人类智力与发展的领域 中。